BUHOTPADOBB. 5 ugn. 51-10-86-27 1962/86

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

61-10-88-27

ДЕПОНИРОВАННАЯ ПУБЛИКАЦИЯ

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Лаборатория ядерных проблем

. .

÷

БІ-ІО-86-27

В.Б.Виноградов, Ю.А.Кульчицкий *, Л.Б.Литов, М.Н.Сергеенко *

ПРОГРАММА РЕКОНСТРУКЦИМ ВЕРШИН МНОГОТРЕКОВЫХ СОБНТИЙ

B DEPRESSION BOD 20 14° - 01 - 86. объсякненный институт исрных всследований 545 MOTEHA Дубна, 1985 г.

* Институт физики АН БССР, Минск

Аннотация

Разработана программа реконструкции вершин многотрековых событий, регистрируемых на установке ГИПЕРОН. Алгоритм программы основан на МНК. В качестве критерия отбора вершин используется обрезание по уровню достоверности 1%. Описывается метод вычисления диагональных элементов весовой матрицы.

Использование программы при статистической обработке экспериментального материала позволило улучшить отношение эффект/фон.

Введение

На установке ГИПЕРОН /I/(рис. I) проводится эксперимент по изучению инклюзивного образования псевдоскалярных и векторных мезонов в адрон-ядерных взаимодействиях при I2 ГэВ/с /2/. Регистрируются события следующего типа

$$K^{+} + A \rightarrow h^{+}h^{-} + X, \qquad (I)$$

в которых система адронов h^+h^- может быть образована, в частности, в результате распадов: $K_s^{\circ} \rightarrow \pi^+\pi^-$ (топология I, рис. 2а), $K^{*\circ} \rightarrow K^+\pi^-$ и $\mathcal{P} \rightarrow K^+K^-$ (топология 2, рис. 26), $K^+ \rightarrow 3\pi^-$ (топология 3, рис. 28).

После восстановления прямолинейных треков следующим этапом распознавания образа события является реконструкция вершины взаимодействия, вычисление её координат и ошибок. На разных экспериментальных установках задача реконструкции вершин решается разными методами /3-6/.

В нашем случае трековые детекторы (пропорциональные и искровые камеры) расположены за мишенью, поэтому вершину взаимодействия необходимо восстанавливать путем продолжения треков от вторичных частиц в область мишени с учётом пучкового трека (в случае $\mathcal{K}^{*\circ} \varphi$). В случае распадов \mathcal{K}°_{s} реконструкция вершины производится в распадной зоне без учёта пучкового трека.

В работе описывается методика реконструкции вершин многотрековых событий на установке ГИПЕРОН, выбирается критерий отбора, даётся описание программы реконструкции вершины, приводятся результаты её использования при статистической обработке данных.

Описание метода

Трековые детекторы установки находятся вне магнитных полей электромагнита, поэтому трек представляет собой прямую линию, искажённую ошибками измерений и многократным рассеянием.

Выберем правую систему координат: ось OZ направлена по пучку, ось OY лежит в горизонтальной, а ось OX – в вертикальной плоскости. Уравнения треков в двух плоскостях XOZ и YOZ запишем в виде системы:

$$\begin{cases} x = A_{x_1} Z + B_{x_1} \\ y = A_{y_1} Z + B_{y_1} \\ \dots \\ x = A_{x_n} Z + B_{x_n} \\ y = A_{y_n} Z + B_{y_n} , \end{cases}$$
(2)

где И - число треков в вершине.

Из-за ошибок в определении параметров А и В треки, относящиеся к вершине, не пересекаются в пространстве в одной точке, то есть система (I) не имеет точного решения. Она решается методом наименьших квадратов ^{/7/}. Получаемое в результате минимизации функционала

$$\chi^{2} = (F \cdot \chi - B)^{T} W (F \cdot \chi - B)$$
(3)

решение для вектора координат вершины имеет вид

$$\bar{X} = [F^{T}WF]^{-1}F^{T}WB, \qquad (4)$$

гдө

$$F = \begin{pmatrix} 1 & 0 & -A_{x_1} \\ 0 & 1 & -A_{y_1} \\ \dots \\ 1 & 0 & -A_{x_n} \\ 0 & 1 & -A_{y_n} \end{pmatrix}, \quad B = \begin{pmatrix} B_{x_1} \\ B_{y_1} \\ \dots \\ B_{x_n} \\ B_{y_n} \end{pmatrix},$$

$$W = \begin{pmatrix} \frac{1}{\sigma_{x}^{2}} & 0 & \cdots & 0 & 0 \\ 0 & \frac{1}{\sigma_{y}^{2}} & & & \\ 0 & 0 & \frac{1}{\sigma_{x}^{2}} & 1 \\ 0 & 0 & 0 & \frac{1}{\sigma_{y}^{2}} \end{pmatrix}, \quad \chi = \begin{pmatrix} \chi \\ y \\ \chi \\ \chi \end{pmatrix},$$

Весовая матрица W взята нами в диагональном виде, T обозначает транспонированную матрицу.

3

Ковариационная матрица для вектора X имеет вид /7/ (несмещённая оценка);

$$\mathcal{D}(\bar{X}) = \frac{(F \cdot X - B)^{T} W (F \cdot X - B)}{V} [F^{T} W F]^{-1} = \frac{\chi^{2}}{V} E_{\bar{X}}, \quad (5)$$

rge $E_{\bar{X}} = [F^{T} W F]^{-1}$ есть матрица ошибок вектора $\bar{X}/8/, \mathcal{Y} = 2n-3$

- число степеней свободы. Диагональные элементы ковариационной ма-
трицы (4) являются стандартными ошибками координатного вектора $\bar{X};$

 $\Delta \bar{X} = [\mathcal{D}_{ii}(\bar{X})]^{\frac{4}{2}}$
(6)

Выбор критерия

При реконструкции вершины взаимодействия важно установить, какие из восстановленных треков отнести к вершине, а какие считать фоновыми и отбросить. Если данная комбинация треков удовлетворяет определенному критерию отбора, то необходимо найти координаты вершины этого события. Пока нет единого метода реконструкции вершин, и на разных установках используются разные критерии отбора вершины /3/-/6/.

В качестве такого критерия нами был использован уровень достоверности $P_{\chi}(\chi^2)$ для \mathcal{V} степеней свободы ^{/9/}. Распределение $P_{\chi'}(\chi^2)$ для истинных событий является равномерным в интервале [0,1]. Наличие фоновых событий приводит к резкому возрастанию в распределении волизи нуля (рис. 3). Это позволяет использовать в качестве критерия отбора вершины обрезание по вероятности $\mathcal{P}_{\nu}(\chi^2)$.

Анализ распределений событий по величине $P_{\nu}(\chi^2)$ для вершин разной топологии показал, что можно выбрать общий критерий обрезания на I% уровне достоверности (P_{MIN}). Это приводит к малой потере хороших событий. При значении вероятности больше P_{MIN} , рассматриваемая комбинация треков считалась составляющей вершину события.

Построение весовой матрицы

Трековые детекторы установки (искровые и пропорциональные камеры, сцинтилляционные годоскопы) рис. I объединены в пять блоков (I \checkmark - 5 \checkmark), регистрирующих треки в горизонтальной плоскости, и два блока (2 \checkmark , 3 \checkmark), регистрирующих треки в вертикальной плоскости /IO/ В блоках камер 3 \checkmark и 3 \checkmark можно положить $\mathcal{C}_3 = \mathcal{C}_x = \mathcal{C}_y$, поскольку в каждой проекции используются одинаковые камеры. Значение \mathcal{C}_3 , при котором распределение $\mathcal{P}_{\nu}(\chi^2)$ становилось равномерным, было использовано в весовой матрице.

Аналогично было найдено значение G_2 для пучковых треков, восстановленных в блоках 2 × и 2 × . В результате получены значения: $G_2 = 0.62 \pm 0.04$ мм, $G_3 = 1.00 \pm 0.06$ мм.

Программная реализация

Описанный алгоритм был реализован в виде программы, написанной на языке FORTRAN. Она занимает 500₍₈₎ ячеек памяти центрального процессора ЭВМ СДС-6500, оптимизирована по памяти времени.

BUSOB ПОДПРОГРАММЫ: CALL VERTEX (NSECOND, NBEAM, NBVAR)

Формальные параметры: *NSECOND*-число вторичных треков выходящих из вершины, *NBEAM* - номер пучкового трека или 0, если

0

пучковый трек не используется.

NBVAR - номер топологии (рис. 2). Входные переменные:

/AB/ A(5,19,2), B(5,19,2) - параметры прямолинейных треков, найденных в 5 блоках и двух проекциях.

/NNX/NNX(5)/NNY/NNY(5) - номера X и У проекций пространственного трека.

Выходные переменные:

/соокд/Х(3,3) - координаты вершины, найденные для каждой топологи: /дсоокд/ДХ(3,3)- ошибки в координатах вершины.

/PRH1/PR(3) - вероятность пересечения треков в одной точке для каждой топологии.

Константы:

 $\sigma_1^2 \equiv SIS1 = 0.38$ $\sigma_2^2 \equiv SIS2 = I.00$

NPALL = IO - максимальная размерность системы линейных уравнений (I).

Перед началом вычислений проводится зануление поля памяти, отведенного под матрицы и вектора (F, W, B и др.). Затем вычисляется значение на нулевых элементов этих массивов. Определение χ^{z} , $\hat{\chi}$ и $\Delta \chi$ проводится с использованием программ матричной алгебры: обращение, умножение и транспонирование матриц /II/. Вероятность того, что данный набор прямых относится к вершине события, вычисляется программой *PROB* /I2/. Входными параметрами для нее служат найденный χ^{z} и число степеней свободы V.

Программа оформлена в виде отдельного модуля и включена в систему программ статистической обработки данных на установке ГИПЕРОН.

Результаты

Распределения Z -координат вершин событий в топологиях I и 2 показаны на рис. 4. Из сравнения гистограмм видно, что использование топологии 2 значительно уменьшает число событий за мишенью при том же их числе в мишени. На рис. 5 приведены распределения ошибок Δx , Δy , Δz координат вершин в топологиях I и 2.

6

Средние значения ошибок равны:

 $\langle \Delta x \rangle_1 = 0,77 \pm 0,01$ MM, $\langle \Delta y \rangle_1 = 0,79 \pm 0,02$ MM, $\langle \Delta \mathcal{I} \rangle_1 = 19,4 \pm 0,3$ MM для топологии I $u \langle \Delta x \rangle_2 = 0,42 \pm 0,01$ MM, $\langle \Delta y \rangle_2 = 0,47 \pm 0,01$ MM, $\langle \Delta \mathcal{I} \rangle_2 = 18,2 \pm 0,3$ MM – для топологии 2.

Характерной особенностью событий, регистрируемых на установке, является малый угол разлёта вторичных частиц ($\theta < 300$ мрад). В этом диапазоне углов средние ошибки в определении Ξ координаты точки распада сильно зависят от угла разлёта. Эта зависимость хорошо описывается формулой $\Delta \Xi = \frac{c}{\theta}$.

На рисунках 6-8 приведены спектры эффективных масс событий, отобранных по топологиям I-3. Гистограммы а) соответствуют распределению по эффективной массе для всех отобранных событий, гистограммы б) такому же распределению, но для событий с уровнем достоверности I%. При применении этого критерия отношение эффект-фон в области K_3° мезона увеличивается в I.7 раз, в области $K^{*\circ}$ мевона в 2.3 раза, а в области K^{+} -мезона в 5 раз.

Заключение

На основе МНК разработана программа реконструкции вершины многотрековых событий. В качестве критерия правильности реконструкции вершины использовался однопроцентный уровень достоверности. Применение данного критерия при реконструкции вершин разной топологии позволил значительно увеличить отношение эффект-фон для изучаемых частиц.

Авторы благодарны Ю.А.Будагову, В.Б.Флягину за постановку задачи и ценные советы при её выполнении, А.А.Богушу, Л.Г.Морозу, Н.В.Максименко за внимание к работе и поддержку. Авторы признательны А.С.Курилину, В.М.Маниеву, Н.А.Русаковичу за полезные обсуждения М.Климановой за помощь в подготовке статьи.

Ŷ

Подписи к рисункам

- Рис. І Спектрометр Гиперон:
 - а пучковый спектрометр, б спектрометр вторичных частиц. S_{I-4} – сцинтилляционные счетчики, $/_{I-4}$ – сцинтилляционные годоскопы, \check{C}_{I-6} – черенковские счетчики, МПК_{I-4} – система искровых проволочных камер, ПК_{I-10} – система пропорциональных камер, СП-I29, МС-I2 – электромагниты, М – мишень.
- Рис.2 Основные топологии реконструируемых событий: a) распад стабильной частицы в две заряженные частицы, б) распад резонанса в две заряженные частицы, в) распад стабильной пучковой частицы или резонанса в три заряженные частицы.
- Рис.3 Распределение вероятности $P(\chi^2)$.
 - а) Отброшенные фоновые события.
 - б) Потерянные события эффекта.
 - в) Оставшиеся фоновые события.
 - г) События соответствующие эффекту.
- Рис.4 Распределение по 2 координате вершины распада:

а) события топологии I, б) события топологии 2.

- Рис. 5 Распределение ошибок Δx , Δy и $A \neq$ координат вершины для топологии I и 2.
- Рис.6 Распределение событий реакции (I) по эффективной массе $M(h^{+}h^{-})$ в предположении $h^{+}h^{-} \equiv \pi^{+}\pi^{-}$:
 - а) все события,
 - события топологии I с более чем однопроцентным уровнем достоверности.

Рис.7 Распределение событий реакции (I) по эффективной массе M(h⁺h⁻) в предположении h⁺h⁻ = K⁺T⁻: а) все события,
б) события топологии 2 с более чем однопроцентным уровнем достоверности.

Рис.8 Распределение событий распада К → π⁺π⁺π⁻по эффективной массе M(h⁺h⁺h⁻), в предположении L⁺h⁺h⁻ ≡ π⁺π⁺π⁻:
а) все события, б) события топологии 3 с более чем одно-процентным уровнем достоверности.

Литература

I. Антюхов В.Л. и др. ОИЯМ, РІЗ-84-562, Дубна, І984.
2. Бицадзе Т.С. и др. ОИЯМ, І-83-895, Дубна, І983.
3. Вестергомби Д. и др. ОИЯМ, РІО-7284, Дубна, І973.
4. Адылов Г.Т. и др. ОИЯМ, І-80І2, Дубна, І974.
5. Айхлер Г. и др. ОИЯМ, І-80-644, Дубна, І980.
6. Saxon D.H., Rutherford report RAL-84-004, 1984.
7. Худсон Д. Статистика для физиков. "Мир", М., І970.
8. Mühleman P. and Wilson J.D. CERN, 70-17, Geneva, 1970.
9. Eichinger H. and Regler M., CERN, 81-06, Geneva, 1981.
IO. Виноградов В.Б. и др. ОИЯИ, РІО-85-705, Дубна, І985.
II. F107, F110, F112. CERN Computer Centre, Program Library,
I2. G100, CERN Computer Centre, Program Library.

Рис. 1а

Puc. 2

Puc.3

Рис. 6

Рис. 7

