90-120

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

K17

P3-90-120

1990

С.Д.Калчев, А.В.Стрелков, Г.И.Терехов*

ИССЛЕДОВАНИЕ НАГРЕТЫХ УЛЬТРАХОЛОДНЫХ НЕЙТРОНОВ НА ПОВЕРХНОСТИ МЕДИ

*Научно-исследовательский институт атомных реакторов им.В.И.Ленина, г.Димитровград

ВВЕДЕНИЕ

За последние два десятилетия наблюдается все возрастающий интерес к проблеме взаимодействия водорода с поверхностью, что обусловлено практическим значением этой проблемы, выходящей в настоящее время на одно из первых мест среди задач современного материаловедения.

Растворенный водород изменяет многие физические свойства твердого тела /объем, хрупкость, электропроводимость и др./. В некоторых случаях /технология изготовления электронных микросхем, измерение времени жизни свободного нейтрона с помощью ультрахолодных нейтронов /УХН/, создание сосудов для осуществления управляемого термоядерного синтеза, поиски возможности для осуществления холодного ядерного синтеза, изучение явления образования насыщенной водородом зоны в подповерхностном слое металла при трении и др./ необходима информация по распределению водорода в приповерхностном слое металла.

Преимущество анализа концентрации водорода в веществе методом рассеяния медленных нейтронов состоит в том, что он является неразрушающим, а использование УХН для анализа приповерхностного водорода является уникальным, поскольку УХН не проникают в вещество глубже 150 Å, что позволяет избавиться от фона процессов, протекающих по всей толщине образца, куда проникают нейтроны с $E_n > E_{YXH}$. В принципе, используя эффект проникновения в вещество Z-компоненты при полном отражении под малыми углами / $a \sim 10^{-8}$ / высокоинтенсивных пучков тепловых нейтронов, можно получить аналогичные результаты, однако шероховатости на поверхностях приводят к существенному увеличению /много более 150 Å/ глубины проникновения нейтрона в вещество.

В результате нагрева ультрахолодных нейтронов на стенке сосуда в настоящее время накладывается предел на экспериментально достижимое время удержания газа ультрахолодных нейтронов в замкнутом сосуде. Важную информацию для понимания процесса нагрева можно получить при изучении спектров нагретых нейтронов. Энергия нагретых /неупруго рассеянных/ нейтронов при ударе о стенки сосудов измерялась методом регистрации потока "бывших" УХН счетчиком подогретых нейтронов /СПН/ с изменяемой эффективностью/1/ и по ослаблению нагретых нейтронов в га-

зовом слое ³Не, установленном перед счетчиком тепловых нейтронов⁷²⁷.

По данным работы^{/1/}, при температуре 300 К энергия нагретых УХН на поверхности меди составляет 5÷15 мэВ, а по данным работы^{/2/} - 20 мэВ. В обеих работах применялась калибровка по нейтронам, нагретым на полиэтилене до E ~13 мэВ при температуре 300 К. Кроме того, в работе^{/2/} показано значительное увеличение /до трех раз/ средней энергии нагретых УХН по мере обезгаживания образца.

В нашей работе сообщаются экспериментальные результаты исследования энергетической зависимости разогретых УХН на химически и электрохимически очищенных образцах меди. Основной целью работы является измерение спектра подогретых УХН по мере обезгаживания этих образцов, что дает информацию о динамике выделения водорода и его связи в поверхностном слое металла толщиной до 150 Å

ЭКСПЕРИМЕНТ. РЕЗУЛЬТАТЫ

1. Эксперименты проводились на реакторе СМ-2 в НИИАР на канале УХН ^{/3/}. На рис.1 показана схема установки для исследования нагретых УХН и их энергетического распределения при различных температурах /77 \div 800 К/ образцов. В отличие от рабонты ^{/2/}, в нашей работе: 1/ поток нагретых нейтронов регистриругла в телесном угле, составляющем 90% от полного телесного угла 4 π ; 2/ одновременно измеряются поток нагретых УХН и плотность потока УХН на образце; 3/ для энергетической калибровки потока нагретых нейтронов используются нейтроны, нагретые на атомах газообразного ⁴Не. Скорость таких нейтронов достаточно точно рассчитывается.

Рис.1. Схема установки /объяснения см. в тексте/.

Исследуемые образцы /1 на рис.1/ помещались в середине сосуда /2/ - медной трубы с внутренним диаметром 7,4 см, толщиной стенки 1,5 мм; L = 150 см, герметично отделенной от вакуумного объема нейтроновода двумя окнами /3/ для пропускания УХН на торцах /алюминиевая фольга толщиной 100 мкм/, которые препятствуют попаданию летучих водородосодержащих веществ из объема нейтроновода на образец. Этот внутренний объем имеет автономную вакуумную откачку /4/, которая отключалась во время измерений. Через входное окно объем сосуда заполнялся нейтронами, поступающими от конвертора по транспортному нейтроноводу /11/. Часть УХН проходит через диафрагму /5/ в выходное окно и попадает в детектор УХН /6/ /пропорциональный счетчик на основе ⁸Не с площадью входного окна 60 см²/⁴/. Достаточно малая площадь диафрагмы - 1,77 см² - определяет линейную зависимость счета детектора УХН от площади и позволяет непрерывно измерять среднюю плотность потока УХН на образце.

УХН в результате неупругих столкновений с поверхностью образца нагреваются до энергии порядка энергии тепловых нейтронов, покидают сосуд и регистрируются окружающим его счетчиком подогретых нейтронов /СПН/ /7/,который является основным элементом установки.Цилиндрический СПН - пространство между двумя коаксиальными цилиндрами с диаметрами 25 и 32 см и объемом 25 л - имеет 24 радиальные секции и заполнен газовой смесью ³Не - 2,5 атм; Ar - 1,5 атм; СН4 - 30 Торр.Во всех секциях натянута нить - анод из позолоченного вольфрама диаметром 50 мкм. Все аноды объединены.

Форма амплитудно-дифференциального спектра /рис.2/ импульсов от нагретых нейтронов показывает полный сбор продуктов реакции ³He(n, p) T, таким образом эффективность к нейтронам, захваченным на ³He в СПН, составляет ~100%.

Поглощение нейтронов в конструкционных материалах /0,5 см-AI, 0,15 см – нержавеющая сталь и 0,16 см – Сш/, отделяющих образец источника нейтронов и ³Не в СПН, ограничивает нижний энергетический предел регистрации нейтронов значением 10⁻⁴ эВ.

При этой энергии эффективность приблизительно равна 10%.

В диапазоне скоростей нейтронов $(1\pm0,5)V_{\rm T}$ (V_T = 2200 мс⁻¹ - скорость тепловых нейтронов) не наблюдается значительной за-

Рис.2. Амплитудно-дифференциальный спектр импульсов СПН от нагретых нейтронов.

висимости эффективности СПН от скорости нейтронов, поскольку с уменьшением скорости нейтрона уменьшение трансмиссии стенок компенсируется увеличением эффективности захвата в ³Не /см. кривую на рис.2 в ^{/5/}/.

Для измерения спектра скоростей подогретых нейтронов в конструкции предусмотрен фильтр /8/ – цилиндрическая полость перед СПН толщиной 4 см, заполняемая BF₃, обогащенным ¹⁰В до 86% /чистота BF_3 : 99,6%; содержание 0_2 – 0,4%/. Изменяя давление ${
m BF}_3$ в фильтре, непосредственно во время эксперимента измеряется крутизна зависимости интенсивности регистрации нейтронов от давления BF_3 . Эта крутизна зависит от скорости нагретых нейтронов, поскольку величина сечения реакции 10 B(n,a) 7 Li в широком интервале энергий нейтронов довольно хорошо следует закону 1/V и составляет для тепловых нейтронов 3800 б. Для используемого обогащенного BF_a сечение захвата для тепловых нейтронов равно 3400 б. Нагрев образцов до Т = 800 К осуществляется электрическим нагревателем, а охлаждение до Т = 80 К - пропусканием жидкого азота по змеевику, намотанному на внешнюю поверхность медной трубы. В середине и на краю трубы имелись две термопары, контролирующие температуру образца. Применение экранов - фольги из нержавеющей стали - позволило улучшить степень теплоизоляции трубы. Для поддержания постоянной температуры /близкой к комнатной/ СПН и фильтра во всем диапазоне изменения температур применялся сжатый воздух, пропускаемый по цилиндрической полости между фильтром и вакуумной трубой. Применение для этой цели водяного охлаждения исключено, поскольку даже слой воды толщиной 1 мм между образцом и СПН из-за неупругого рассеяния на воде приводит к существенному искажению спектра пропускаемых нейтронов. Водяное охлаждение использовалось для охлаждения поверхности нейтроновода перед и после СПН, а также для охлаждения детектора УХН, и позволило поддерживать постоянными параметры детектора УХН, СПН и фильтра при нагреве трубы до 800 К.

Регистрация интенсивности потока нагретых нейтронов производилась одновременно амплитудным анализатором АИ-256-6 и электронно-счетной системой, нижний и верхний пороги амплитуд которой устанавливались в соответствии с полной регистрацией всех продуктов реакции ⁸Не(п, р)Т.

Защита из борированного полиэтилена /9/ /толщиной 25 см/ и листового кадмия /10/ /толщиной 0,1 см/ уменьшала фон от реактора /СМ-2, 90 МВт/ на расстоянии 7 м от активной зоны до 0,8 с⁻¹ СПН и 0,04 с⁻¹ детектора УХН. При остановленном реакторе СМ-2 фон СПН составляет 0,3 с⁻¹ и определяется работой расположенного вблизи реактора РБТ-6, космическим фоном и α -активностью стенок СПН.

Поскольку скорость счета СПН в защите достаточно мала, постоянство его параметров регулярно контролировалось по положению пика от нейтронов с Е = 0,764 МэВ с помощью источника нейтронов ²⁵²Cf, вводимого на некоторое время внутрь защиты СПН.

Поток нагретых нейтронов на образце определялся по разнице счета СПН и счета СПН при закрытом нейтроноводе медной шторкой /толщиной 10 мкм /12//. Наличие в нейтроноводе УХН четырех угловых поворотов "очищает" поток УХН от нейтронов со скоростями, несколько превышающими граничную скорость меди. Оставшаяся доля надграничных нейтронов на образце не превышает 2,5% от потока УХН, а в связи с тем, что для меди $\sigma_a / \sigma_{ie} > 10$, их вклад в общий поток подогретых нейтронов, определяемых по методике шторочной разницы, - менее 0,3%. Поток УХН контролировался в начале и конце каждой серии и был достаточно стабилен в пределах 0,5%. Колебания мощности реактора не превышали 0,5%.

Для обезгаживания образца во время отжига и эффективной откачки трубы применялись многократные заполнения гелием-4 до давления 50 Торр с последующими откачиваниями его до давления ~10⁻⁴ Торр. Атомы гелия при столкновении с поверхностью металла выбивают из нее слабосвязанные адсорбированные атомы примесей /"гелиевая очистка"/, которые затем эффективно уносятся с потоком откачиваемого гелия. Нагрев УХН на оставшемся гелии /2x10⁻⁶ с⁻¹/ не дает заметного вклада в поток нагретых нейтронов от образца и от стенок трубы. Поскольку содержание примесей в используемом гелии /высокой чистоты - 99,99%/ незначительно, "эффективный вакуум" после такого метода откачки не хуже 10^{-8} Topp /6/ /без учета атомов ⁴Не/.

Чтобы обеспечить кратчайший путь диффузии примесных газов и связанное с этим более короткое время дегазации, применялись образцы из медной фольги марки М1 площадью 5х10³ см², толщиной 60 мкм, свернутой в спираль Архимеда с шагом 6 мм, которые размещались в центре СПН. Фольга очищалась растворителями /спирт, ацетон, дистиллированная вода/, электрохимической полировкой в H₃PO₄ или травлением в HNO₄.

2. Интенсивность регистрации нагретых УХН

$$\mathbf{N} = \phi \cdot \epsilon (\mathbf{n} \sigma \mathbf{x}, \Omega) \sum_{i} \sigma_{ie}^{+} \delta_{i} \cdot \mathbf{S},$$

где ϕ – плотность потока УХН на образце; $\epsilon(n\sigma x, \Omega)$ – эффективность регистрации нагретых УХН в СПН в зависимости от эффективной толщины поглотителя $n\sigma x$ и доли Ω телесного угла от полного 4π , под которым СПН "видит" поверхность образца; σ_{ie}^{+} – сечение неупругого рассеяния УХН на образце; δ_{i} – поверхностная кон-

центрация примесных атомов в приповерхностном слое образца толщиной 100 Å; S - площадь образца.

Плотность потока УХН на образце определялась с помощью детектора ультрахолодных нейтронов, подключенного на конце нейтроновода. Падение плотности УХН в сосуде, вызванное размещением образца, составляло в среднем ~10% и учитывалось при обработке результатов. С учетом того, что в зазорах между листами меди свернутого образца УХН распределены изотропно, плотность УХН на образце определена линейным приближением как среднеарифметическое значение плотности УХН с образцом и без него.

Расчетная геометрическая эффективность СПН при измерениях средней энергии нагретых УХН на ⁴Не составляет 85%, а при измерениях с медными образцами - ~90%. Подтверждением справедливости расчета могут служить экспериментальные данные измерения геометрической эффективности с помощью полиэтилена малой площади, незначительно возмущающей распределение плотности УХН внутри трубы. Поскольку для полиэтилена σ_{ie}/σ_{a} ~250, то вероятность нагрева УХН при ударе о полиэтилен - ~1. Измерив поток подогретых нейтронов от протяженного куска полиэтилена площадью 1,5 см² по всей длине СПН и сравнив его со значением потока подогретых нейтронов от того же кусочка полиэтилена, свернутого в неплотный комок в центре СПН, получили хорошее согласие с расчетным значением геометрической эффективности СПН.

Растворение водорода в металлах может происходить с образованием твердых растворов⁷⁷. Если не принять специальных мер, основное количество H_2 поглощается во время плавки металла и составляет для большинства металлов 10^{-2} ат.%. Для всех металлов, кроме A1 и Au, после выдерживания некоторое время в обычных условиях на воздухе на поверхности образуются гидратные пленки типа /Ме х ОН/, садится вода и углеводородные соединения. Толщина окисных пленок на поверхности Cu – меньше 15 Å ^{/8/}. Непосредственный контакт меди с водородом не приводит к образованию гидридов меди ^{/9,10,19/}.

Внедрение водорода в матрицу металла приводит к изменению фононного спектра. При неупругом взаимодействии нейтронов с поверхностью происходит обмен энергии между фононами и нейтронами '11'. Непосредственный расчет спектра фононов конкретных поверхностных структур представляет собой весьма трудную задачу. Поэтому при построении моделей процессов, протекающих на поверхности во время выделения водорода и связанных с ним изменений фононного спектра, полезную информацию могут дать измерения спектров нейтронов, подогретых на поверхности вещества. УХН, имея начальный импульс, практически равный нулю, в результате удара о поверхность вещества нагревается преимущественно

на ядрах водорода, переходя в область тепловых энергий, причем средняя энергия этих нейтронов содержит информацию о характере связей атомов водорода на поверхности.

Для относительной оценки средней энергии спектра подогретых УХН на поверхности разных образцов в качестве калибровки использовался газ ⁴Не. Неупругое сечение взаимодействия УХН с атомами ⁴Не определяется скоростью атомов ⁴Не и легко может быть рассчитано. К тому же ⁴Не не адсорбируется на поверхности металлов и не захватывает нейтронов. Для калибровки использовался ⁴Не высокой чистоты /99,99%/. Значение давления ⁴Не P = 50 Торр соответствовало линейной части зависимости количества подогретых УХН от давления ⁴Не /при больших давлениях гелия основная часть УХН подогревается в начальной части трубы у входного окна/.

Согласно работе ^{/12/} спектр нагретых нейтронов на одноатомном газе массой М /вероятность того, что УХН приобретает энергию Е/ выражается соотношением

$$W = c \cdot \exp\left[-\frac{(M+m)^2}{4Mm} \cdot \frac{E}{kT}\right] \cdot dE, \qquad /1/$$

где m - масса нейтрона, Е - энергия нагретых нейтронов, Т температура_газа, k - константа Больцмана.

Энергия E и скорость V нагретых нейтронов описываются формулой

$$\overline{E} = \frac{\int W \cdot E \cdot dE}{\int W dE} = \frac{4Mm}{(M+m)^2} \cdot kT,$$

$$V = \sqrt{\frac{2E}{m}} = 2V \cdot \frac{\sqrt{Mm}}{M+m}.$$
(2/

Для Не \vec{E} = 0,64 к T и \vec{V} = 0,8 $V_{\rm T}$, при T = 300 К \vec{E} = 16 мэВ, \vec{V} = 1760 м/с.

Используя /1/ для распределения нагретых УХН на газе массой М, после одного удара можно записать:

$$\frac{\mathrm{dN}}{\mathrm{dE}} = \frac{1}{\mathrm{T}} \cdot \mathrm{e}^{-\frac{\mathrm{E}}{\mathrm{T}}},$$

$$\frac{\mathrm{dN}}{\mathrm{dE}} = \frac{\mathrm{dN}}{\mathrm{V} \cdot \mathrm{dV}} = \frac{1}{\mathrm{T}} \cdot \mathrm{e}^{-\frac{\mathrm{(M+m)}^2}{4\mathrm{M}}} \cdot \frac{\mathrm{v}^2}{\mathrm{2T}}.$$
/3/

На рис.3 приведены расчетные спектры разогретых нейтронов после первого соударения с атомом гелия при температурах 150, 300 и 450 К согласно

Рис. 4. Зависимость интенсивности регистрации нейтронов BF_3 от давления BF_3 /в атм./ для: 1 – необезгаженного медного образца; 2, 3 – образца после его обезгаживания при температурах 600 и 800 К соответственно; 4 – гелия при давлении 50 Торр и температуре 300 К.

$$dN = \frac{V}{T} e^{-0.78 \frac{V^2}{T}} dV.$$

Рис.3. Распределения по скоростям нагретых нейтронов после первого соударения с атомом гелия для разных температур гелия.

141

Пропускание фильтра с¹⁰ВF_g описывается выражением

$$Tr = \exp\left(-N_{1} \cdot \sigma_{T} \cdot V_{T} \cdot P \cdot d / V_{eff} \cdot P_{0}\right),$$

где N_L - число Лошмидта, σ_T - сечение поглощения нейтронов ^{10}B при скорости теплового нейтрона V_T = 2200 м/с, d - толщина фильтра, V_{eff} - эффективная скорость нагретого нейтрона, P - давление 10 BF3, P0 - нормальное давление. Измерив зависимость изменения счета СПН от давления в фильтре /рис.4, прямая 4/, находим давление P_{eff} , при котором счет СПН уменьшается в е раз.

Экспериментально определена зависимость $V_{\rm eff}$ / $V_{\rm T}$ ($P_{\rm eff}$) /рис.5/. $P_{\rm eff}$ определялось из измерений N(P) при $T_{\rm He}$ = 150, 500 и 450 K, а $V_{\rm eff}$ – из расчета средней скорости нагретого нейтрона, рассчитанной для соответствующей температуры гелия. В дальнейшем для калибровки при определении средних скоростей нейтронов, нагретых на исследуемых образцах, в моноскоростном приближении принимаем для $P_{\rm eff}$ = 1 атм значение $V_{\rm eff}$ = /0,44 \pm \pm 0,03/V_T.

Рис.5. Калибровочная зависимость эффективной скорости нагретых нейтронов на гелии от эффективного давления **BF**₂.

Расчетное значение трансмиссии Tr нейтронов со спектрами, изображенными на рис.3, через фильтр, заполняемый BF_3 , определяется формулой

$$Tr = \int \frac{V}{T} \exp(-A \frac{P}{V} - 0.78 \frac{V^2}{T}) dV$$
. (5/

Здесь А – константа, зависящая от геометрической эффективности СПН, сечения захвата в поглотителе ${\rm BF}_3$ и стенках. Результат такого расчета изображен черными точками на рис.6. При заданной погрешности, не превосходящей 8% в каждой точке и подгонки по МНК при использовании критерия χ^2 -Пирсона, полученная расчетная зависимость ${\rm Tr}({\rm P})$ на уровне достоверности 90% и выше

Рис.6. Зависимость **Tr** -трансмиссии нейтронов, нагретых на гелии через фильтр, от давления **BF**₃ в фильтре. Точками обозначены расчетные значения **Tr** согласно /5/; прямая линия соответствует расчетному значению **Tr** согласно /6/ при заданной погрешности 8% в каждой точке. Пунктиром показан коридор ошибок аппроксимации.

аппроксимируется одной экспонентой с $V = V_{eff}$ /сплошная линия на рис.6/:

$$Tr = \exp\left(-A - \frac{P}{V_{eff}}\right).$$
 /6/

Таким образом, аппроксимация спектра нагретых нейтронов одной монолинией является довольно хорошим приближением.

3. В настоящей работе рассмотрены исследования спектров нагретых нейтронов на электрополированной и промытой дистиллированной водой медной фольги толщиной 60 мкм. После измерения потока и спектра нагретых УХН при комнатной температуре образец был отожжен последовательно при температуре 600 и 800 К в течение 10 и 6 часов соответственно. После каждой стадии обезгаживания фольга-образец охлаждалась до комнатной температуры и при этой температуре измерялась зависимость N(P), представленная на рис.4, прямые 1-3. Энергии и скорости нагретых нейтронов приведены в табл.1.В этой же таблице приведены аналогичные данные для медных образцов с различной химической обработкой их поверхности до обезгаживания, а также данные для образцов из полиэтилена и гидрида циркония. Спектры нагретых нейтронов на полиэтилене и гидриде циркония представлены на рис.7.

Уменьшение значений N(0) и V_{eff} после обезгаживания образца, очевидно, связано с десорбцией адсорбированных газов и водородосодержащих загрязнений и, по-видимому, с очисткой приповерхностного слоя, концентрация растворенных примесей в котором выше, чем в остальном объеме. Контрольный эксперимент для определения вклада приповерхностного слоя в нагрев показал, что после стравливания в азотной кислоте толщиной 5 мкм N(0) и V_{eff} становятся одинаковыми со значениями этих параметров,

полученных на образце после отжига его при температуре 600 К.

Во время обезгаживания при закрытой откачке были измерены зависимости газовыделения из медных образцов с электрополированной и с протравленной в азотной кислоте поверхностями /рис.8/.

Рис.7. Зависимость потока нагретых нейтронов на полиэтилене /1/ и гидриде циркония /2/ от давления $\mathbf{BF}_{\mathbf{q}}$ в фильтре.

Рис.8. Газовыделение из медных образцов с электрополированной /1/ и протравленной в азотной кислоте /2/ поверхностями /стрелками указаны моменты повышения напряжения на нагревателе/. 1 - для T = 800 K, 2 - для T = 550 K.

Из рисунка видно, что газовыделение растет с повышением температуры и практически прекращается через

2 часа при фиксированной температуре, а газовыделение из образца, протравленного в азотной кислоте, в 2 раза меньше, чем из электрополированного.

Образец	Способ обработки поверхности до обезгаживания	Температура обезгажи- вания, К	<mark>Е_{eff} мэВ</mark>	V _{eff} /V _T
Медная фольга, толщина	Травление в Н ₃ РО ₄	-	23±1,5	0,96±0,06
-"-	_"_	600	12,7±1	0.71 ± 0.05
-"-	-"-	800	8,7±0,7	$0,59 \pm 0,05$
Медная фольга, толщина 60 мкм	Травление в HNO₃	-	14,8±1	0,77±0,06
<u>-</u> "	_"_	800	9,0±0,7	0.60 ± 0.05
Медная Фольга, толщина 50 мкм	Электропо- лирование	-	17,3±1,2	0,83±0,06
'''	_11_	800	9,6±0,8	$0,62 \pm 0.05$
$(CH_2)_n$	Промывка спиртом	-	14,8±1	$0,77 \pm 0,05$
ZrH _{1,6}	Промывка спиртом		39,0±3	1,25 ±0,09

Таблица 1

Рис.9. Температурная зависимость потока нагретых нейтронов от обезгаженной медной поверхности.

На рис.9 представлена температурная зависимость потока нагретых нейтронов для обезгаженной меди /при Т = 800 К, 6 ч/. Попытка заметным образом загрязнить обезгаженную поверхность

медного образца водородом не удалась: при T = 800 К в течение 8 ч в трубе с образцом находился водород при P = 300 Торр, после охлаждения трубы до T = 300 К он был откачен; при T = = 300 К труба заполнялась парами H_20 , этилового спирта в течение 1 часа. После откачки и промывки ⁴Не во всех случаях не было замечено изменения потока нагретых нейтронов от образца. Однако при контакте обезгаженного образца с атмосферной в течение нескольких месяцев была замечена частичная потеря эффекта обезгаживания, что, вероятно, вызвано химическими процессами на поверхности.

Вклад потока нагретых нейтронов на стенках медной трубы составляет /0,37 \pm 0,043/ с⁻¹ от необезгаженной и /0,18 \pm \pm 0,023/ с⁻¹ – от обезгаженной трубы и не вычитался из общего потока нагретых нейтронов при измерении P_{eff} для меди, посколь-ку крутизна наклона графика V_{eff} (P_{eff}) не зависит от геомет-рического фактора, который имеет различные значения для трубы и образца.

В измерениях калибровочного P_{eff} от ⁴Не и V_{eff} для $(CH_2)_n$ и $ZtH_{1,6}$ поток нагретых нейтронов от трубы вычитался из общего потока нагретых нейтронов.

4. Все результаты по хранению УХН свидетельствуют о присутствии водородных атомов в приповерхностном слое стенок сосудов /толщиной 100 Å/ с концентрацией этих атомов /1-3/x10¹⁸ см^{-2/12,13},Впоследствии это было подтверждено и экспериментами с использованием резонансных реакций ¹⁴N(p,ay)C¹², ¹¹B(p,2a)a и рассеяния ⁴Не на ядрах водорода/14,15/.

В настоящей работе по измерению количества нагретых нейтронов и их средней энергии определена концентрация приповерхностного водорода на необезгаженной и обезгаженной /при T = 600, 800 К/ поверхности медной фольги. УХН, рассеиваясь на системах связанных атомов, увеличивают свою энергию за счет теплового движения этих атомов, поэтому такое взаимодействие для УХН является неупругим и приводит к потерям УХН в ловушках. Для меди вклад неупругого рассеяния / σ_{ie}^{Cu} = /0,2±0,16/^{/16}/ на два

порядке меньше, чем нагрев на водородосодержащих загрязнениях и составляет пренебрежимую долю в общем потоке нагретых от поверхности меди УХН.

Коэффициент потерь η_{ie} для УХН, нагретых на поверхности медного образца /предполагается, что УХН нагреваются на водородной примеси в приповерхностном слое/, определяется величиной '12,17/:

$$\eta_{ie} = \frac{C \cdot \sigma_{inc} \sqrt{\frac{2m\omega_{eff}}{h}}}{4\pi b_{c} (\exp \frac{E_{eff}}{T} - 1)},$$

где σ_{inc} - сечение некогерентного рассеяния, ω_{eff} - частота колебаний примеси водорода в решетке металла соответствующей E_{eff} , b_c - длина когерентного рассеяния для меди, C - концентрация водородной примеси. Для удобства сравнения с известными значениями сечений все величины приведены к стандартной теп-

ловой точке $K_T = \frac{2\pi}{\lambda_T}$, где $\lambda_T = 1,8$ Å. $\eta_{ie} \approx \frac{2}{\pi} \mu_{ie}$, где μ_{ie} - усредненный по максвелловскому спектру скоростей коэффициент потерь УХН на нагрев. Экспериментально находится $\mu_{ie} = n_{ie}/n_{YXH}$. Эдесь n_{ie} - поток нагретых нейтронов от образца, а $n_{YXH} - no^{-1}$ ток УХН на этот образец.

В предположении, что атомы водорода находятся в связанном состоянии $/\sigma_{\rm inc} = 80$ б/, измерив коэффициент потерь $\eta_{\rm ie}$ и средние энергии нагретых УХН, получаем из приведенной выше зависимости $\eta_{\rm ie}$ (С, $E_{\rm eff}$) значения для концентрации атомов водорода на поверхности образца, см. табл.2.

Таблица 2

Образец	$\eta_{ie} \cdot 10^{-4}$	Е _{eff} , мэВ	С, ат.%	
Необезгаженный	5,8±0,8	23 ± 1,5	32 ± 4.0	-
Обезгаженный при 600 К	1,3±0,2	12,7±1,0	4,3±0,7	
Обезгаженный при 800 К	0,6±0,1	8,7±0,7	1,6±0,3	

Как видно из таблицы, после обезгаживания при T = 800 К на поверхности медного образца остается концентрация атомов во-

дорода, на два порядке превышающая среднюю объемную концентрацию атомов водорода 10⁻² ат.% ^{/7/}. Несмотря на то, что поток нагретых нейтронов после обезгаживания при T = 800 К изменился в 4,2 раза, прямые измерения детектором УХН показывают, что плотность потока на образце возрастает в 2 раза.

Растворение водорода в решетке меди не приводит к образованию гидридов, поэтому для демонстрации чувствительности нашего способа измерения E_{eff} на рис.7 показана зависимость N(P) для гидрида циркония, для которого четко выражены высокоэнергетичные частоты фононного спектра водорода⁷²⁴⁷, приводящие к $E_{eff} = 39,0\pm 3$ мэВ. /Расчетное $E_{aff} = 35,3$ мэВ/. На этом же рисунке представлена зависимость N(P) для полиэтилена. Эта зависимость довольно хорошо описывается линейным законом N(P), что объясняется сравнительно малым разбросом скоростей нагретых нейтронов на фононах полиэтилена. Для полиэтилена $E_{aff} = 14,8\pm 1$ мэВ, а приведенное в⁷¹⁷ расчетное значение этой величины составляет 13 мэВ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Наблюдаемое в этих экспериментах смягчение спектра подогретых нейтронов можно объяснить, используя следующую модель динамики выделения атомов водорода из приповерхностного слоя во время нагрева:

1. При механической, электрохимической обработке и очистке поверхности органическими растворителями приповерхностный слой загрязняется водородосодержащими химическими соединениями типа Ме х ОН,водой и углеводородами.Большая часть потока нагретых нейтронов /75%/ и жесткость его спектра /23 мэВ/ определяются этими химическими соединениями. Прочность удерживания их невелика, и они улетучиваются при нагреве до T = 600 K, что выражается в смягчении спектра /13 мэВ/ и в уменьшении потока нагретых нейтронов /см. рис.4/.

2. Верхний предел силы связи физической адсорбции -60 кДж.мол.⁻¹. Такие адсорбированные вещества будут десорбироваться с поверхности при T ~ 200 К ^{/18}. Следовательно, оставшиеся водородные атомы после обезгаживания /при T = 600 К/, вероятно, хемосорбированы, что подтверждается в результате измерения газовыделения /рис.8/, а также потока и спектра нагретых нейтронов /табл.1/ после стравливания в HNO_3 поверхностного слоя толщиной 5 мкм. Полученные значения потока и E_{eff} нагретых нейтронов после травления необезгаженного образца совпадают с соответствующими значениями для обезгаженного /при T= =600 К/ образца.

Рис.10. Диаграммы потенциальной энергии атома Н на поверхности металла.

3. Оставшийся /~5% ат./ водород в приповерхностном слое и его дальнейшее выделение при температурах обезгаживания /свыше 600 К/ определяется удерживанием атомов водорода в структурных неоднородностях материала /вакансии и их комплексы, дислокации, микротрещины/ и т.д., представляющих собой потенциальные ямы /см. рис.10,

взятый из $^{/19/}$, с.259/, улавливающие диффундирующие из объема атомы водорода. Ширина ямы соответствует размерам этих структурных неоднородностей и определяет систему энергетических уровней колебаний находящихся в них атомов водорода. При дальнейшем повышении температуры обезгаживания /T > 600 K/ атомы водорода занимают все более низколежащие уровни (E_2) в этих ямах, а энергия дегазации (E_1) /высота потенциального барьера/ увеличивается с уменьшением энергии уровня.

Таким образом, может быть объяснено наблюдаемое смягчение спектра нагретых нейтронов, а все увеличивающаяся по мере обезгаживания трудность выхода атомов водорода из ямы определяет сравнительно большую оставшуюся концентрацию атомов водорода после обезгаживания при T = 800 K.

Неудачная попытка загрязнить поверхность обезгаженного /при T = 800 К/ образца водородосодержащими веществами объясняется большим значением энергии активации растворения (E₃) водорода в меди.

Смягчение спектра нагретых нейтронов после обезгаживания также можно объяснить нагревом УХН на атомах водорода, которые жестко связаны с атомами меди и колеблются согласно частному спектру меди $^{20/}$. Расчет энергии нагретых нейтронов для этого случая дает значение $E_{\rm eff} = 14,5$ мэВ^{*}.

Линейность зависимости потока нагретых нейтронов от температуры обезгаженного образца /см. рис.9/ подтверждает примени-

^{*}Расчет E_{eff} для Cu, а также для $ZtH_{1,6}$ произведен В.К.Иг-натовичем.

мость модели связанного водорода для исследуемых нами образцов меди. Для свободного водорода на <u>по</u>верхности зависимость потока нагретых нейтронов была бы $\sim \sqrt{T}$.

выводы

1. Результат этой работы показывает, что даже после термического обезгаживания медной поверхности на ней находится гораздо больше атомов водорода /~2 ат.%/, чем это отвечает обычному объемному распределению водорода в металлах /~2х10⁻²ат.%/. Такая концентрация атомов водорода вблизи поверхности, вероятно, вызвана связью водорода со всевозможными кристаллическими дефектами /дислокации, микротрещины, блистерны и т.д./,локализующимися в гораздо большей степени у поверхности металла.Это количество водорода в приповерхностном слое и объясняет считавшееся ранее "аномально" малым время хранения УХН в сосудах из твердых веществ. На это указывает и то, что в сосудах с жидкими стенками из безводородного масла, в котором отсутствуют характерные для твердого тела поверхностные дефекты, приповерхностная концентрация водородосодержащих загрязнений всего в ~1,5 раза превышает объемную /21/.

2. По мере термического обезгаживания медной поверхности наблюдается смягчение спектра нагретых нейтронов /от 23 до 9 мэВ/, что, вероятно, связано с десорбцией соединений водорода, обладающих Зольшими частотами колебания в них атомов водорода по сравнению с частотами водорода, остающегося после обезгаживания.

3. З настоящей работе подтвержден результат, полученный в $^{\prime 1\prime}$, что на поверхности очищенной до $\eta \sim 3,7 \times 10^{-4}$ меди E_{eff} составляет 10 мэВ. Этот результат находился в противоречии со следующей работой /2/, в которой спектр нагретых нейтронов по мере обезгаживания поверхности меди становился все более жестким, а значение E_{eff} достигало 60 моВ. Нам кажется, что возможными ошибками в работе /2/ являются: 1/ недостаточная статистическая точность определения E_{eff} /в нашей работе при такой же, как и в /2/, плотности УХН эффективность регистрации нагретых нейтронов в 50 раз выше/; 2/ неконтролируемость чистоты ³Не в поглотителе /в нашем случае качество используемого поглотителя - газа ¹⁰BF_q автоматически проверялось в каждой серии измерений полным вымораживанием этого газа в ловушке до P < 10⁻³ Торр при T = 80 К/; 3/ использование для калибровки E aff полиэтилена и литературных данных по его частотному спектру могут вызвать систематическую ошибку, вызванную естественным разбросом в технологии изготовления конкретного

образца /используемый в нашей работе метод калибровки E_{eff} по нагреву УХН на атомах ⁴Не рассчитывается достаточно просто и подтверждается хорошим согласием измеренных значений E_{eff} с расчетными для (CH₂)_n и ZtH_{1.6}/.

4. Детальное измерение спектров нагретых УХН, повышение точности измерения концентрации водорода и его распределение по глубине может быть достигнуто на существующих более интенсивных /на 3 ÷ 4 порядка/ источниках УХН ^(22,23).

Авторы благодарны В.К.Игнатовичу за расчеты и интерес к этой работе, В.И.Морозову, Н.М.Плакиде и Ю.Н.Покотиловскому за обсуждения.

ЛИТЕРАТУРА

1. Stoica A.D. et al. - Z.Phys., 1978, v.29, p.349; Стойка А.Д., Стрелков А.В. - ОИЯИ, РЗ-11593, Дубна, 1978. 2. Косвинцев Ю.Ю. и др. - НИИАР-27/542/, Димитровград, 1982; АЭ, 1983, т.55, вып.5, с.288. 3. Косвинцев Ю.Ю. и др. - НИИАР-4/412/, Димитровград, 1980. 4. Грошев Л.В. и др. - ОИЯИ, РЗ-7282, Дубна, 1973. 5. Стрелков А.В., Хетцельт М. - ЖЭТФ, 1978, т.74, вып.1, с.23. 6. Ларин М.П. – Электронная техника, сер.6: Материалы, вып.5/142/. 7. Водород в металлах /Под. ред.Алефельда Г./. М.: Наука, 1981, т.1.2. 8. Новопольцев М.И., Покотиловский Ю.Н. – ОИЯИ, РЗ-85-843. Дубна, 1985. 9. Славинский М.П. - Физико-химические свойства элементов. М.: Металлургиздат, 1952, с.70. 10. Антонова М.М. - Свойства гидридов. Киев: Наукова думка, 1965. 11. Турчин В.Ф. - Медленные нейтроны. М.: Госатомиздат, 1963. 12. Игнатович В.К. - Физика ультрахолодных нейтронов. М.: Наука, 1986, c.152. 13. Lanford W.A., Golub R. - Phys. Rev. Lett., 1977, v.39, p.1509. 14. Хабибуллаев П.К., Скородумов Б.Г. - Ядерно-физические методы определения водорода в материалах. Ташкент: ФАН, 1985. 15. Понятовский Е.Г., Антонов В.Е., Белаш И.Т. - УФН, 1981, т.137. с.663. 16. Steyerl A., Vonach H. - Z. Phys., 1972, 250, p.166. 17. Blokhintsev D.I., Plakida N.M. - phys. stat. sol. (b), 1977, 82, p.627.

- Вудраф Д., Драчар Т. Современные методы исследования поверхности. М.: Мир, 1989, с.23.
- 19. Взаимодействие водорода с металлами /Под ред.Захарова А.П./. М.: Наука, 1987, с.23.
- 20. Niclow R.M. et al. Phys.Rev., 1967, v.164, p.922.
- 21. Mampe W. et al. Phys. Rev. Lett., 1989, v.63, p.593.
- 22. Алтарев И.С. и др. Письма в ЖЭТФ, 1986, т.44, вып.6, с.269.
- 23. Steyerl A. et al. Phys. Lett. A, 1986, v.116, p.347.
- 24. Лифоров В.Г. и др. Proc. Inel Scatt. of Neutrons, Bombay, 1964; IAEA etc., 1965, vol.2.

Рукопись поступила в издательский отдел 19 февраля 1990 года.