ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

А.Абдивалиев, К.Бешлиу, А.П.Гаспарян, С.Груя, А.П.Иерусалимов, Д.К.Копылова, Ф.Которобай, В.И.Мороз, А.В.Никитин, Ю.А.Троян

10034

ИССЛЕДОВАНИЕ РЕАКЦИИ $np \rightarrow d \pi + \pi$ -В ИНТЕРВАЛЕ ИМПУЛЬСОВ P n = (1.5) ГЭВ/С

Эка чит. зала

1 - 10034

1 - 10034

А.Абдивалиев,¹ К.Бешлиу,² А.П.Гаспарян, С.Груя, А.П.Иерусалимов, Д.К.Копылова, Ф.Которобай, В.И.Мороз, А.В.Никитин, Ю.А.Троян

ИССЛЕДОВАНИЕ РЕАКЦИИ $np \rightarrow d \pi + \pi$ -В ИНТЕРВАЛЕ ИМПУЛЬСОВ $P n = (1.5) \Gamma B/C$

Направлено в "Nuclear Physics"

¹ Таджикский государственный университет. ² Бухарестский университет, СРР.

1. ВВЕДЕНИЕ

В последние годы с целью изучения так называемой ABC-аномалии^{/1/} проведен ряд экспериментальных исследований ^{/2-4/}. ABC -особенность четко проявилась в спектре недостающих масс (mm)^о реакций

$np \rightarrow d + (mm)^{o}/2/$	/1/
$dp \rightarrow {}^{3}He + (mm)^{o/3/},$	/2/
$dd \rightarrow {}^{4}He + (mm)^{\circ/4/}$.	/3/

Это явление изучалось также в реакции пр $\rightarrow d_{\pi}^{+}\pi^{-}/4/$ в сплошном спектре нейтронов камерной методикой /5/.

Для объяснения эффекта были предложены различные теоретические подходы $^{/6,7/}$. В настоящее время считается важным экспериментальное и теоретическое исследование реакций /1/ и /4/.

Необходимо отметить еще один экспериментальный факт. В работе^{/2/} в одном из 13 спектров недостающих масс реакции /2/ была замечена незначительная особенность при 0,45 Γ эB/c² (DEF). В других реакциях такого отклонения не наблюдалось.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

1-метровая водородная пузырьковая камера ЛВЭ ОИЯИ была облучена квазимонохроматическим пучком нейтронов ^{/8/}, полученным от стриппинга дейтронов на алюминиевой мишенн. Импульсный разброс нейтронов $\Delta P/P_n$ не превышал /3-4/%. Угловая расходимость $\Delta \Theta$ пучка в камере составляла ~ 0,3 *мрад*. В данной работе приводятся экспериментальные результаты при четырех значениях импульса нейтронов: $P_n = /1,73$; 2,23; 3,83; 5,10/ ГэВ/с.

Было обработано ~ 60 тыс. З-лучевых звезд. Доля неизмеримых событий не превышала 3%. Реакция пр- $d_{\pi}^{+}\pi^{-}$ выделялась χ^2 -методом с последующей визуальной идентификацией частиц. При $P_n = 1,73$ и 2,23 ГэВ/с число событий реакции /4/ - соответственно 925 и 697, а примесь от других каналов реакций не превышает пескольких процентов. При $P_n = 3,83$ и 5,10 ГэВ/с выделение реакции становится затруднительным из-за большой примеси. Применение метода разделения различных ^{/9/} гипотез по их отпосительной вероятности позволило дать оценку сечения реакции /4/ при $P_n = 3,83$ и 5,10 ГэВ/с. Сечение процесса σ_A при всех энергиях определялось поформуле

$$\sigma_{\rm d} = \frac{\rm N_{\rm d}}{\rm N_{\rm 3}} \sigma_{\rm 3} , \qquad /5/$$

где N_d - число событий, отнесенных к реакции /4/; N₃ - полное число 3-лучевых звезд; σ_3 - топологическое сечение 3-лучевых звезд /10/.

На *рис. 1* приведено сечение реакции в зависимости от импульса нейтрона P_n . Величины сечений, определенные нами, даны в *табл. 1*. Треугольниками обозначены сечения, взятые из работы $^{/5/}$.

Таблица 1

Р _n /ГэВ/с/	1,73	2,23	3,83	5,10
σ _d / мб/	0,270±	0,330 <u>+</u>	0,050 <u>+</u>	0,030 <u>+</u>
	0,015	0,020	0,020	0,020

Видно, что сечение имеет максимум в районе $P_n \approx 2 \Gamma \beta B/c$ и затем резко падает до нескольких десятков микробари.

Рис. 1. Сечение реакции пр → dπ⁺π⁻.

На *рис.* 2 представлены распределения по косинусу угла Θ^* в с.ц.м. реакции для дейтронов н π^+ -мезонов. Здесь и в дальнейшем верхние гистограммы соответствуют $P_n = 1,73 \ \Gamma \beta B/c$, а нижние - 2,23 $\Gamma \beta B/c$. Вследствие изотопической симметрии реакции /4/ угловые распределения π^+ -мезонов сложены с зеркально отраженными распределениями для π^- -мезонов. Нужно заметить, что все распределения для изотопически сопряженных величин получались хорошо совпадающими. Из *рис.* 2 видно, что угловые распределения вылета дейтронов и π^+ -мезонов близки к изотропным.

На рис. З приведены распределения по эффективной массе $M_{d\pi^{\pm}}$. Здесь и на следующем рисунке штриховая линия соответствует фазовой кривой, рассчитанной для фиксированных значений импульса нейтрона $P_n = 1,73$ и 2,23 $\Gamma_{\partial}B/c$. Кривая нормируется на полное число событий. Наблюдается существенное превышение

Рис. 2. Угловые распределения в с.ц.м. реакции для дейтронов и π^{\pm} -мезонов.

над фазовой кривой. Такое явление часто интерпретируют как d*-особенность. Среднее значение $M_{d\pi^{\pm}}$ смещается вправо от 2,11 ГэВ/с²при $P_n = 1,73$ ГэВ/сдо 2,19 ГэВ/с² при $P_n = 2,23$ ГэВ/с.

На рис. 4 представлены распределения по эффективной массе $M_{\pi} +_{\pi} - 3$ аштриховано распределение для событий с P_n , отличающимся не больше чем на 1,4% от центрального значения. Нижняя гистограмма хорошо описывается фазовой кривой, тогда как в распределении при $P_n = 1,73$ ГэВ/с отчетливо видны две особенности. Максимумы пиков расположены при $M_{\pi} +_{\pi} - \approx 0,33$ и 0,40 ГэВ/с² Если первая особенность соответствует АВСаномалии, то вторая наблюдается впервые. Среднее разрешение по $M_{\pi} +_{\pi} -$ составляет ~15 МэВ/с. Если фазовую кривую отнормировать на высоту минимума между пиками в распределении $M_{\pi} +_{\pi} -$ при $P_n = 1,73$ ГэВ/с, то превышение над таким фоном составит ~5 стандартных отклонений.

Рис. 3. Распределения по эффективной массе M_{dm}± Штриховая линия соответствует фазовой кривой.

3. ЗАКЛЮЧЕНИЕ

Сконцентрируем наше внимание на распределениях $M_{\pi^+\pi^-}$.

"А. Известно $^{/3,4/}$, что сечение ABC -аномалии резко падает с увеличением начальной энергии. В нашем случае ABC -особенность видна при $P_n = 1,73 \ \Gamma \Rightarrow B/c$ и не проявляется при $P_n = 2,23 \ \Gamma \Rightarrow B/c$. Этот факт согласуется с экспериментальными данными по реакциям /2/ или /3/.

7

Вторая особенность также не видна при $P_n = 2,23 \ \Gamma \Im B/c$, что указывает на резкую энергетическую зависимость сечения ее образования.

Б. Рассмотрим экспериментальные данные исследования пр - $d_+(mm)^{\circ/2}$ при $P_n = 1,88 \ \Gamma \ni B/c$ и пр - $d_{\pi} + \pi^-$ при $P_n < 1,88 \ \Gamma \ni B/c$, где особенность при $M_{\pi} + \pi^- \simeq - 0,40 \ \Gamma \ni B/c$ не наблюдалась. Экспериментальный материал по первой реакции является предварительным и может измениться на /10-20/% /7/. Кроме этого, экспе-

риментальное разрешение по массе недостаточно для наблюдения двух особенностей. Во второй реакции отсутствие особенности можно объяснить широким импульсным спектром падающих нейтронов, что приводит к искажению распределения М_π+_π-.

В. В итоге можно сделать следующий вывод: получено указание на существование новой аномалии в системе $(\pi^+\pi^-)$ вреакции пр $d \pi^+\pi^-$ с массой М $_{\pi^+\pi^{\approx}}$ О,40 ГэВ/с² и шириной $\Gamma < 0,03$ ГэВ/с².

ЛИТЕРАТУРА

- A.Abashian, N.E.Booth and K.M.Crowe. Phys.Rev.Letters, 5, 258 (1960); 7, 35(1961); A.Abashian, N.E.Booth, K.M.Crowe, R.E.Hill, E.H.Rogers. Phys.Rev., 132, 2296 (1963).
- G. Bizard et al. Caen-Saclay Collaboration. Proc. 5 th Int. Conf. on High-Energy Physics and Nuclear Structure, Uppsala, Sweden, 1973.
- 3. J. Banaigs et al. Nucl. Phys., B67, 1 (1973).
- 4. J. Banaigs et al. Nucl. Phys., B 105, 52 (1976).
- 5. I.Bar-Nir et al. Nucl. Phys., B54, 17 (1973).
- 6. G.W.Barry. Nucl. Phys., B85, 239 (1975).
- 7. I. Bar-Nir et al. B 87, 109 (1975).
- 8. А.П.Гаспарян и др. Сообщение ОИЯИ, 1-9111, Дубна, 1975.
- 9. В.И. Мороз и др. ЯФ, 6, 90 /1967/.
- 10. А.Абдивалиев и др. Сообщение ОИЯИ, 1-8565, Дубна, 1975; Nucl. Phys., В99, 445 (1975).

Рукопись поступила в издательский отдел 10 августа 1976 года.