СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

ettenss || II II unsage

25/11-24

2818/2-77

Л.И.Журавлева, Н.К.Куциди, Р.М.Лебедев, Г.Мартинска, И.С.Саитов

ИССЛЕДОВАНИЕ АССОЦИАТИВНЫХ МНОЖЕСТВЕННОСТЕЙ В **л** - р-ВЗАИМОДЕЙСТВИЯХ ПРИ 5 ГэВ/с

1 - 10555

Л.И.Журавлева, Н.К.Куциди¹, Р.М.Лебедев, Г.Мартинска², И.С.Саитов

ИССЛЕДОВАНИЕ

АССОЦИАТИВНЫХ МНОЖЕСТВЕННОСТЕЙ В **л** - р-ВЗАИМОДЕЙСТВИЯХ ПРИ 5 ГэВ/с

¹ Тбилисский государственный университет. ² Университет им. П.Й.Шафарика, Кошице, ЧССР.

MACOURT

if Test Sin an

ECTREMENTERA

Журавлева Л.И. и др.

1 - 10555

Исследование ассоциативных множественностей в л р-взаимодействиях при 5 ГэВ/с

Представлены результаты экспериментального исследования ассоциативных множественностей в $\pi^- p$ -взаимодействиях при 5 ГэВ/с на основе анализа ~ 2x10⁴ событий, зарегистрированных в 1-метровой водородной пузырьковой камере ЛВЭ ОИЯИ. Изучены зависимости множественности ассоциированных частиц от быстроты и поперечного импульса выделенных π^{\pm} -мезонов, а также от квадрата недостающей массы к выделенных π^{\pm} -мезонов, а также от квадрата недостающей сравниваются с предсказаниями некоторых моделей. Полученные результаты указывают на возможность применения метода исследования ассоциативных множественностей при относительно небольших энергиях.

Работа выполнена в Лаборатории высоких энергий ОНЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1977

© 1977 Объединенный институт ядерных исследований Дубна

§1. ВВЕДЕНИЕ

Исследование ассоциативных множественностей, связаиных с корреляциями между вторичными частицами, позволяет получать информацию о динамике процессов множественного образования частиц при высоких энергиях. Ассоциативные множественности интенсивно исследовались в pp -взаимодействиях в области энергий от десятка ГэВ до энергий ISR^{/1/}. Экспериментальных данных в π p -взаимодействиях значительно меньше, а систематические исследования при энергии менее 40 ГэВ отсутствуют.

В данной работе приводятся результаты исследования полуинклюзивной реакции

$$\pi \bar{p} \rightarrow c(\vec{p}) + (n-1)_{3ap.} + \dots \qquad /1/$$

Изучалась зависимость множественности заряженных ассоциированных частиц от кинематических переменных выделенной частицы С.

В качестве кинематических переменных выбраны: быстрота выделенной частицы в с.ц.и., поперечная составляющая ее импульса и квадрат недостающей массы к выделенной частице.

Экспериментальной базой исследований явились данные, полученные при обработке стереофотографий с 1метровой водородной пузырьковой камеры ЛВЭ ОИЯИ, облученной пучком π^- -мезонов с импульсом 5 $\Gamma_{2}B/c^{/2/2}$.

Методика обработки и результаты исследования отдельных эксклюзивных каналов опубликованы ранее ^{/3-5/}.

Для окончательного анализа было отобрано около 19,5 x 10³ двух-, четырех- и шестилучевых событий без образования странных частиц. Большинство положительных частиц было однозначно идентифицировано благодаря кинематическому фиту каналов реакций и визуальной идентификации по ионизации; неидентифицированные частицы вошли одновременно как π^+ -мезоны и протоны с весами, обратно пропорциональными сечениям каналов соответствующих неоднозначных кинематических гипотез.

§2. ЗАВИСИМОСТЬ АССОЦИАТИВНОЙ МНОЖЕСТВЕННОСТИ ОТ М²_x

Зависимость множественности системы частиц, образованных в ассоциации с выделенной частицей, от квадрата недостающей массы к этой частице исследовалась в следующих реакциях:

$$\pi^{-}p \rightarrow p + X^{-}, \qquad /2/$$

$$\pi^- p \rightarrow \pi^- + X^+$$
, /3/

$$\pi^{-}p \rightarrow \pi^{-}_{\psi.\Pi.} + X^{+},$$
 /4a/

$$\pi^{-}p \to \pi^{-}_{II.} + X^{+},$$
 /46/

$$\pi \dot{p} \rightarrow \pi - + X^+$$
. (4B)

Индексы у выделенного *п*-мезона в реакциях /4а/-/4в/ означают образование его в разных областях фазового пространства: в области фрагментации пучка

/определенной как
$$x_{\pi^-} > 0,3$$
, где $x = \frac{p_{\pi^+}^*}{p_{max}^*}$, p_{max}^*

максимально кинематически допустимый для частицы данного типа импульс в с.ц.и./, в центральной области (-0,3 <x $_{\pi^-}$ <0,3) и области фрагментации мишени (x $_{\pi^-}$ <-0,3).

Такой выбор областей был сделан по аналогии с работой по исследованию ассоциативных множественностей в K⁺p -взаимодействиях при 5; 8,2 и 16 ГэВ/с ^{/6/}, где была показана возможность приближенного разделения различных механизмов образования частиц.

В реакции /2/ брались только однозначно идентифицированные /с помощью кинематического фита или визуальной идентификации/ протоны, импульс которых в лабораторной системе не превышал 1,2 ГэВ/с. Такое обрезание согласуется с принятым в инклюзивных экспериментах отбором протонов и облегчает сравнение с данными при других энергиях. Полученные экспериментальные результаты, приведенные на *рис. 1-3*, аппроксимировались согласно зависимостям следующего вида:

$$< n(M_{x}^{2}) > = a_{1} + b_{1} ln(M_{x}^{2}),$$
 /5/

$$< n(M_x^2) > = a_2 + b_2(M_x^2)^{\beta}$$
. /6/

Логарифмический рост ассоциативной множественности с M_x^2 предсказывается, в частности, мультипериферической моделью ^{/7/}, а степенной - в моделях с образованием кластеров типа "поча" ^{/8/}. Экспериментальные данные при более высоких энергиях подтверждают логарифмический рост <n (M_x^2) > для не очень малых недостающих масс, а также линейный рост множественности при малых значениях M_x^2 в реакции /2/^{/9,10/}. Результаты аппроксимации при 5 ГэВ/с праведены в *табл. 1.*

Логарифмическая зависимость /5/ хорошо описывает рост $\langle n(M_x^2) \rangle$ в реакции /2/ для значений $M_x^2 > 1 \Gamma \Im B^2$, в реакции /3/ - для $M_x^2 > 4 \Gamma \Im B^2$ и в реакции /4a/ для $M_x^2 > 2,5 \Gamma \Im B^2$. Для центральной области - реакция /46/ - согласие ухудшается.

Реакций /4в/ не анализировалась ввиду малой статистики.

4

Ταблица Ι

B	
< n (M ²) >	e/ `
-	\leq
величины	:ТЯМН /5/÷
оксимации	зависимос
dп	4
aп	·+·
P	/2/
Результат	реакциях ,

Реакция	Число		$\mathbf{a}_1 + \mathbf{b}_1 \left(\mathbf{n} \left(\mathbf{M}_{\mathbf{x}}^2 \right) \right)$			$a_2 + b_2 (M)$	z,β	
	TO YOK	ײ	•1	ه ^ړ	, x ²	•2	ь ₂	Ø
(2)	39	20,9	I,74±0,03	0,67±0,03	I7 , 8	-0,97±1,66	2,71±1,67	0,22 <u>+</u> 0,I2
(2), M ² > 1 <i>F</i> 3 B ²	9	7,7	I, 76±0, 03	0,63±0,03	4,5	0,97±0,75	0,84±0,7I	0,50+0,30
(3)	IO	58,4	0, 32 <u>+</u> 0, 04	I, I8±0, 02	37,2	-I, 39±0, 76	2 ,05<u>+</u>0,7 0	0,33±0,07
(3), M ² > 4 <i>Г₃B²</i>	7	5,5	0,22±0,07	I,22±0,04		нет сходимо	сти	
(1	6	10,7	0,67 <u>+</u> 0,03	u ,90±0, ù2	I, 23	-0,77±0,76	1,57 <u>+</u> 0,72	0,36 <u>+</u> 0,I2
(4a), $M_{\pi}^2 > 2.5 T_3 B^2$	2	υ, 8	0 , 44 <u>+</u> 0,00	I, 05±0, 05				
(46)	39	21,4	0,23 <u>+</u> 0,05	I,∠l <u>+</u> ∪,Ü4	20,6	-1,92±4,51	2,64+4,05	0,27±0,28

Рис. 1. Зависимость ассоциативной множественности от квадрата недостающей массы к выделенному протону; сплошная кривая - результат аппроксимации логарифмической зависимостью /5/, пунктирная - степенной зависимостью /6/.

Степенная зависимость /6/ также удовлетворительно описывает ход изменения $< n(M_x^2) > в$ реакции /4а/, причем получающееся значение параметра β согласуется с ожидаемой из модели^{/8/} величиной О,5. Описание в реакции /2/ - неудовлетворительное, однако для значений $M_x^2 > 1$ ГэВ² согласие улучшается как по χ^2 -критерию, так и по значению величины β .

Следует отметить, что соотношения /5/ и /6/ получены в моделях, рассматривающих процессы множественного рождения в области энергий порядка 10^{1} ; $\div 10^{2} \Gamma \Im B$ /в лабораторной системе/. Поэтому трудно

6

ожидать количественного согласия с этими предсказаниями экспериментальных результатов при значительно меньших энергиях. Необходимо иметь в виду также интенсивное образование резонансов $\Delta(1236)$, ρ , ω и других в π - р - взаимодействиях при 5 Γ эB/c $^{/4,5/}$, в то время как при выводе зависимостей /5/ и /6/ образование резонансов явным образом не учитывалось.

Рис. 2. Зависимость ассоциативной множественности от M_x^2 к выведенному π^- -мезону: сплошная кривая - логарифмическая зависимость, пунктир - степенная.

Тем не менее полученное удовлетворительное качественное и отчасти количественное описание экспериментальных данных при 5 ГэВ/с на основе этих соотношений может свидетельствовать о возможности применения подобного анализа и при относительно небольших энергиях.

Рис. 3. Зависимость $<_n(M_x^2)>$, когда выделенный π^- -мезон образуется в различных областях фазового пространства.

§3. ЗАВИСИМОСТЬ АССОЦИАТИВНОЙ МНОЖЕСТВЕННОСТИ ОТ БЫСТРОТЫ И ПОПЕРЕЧНОГО ИМПУЛЬСА

Множественность ассоциированных частиц как функция быстроты в с.ц.и. выделенных π^{\pm} -мезонов представлена на *рис.* 4. Форма распределения $\langle n(y^*) \rangle$ отражает преимущественное образование медленных π^{\pm} мезонов со значениями $|y^*| \approx 0$ в событиях с боль-

Рис. 4. Зависимость ассоциативной множественности от быстроты выделенных π^{\pm} -мезонов в с.ц.и. Кривые - результат аппроксимации согласно /7/; пунктир - для π^+ -мезонов, сплошная линия - для π^- -мезонов с у*>0.

шей множественностью. Отметим, что относительно большие значения величины $\langle n(y^*) \rangle$ для выделенных π^- -мезонов из задней полусферы указывают на преимущественное образование таких π^- -мезонов в событиях бо́льшей множественности. Примерное постоянство $\langle n(y^*) \rangle$ в задней полусфере можно связать со слабой зависимостью наклона одночастичных полуинклюзивных спектров $d\sigma_n / dy^*$ от множественности, обычно наблюдаемой в событиях с множественностью больше средней /12/.

Экспериментальные данные аппроксимировались зависимостью

$$<_{n}(y^{*}) = a_{3} + b_{3}(ch y^{*})^{-1},$$
 /7/

полученной в статистической модели возбужденных состояний /13,14/. В этой модели делается предположение о статистическом распаде образующихся при взаимодействии возбужденных адронных состояний, причем структурная функция выбирается в виде, соответствующем распределению для бозе-газа.

С учетом сделанных ранее замечаний относительно применимости подобных модельных предсказаний к экспериментальным результатам, полученным при сравнительно небольших энергиях, можно говорить о качественном согласии для случая выделенных π^+ -мезонов. В случае выделенных π^- -мезонов из передней полусферы следует учесть вклад процессов с образованием лидирующей частицы, приводящих к быстрому убыванию ассоциативной множественности. Подобные процессы не учитываются вышеупомянутой моделью, что ухудшает ее согласие с экспериментом для этого случая; аналогичная снтуация имеет место и в π^- р-взаимодействиях при 40 $\Gamma_3 B/c^{-14/2}$.

Мультипериферическая модель $^{/15/}$, а также статистическая модель возбужденных состояний $^{/13,14/}$ предсказывают убывание ассоциативной множественности с ростом поперечного импульса выделенной частицы. Анализ экспериментальных распределений, представленных на *рис.* 5, показал, что убывание $< n(p_{\perp}) >$ происходит значительно быстрее, чем предсказывается этими моделями.

Убывание <n (p₁)> обусловлено наличием отрицательных корреляций между множественностью и одночастичными полуинклюзивными распределениями $d\sigma_n / dp_1$, связанных, в частности, с кинематнкой процесса /14,16/.

Однако зависимость ассоциативной множественности от р₁ в различных областях фазового пространства для выделенной частицы имеет неодинаковый вид - *рис.* 6.

Сильнее всего множественность зависит от р_⊥ для выделенных π^{\pm} -мезонов, образованных в центральной области, где значения <n(p_⊥)> максимальны по величине - *рис.* 66.

Рис. 5. Зависимость ассоциативной множественности от поперечного импульса выделенных π^{\pm} -мезонов.

Различные режимы поведения $<n(p_{\perp})>$ проявляются при выделении двух групп ассоциированных частиц: сопутствующих и противоположных.Сопутствующими названы такие частицы, для которых угол между направлением \vec{p}_{\perp} этой частицы и направлением \vec{p}_{\perp} выделенного π -мезона менее 90°. Для противоположных частиц этот угол составляет более 90°.

Результаты подобного выделения представлены на *puc.* 7. Множественность сопутствующих частиц сильно убывает с ростом P_{\perp} , тогда как множественность противоположных практически не уменьшается. Для случая выделенных π^- -мезонов наблюдается некоторый рост <n(p_{\perp})> при значениях $p_{\perp} \leq O, 6$ ГэВ/с. Полученные нами данные не противоречат результатам исследований зависимости <n(p_{\perp})> при существенно бо́льших энергиях /1,16/ для которых различие в режимах поведения объясняется результатом влияния динамики процессов множественного образования /16/.

Рис. 6. Зависимость $< n(p_{\perp}) >$, когда выделенные π^{\pm} - мезоны образуются в различных областях фазового пространства.

Авторы благодарны членам сотрудничества Дубна -Берлин - Кошице - Улан-Батор за предоставление ленты суммарных результатов для анализа. Авторы признательны Н.С.Амаглобели, Ю.А.Будагову, А.Г.Володько и Л.Шандору за полезные обсуждения, а также Н.Ангелову - за любезно предоставленные программы статистического анализа и Г.Н.Сокольской - за изготовление рисунков.

Рис. 7. Зависимость $< n(p_1) > \partial л л$ двух групп ассоциированных частиц: сопутствующих и противоположных относительно направления \vec{p}_1 .

ЛИТЕРАТУРА

- Anderson E. W. e.a. Phys. Rev.Lett., 1975, 34, p.294. Alper B. e.a. Lett. al Nuovo Cim., 1974, 11, p.173. Kephart R. e.a. Phys. Rev., 1976, D14, p.2909. Дерре Ж. и др. ЯФ, 1976, 23, с.1202.
- 2. Belonogov A.V. e.a. Nucl. Instr. and Meth., 1963, 20, p.114.
- 3. Атаян М., Саитов И.С. ОИЯИ, 13-6086, Дубна, 1971.
- 4. Бенихер Х. и др. ОИЯИ, Р1-6846, Дубна, 1972.
- 5. Абесалашвили Л.Н. и др. ОИЯИ, Р1-7027, Дубна, 1973.
- 6. Chliapnikov P.V. e.a. Phys.Lett., 1974, 52B, p.375.
- Chan C.F. Phys. Rev., 1973, D8, p.179.
 Frazer W.R., Snider D.R. Phys.Lett., 1973, 45B, p.136.
 Chan C.F., Winkelmann F.C.Phys. Rev., 1974, D10, p.3645.

- 8. Berger E.L. Phys. Rev., 1972, D6, p.2580.
- Barish S.J. e.a. Phys. Rev. Lett., 1973, 31, p.1080. Dao F.T. e.a. Phys. Lett., 1973, 45B, p.399. Winkelmann F.C. e.a. Phys. Lett., 1974, 48B, p.273. Биалковская Х. и др. Препринт ИФВЭ, M-11, Серпухов, 1975.
- 10. Winkelmann F.C. e.a. Phys. Rev. Lett., 1974, 32, p.121.
- 11. Амаглобели Н.С. и др. ОИЯИ, 1-10566, Дубна, 1977.
- 12. Гришин В.Г. и др. ЯФ, 1976, 23, с. 782.
- 13. Дарбаидзе Я.З., Слепченко Л.А. Сообщения АН ГрССР, 1975, 79, с.61.
- 14. Абесалашвили Л.Н. и др. ОИЯИ, 1-9406, Дубна, 1975; ЯФ, 1976, 24, с.1189.
- 15. Nieh H.T., Wang J.M. Phys. Rev., 1972, D5, p.2226.
- 16. Абесалашвили Л.Н. и бр. ОИЯИ, 1-10265, Дубна, 1976.

Рукопись поступила в издательский отдел 4 апреля 1977 года.

14