СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

АУБНА

<u>C346,28</u> 5-748

58/2-77

10/1-74 1 - 10134

И.В.Богуславский, А.Валкарова, И.М.Граменицкий, З.Златанов, Н.А.Каржавина, Р.Ледницки, В.И.Рудь, Л.А.Тихонова, Т.П.Топурия, В.Д.Цинцадзе

ТОПОЛОГИЧЕСКИЕ СЕЧЕНИЯ В РЕАКЦИИ РР ПРИ ИМПУЛЬСЕ 35,7 ГЭВ/С

1 - 10134

И.В.Богуславский, А.Валкарова, И.М.Граменицкий, З.Златанов, Н.А.Каржавина, Р.Ледницки, В.И.Рудь, Л.А.Тихонова, Т.П.Топурия, В.Д.Цинцадзе

ТОПОЛОГИЧЕСКИЕ СЕЧЕНИЯ В РЕАКЦИИ РР ПРИ ИМПУЛЬСЕ 35,7 ГЭВ/С

Объединовный институт пдерных воспедорания БИРЭЛИСТЕКА Богуславский И.В. и др. 1 - 10134 Топологические сечения в реакции рр при импульсе 35,7 ГэВ/с В работе представлены данные по топологическим сечениям в рр взаимодействиях при 35,7 ГэВ/с. В широком интервале энергий (от 19 до 405 ГэВ) рассматривается вопрос о КNO-скейлинге. Делается вывод о том, что при достигнутых в настоящее время энергиях КNO-скейлинг не выполняется. Работа выполнена в Лаборатории высоких энергий ОИЯИ. Сообщение Объединенного института ядерных исследований Дубна 1976

О 1976 Объединенный институт ядерных исследований Дубна

В настоящей работе приводятся данные по топологическим сечениям для неупругих pp-взаимодействий при импульсе 35,7 ГэВ/с. Экспериментальный материал получен при облучении установки "Людмила" пучком дифракционно-рассеянных протонов/1/ на ускорителе ИФВЭ. Предварительные результаты по оценке множественности заряженных частиц были приведены в работе/2/.

При двойном просмотре 20 тыс. фотографий в эффективном объеме камеры было найдено 6644 рр-взаимодействий. Эффективность двойного просмотра определялась для каждой топологии и учитывалась при дальнейших вычислениях. Среднее ее значение составляло 99,8%. При определении топологических сечений были введены поправки на потери двухлучевых событий с медленным протоном отдачи. Эти потери оценивались тремя независимыми способами:

а/ Как разность между полным сечением σ_{tot} , полученным в электронном эксперименте $\frac{3}{3}$ и полным сечением, наблюдаемом нами - $\sigma_{tot}^{vis} = 36,09\pm0,92$ мбн. Имеем $\sigma_{loss} = 2,40\pm0,93$ мбн.

б/ Использовалась процедура, примененная в $^{/4/}$. Для этой цели были выделены упругие события, отвечающие критериям: квадрат недостающей массы к медленному протону ММ² 1,4 Γ эВ² и импульс быстрой частицы в с.ц.м. р_{с.т.} 2,8 Γ эВ. Затем, зная упругое сечение $\sigma_{\rm el}^{/5/}$, полное видимое число событий N_{vis} и количество видимых упругих событий N_{vis} по уравнениям:

 $\sigma_{tot} - \delta_{el}^{loss} - \delta_{in}^{loss} = N_{vis} \mu /1 /$ $\sigma_{el} - \delta_{el}^{loss} = N_{el}^{vis} \mu$

3

/где μ -миллибарн-эквивалент/, полагая $\sigma_{in}^{loss} = 0^{+}$, вычисляем потери в упругом канале $\sigma_{el}^{loss} = 2,69\pm0,13$ мбн. Обычно потерями двухлучевых неупругих событий

пренебрегают. Однако большой наклон do 'dt и малые значения минимального лабораторного импульса протонов отдачи при малых $MM^2 / p_{lab}^{min} < 30 M \beta B/c$ для $MM^2 < 2 \Gamma \beta B^2 / указывают на наличие потерь неупругих$ событий в этой области, аналогичных потерям упругих событий. Учитывая возможные систематические ошибки. имеем: $\delta_{in}^{loss} = 0,35\pm0,010$ мбн. И окончательно из уравнений /1/: $\sigma_{el}^{loss} = 2,75\pm0,13$ мбн. Для σ_{loss} имеем: *σ*₁₀₅₅= 3,10<u>+</u>0,16 мбн.

в/ Для выделенных упругих событий построено распределение $d\sigma/dt$ и в интервале $0 \le t \le 0.095 / \Gamma_{3B/c/2}$ с использованием имеющихся в литературе данных о наклоне 6, оценивалась величина $\delta \log \theta$ же. Учитывая $\delta \log \theta$ в б/ получаем: $\sigma_{loss} = 2,26\pm0,38$ мбн. Все три метода дали близкие результаты, и в ка-

честве оценки потерь было принято средневзвешенное значение $\sigma_{loss} = 3,11\pm0,13$ мбн. С учетом этих поправок на полученном экспериментальном материале одному событию отвечает сечение $\mu = 0.00562 +$ +0,00013 мбн/соб. Эта величина использовалась во всех дальнейших расчетах.

Были введены также поправки, связанные с образованием пар Далитца. Для этой цели использовались эмпирическая зависимость ⁸ среднего числа *п*²-мезонов от числа отрицательных частиц в рр -взаимодействиях: $< n_{\pi^0} > = 1.5 \pm 0.4 n_{\pi^-}$,

с помощью которой вычислялось число пар Далитца для каждой топологии.

После введения всех поправок было получено значение средней множественности заряженных частиц (п.,...)= = 4,78+0,03 и топологические сечения, приводимые в

* Имеются в виду потери в неупругих двухлучевых событиях.

**

** В интервале $O,O95 \le |t| \le O,455 / \Gamma \mathfrak{B/c/}^2$ распре-деление $d\sigma/dt$ фитировалось выражением $A \exp(-bt)$. Результат $b = 8,6\pm O,4 / \Gamma \mathfrak{B/c/}^2$ согласуется со значе-нием $9,O\pm O,2 / \Gamma \mathfrak{B/c/}^2$

табл. 1. Другие параметры, характеризующие распределение по множественности, приведены в табл. 2.

Таблица 1

Топологические сечения рр-взаимодействий при 35,7 ГэВ/с

Топо- логия	2	4	6	8	10	12	14
σ _n (мбн)	7,06	11,13	7,90	3,39	1,06	0,29	0,02
	<u>+</u> 0,35	<u>+</u> 0,31	<u>+</u> 0,25	<u>+</u> 0,15	<u>+</u> 0,08	<u>+</u> 0,04	<u>+</u> 0,01

Таблица 2

Средние характеристики распределения по множественности заряженных частиц

D	<n<sub>ch>/D</n<sub>	f ^{cc} ₂	f 2	
2,23	2,14	0,20	-0,14	
<u>+</u> 0,03	<u>+</u> 0,03	<u>+</u> 0,13	<u>+</u> 0,03	

Основываясь на гипотезе масштабной инвариантности Фейнмана, Коба и др. 9 показали, что в этом предположенни распределение по множественности должно удовлетворять соотношению:

$$< n_{eh} > \frac{\sigma_n}{\sigma_{in}} = \psi (n_{eh} / < n_{eh} >),$$
 /2/

где $\psi(z)$ - некоторая универсальная функция, не зависящая от энергии. Распределение нормированной множественности для рр -взаимодействий в интервале энергий 36 - ЗОЗ ГЭВ приведено на рис. 1.

Анализ экспериментальных данных по pp -взаимодействиям, проведенный Слеттери ¹⁰ показал, что в интервале первичных импульсов 50 - 303 ГэВ/с соотношение

Рис. 1. Распределение нормированной множественности длярр-взаимодействий в интервале энергий 36-303 ГэВ/с.

/2/ по крайней мере качественно выполняется. При этом для функции $\psi(z)$ использовалось выражение:

$$\psi(z) = \left(\sum_{k=0}^{3} A_{2k+1} z^{2k+1}\right) e^{-Bz}$$
. /3/

Однако более детальное рассмотрение, проведенное в ¹¹, показало, что в рассматриваемом интервале энергий наблюдается отклонение от KNO - скейлинга и экспериментальные данные плохо описываются формулой, предложенной Коба и Бюрасом ¹².

015 0 0 0 0 138 405 59 . . HQ LQ LQ HQ, • . mq 90 1 I•245 +0•015 816 051 140 140 ოთ 303 4 M • шq HOH NQ 258 •019 പര 0,180 +0,188 205 പ്പ 60,46 ωõ •О н+ нq ŝ Ŷ I,249 ±0,014 828 052 151 54 4 7 7 7 7 I02 HO HO . ٠ цо Ч mq I,24I5 +0,0084 1,806 +0,030 2,959 0,084 0,22 2,22 60 I,236 +0,014 +1 282 2,89 0,15 S 5•I ß нq 9 0,006 +1 2,753 ±0,067 022 m 52, 36 н •Ó +1 HQ ± $\mathbf{q}_{\mathbf{l}}$ I, I898 +0,0032 1,630 ±0,013 2,505 +0,038 61 L3B/C \mathbf{q} ∩~ 3 S m 4 S

Таблица

က

частиц

множественности заряженных

Моменты распределения по

7

4 Таблица

u ь доп Результаты

для (3) функцией

величины $< n c_h > \frac{\sigma_{in}}{\sigma_{in}}$	р р -взаимодействий
(ГОНКИ	

405	2,8	0,002	5,8	I , I0 ^{-I2}
303	2,6	10*0	2 , I	0 , 0I
203	1,7	0,03	Ι,4	0,01
I02	I,2	+ 0,3I	I,2	5 0 , 25
69	I,0	0,34	I,0	0,45
50	I,0	0,47	1,0	0,56
36	I,0	0,38	I,0	0,40
28	2 , 1	2,10 ⁻⁰	3,0	I,I0 ⁻²³
61	3,5	• I0 ^{72U}	5 , 6	10 ^{–58}
P. 136/c	X /NF	c 7 3	X ¹ / _{NF} ^{d)}	cz ^{a)} 4,

Слеттери/10 из подгонки B3AT5 (3) формуле ф Параметры <u>a</u>)

Этот вывод подтверждается также наличием зависимости моментов распределения по множественности $c_{q} = \langle n^{q} \rangle / \langle n \rangle^{q}$ от энергии. Данные, приведенные в табл. 3, свидетельствуют о систематическом увеличении с с энергией.

Для проверки KNO-скейлинга была проведена подгонка экспериментальных данных по величине /2/ выражением /3/ в различных интервалах импульсов от Р_і до 405 ГэВ/с.

Полученные значения доверительного уровня CL и χ^2/NF приведены в *табл.* 4. Там же указанные величины даются при фиксированных значениях А, и В, полученных Слеттери /10.

Данные таблицы показывают, что в рассмотренном интервале энергий экспериментальные данные по нормированным топологическим сечениям в рр-взаимодействиях не могут быть описаны единой функцией типа выражения /3/.

Литература

- 1. В.А. Маишеев и др. Препринт ИФВЭ, ОП 73-7, 1973.
- 2. И.В.Богуславский и др. Препринт ОИЯИ, РІ-6770. Дубна, 1972.
- 3. S.P.Denisov et al. Phys.Lett., 36B, 415, 1971.
- 4. E.G.Boos et al. JINR, E1-9781, Dubna, 1976.
- 5. G.G. Beznogikh et al. Phys. Lett., 43B, 85, 1973.
- 6. G.G.Beznogikh et al. JINR, E1-6613, Dubna, 1972.
- 7. В.Д.Бартенев и др. ЯФ, 22, вып. 2, 317, 1975.
- 8. J. Whitmore. Phys. Rep., 10C, No. 25, 1974.
- 9. Z.Koba, H.B.Nielson, P.Olesen. Nucl. Phys., B40, 317, 1972.
- 10. P.Slattery. Phys. Rev., D7, 1073, 1973.
- 11. В.В.Бабинцев, А.П.Воробьев, А.М.Моисеев. Препринт ИФВЭ, СПК 73-69, 1973.
- 12. A.I.Buras, Z.Koba. Preprint NBI-HE, 73-1 (rev.) 1973.

Рукопись поступила в издательский отдел 28 сентября 1976 года.