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An algorithm on the preprocessing optical microscopy image
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The task of recognizing and classifying neurons is now relevant for histological image analysis. Nowa‐
days, the cells are being counted manually, so image processing is error‐prone and takes a lot of time.
That is why it is important to create a tool to help classify cells according to some mathematical proper‐
ties that faithfully reflect their histological classification. In our case, the classification was done accord‐
ing to the multiscale structural complexity. The first step in creating such a tool is developing a special
method of preprocessing opticalmicroscopy images. Experimental images possess two features that cor‐
rupt complexity calculations: a significant variation of the light intensity from the bright center to the
dark edges of the image and a lack of clarity of small objects. An algorithm has been developed to solve
both of these problems, which, in essence, reduces to the determination of the average light intensity
and its subtraction from the initial image. This method enhances the visibility of smaller objects in the
image, bymaking their edges sharper. Also, thanks to subtraction, the dark edges of the image, obtained
due to the microscope, were lightened, which improves the visibility of cells located far from the center
of the image. Both improvements enhance the distinguishability of the complexity distributions corre‐
sponding to different histological types, then those built using raw data. The developed algorithm should
be useful, in general, for the preprocessing of histological microscopy images.
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Ƶǧ Introduction

The identification and categorization of neurons has become a crucial task in the realm of
histological image analysis. The analysis of the damaging effects of ionizing radiation on
tissues and organs is also applicable to assess the risks associated with human spaceflight.
Recent studies conducted in Russia and abroad indicate that exposure of the brain struc‐
tures to the radiation of heavy charged particles (HCP) and high‐energy protons of cosmic
origin can lead to cognitive impairment. This, in turn, entails a partial or complete loss of
operator functions by the spacecraft crew members. Therefore, an accurate assessment of
biological effects caused by various types of cosmic radiation ubiquitous in interplanetary
flights is critical.

Currently, histological analysis is done manually. Compared to all other image process‐
ing tasks, the classification requires, the largest amount of time, thus making it severely
error‐prone. It is crucial tomake the classification as accurate as possible because the num‐
ber and the distribution of cells determine the state of the mouse brain. To streamline this
process, developing a tool that can automatically classify nontrivial patterns according to
their mathematical properties, which additionally reflect their histological classification, is
imperative.

Pattern formation ability is one of the distinctive features of complex systems, charac‐
terized by the nonlinear interaction between subsystems. Complex patterns can be self‐
similar, as in the case of fractals *2+, self‐organized, as in the case of crystals *3+, or hierarchi‐
cal, as in the case of patterns generated by biological systems *4+. The origin of biological
complexity is still not adequately understood, even though it inspired the development of a
new branch of mathematics known as catastrophe theory *5+.
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To classify such patterns variousmeasures of complexity were proposed. Twomajor classes
are measures based on the information entropy and Kolmogorov complexity, respectively.
Recently, authors of Ref. *1+ proposed a novel method for assigning complexity to the data
represented by matrices called Multiscale Structural Complexity. Loosely speaking, struc‐
tural complexity measures the amount of information about the object retained in the se‐
quence of images of lower and lower resolution. It has been shown that changes in the
complexity values accurately reflect phase transitions in the Ising model, bifurcations in
magnetic labyrinths, and phases of the dissolving process *1+.

Since theMSCmeasures the degree of similarity between images at different scales, it is
reasonable to assume that itwill alsobeuseful for detecting anynontrivial patternpresented
in microscopy images. However, in some cases, the complexity distributions obtained for
each histological type did not differ enough to allow unambiguous interpretation. That is
why the initial step in classification involves devising a specialized method for preprocess‐
ing microscopy images.

All preprocessing aims to minimize artifacts introduced by equipment and to improve
the signal‐to‐noise ratio. Two primary preprocessing challenges faced and solved in this
study are the darkening of image edges, which appeared due to the use of a microscope,
and the low clarity of cell edges, measured by image sharpness.

ƶǧ Methods andmaterials

The test data used for the development of the algorithm was a set of 81 histological images
of the mice hippocampus Ref. *6+, acquired using an optical microscope (a BiOptic B‐200
lightmicroscope and Industrial Digital Camera 5.1MP 1<2.5with color Aptina CMOS sensor).
Software development was done in Matlab programming language Ref. *7+.

The fixation of the sample was in formalin. The tissues were cleaned in xylene and filled
with paraffin to strengthen the structure before cutting. Cutting on a microtome allowed
us to obtain high‐quality samples, which were then dried. Staining was carried out using
hematoxylin and eosin, which made it possible to identify almost all cells and many non‐
cellular structures. At the same time, thenuclei of cells arebasophilic andare stainedpurple
with hematoxylin, and the cytoplasm has oxyphilia and is stained pink with eosin.

A histologist inspected all images and classified neurons into the following five types:
Type 1 normal and slightly altered neuron cells; Type 2 hyperchromic neuron cells; Type 3
degenerative neuron cells; Type 4 astrocytes; and Type 5 oligodendrocytes, microglia, and
vascular cells. Thenumber of cells corresponding to each typewas found to be 1971, 119, 56,
561, and 1654, respectively. The total number of positively identified cells was 4361. Next,
the average size of the squarewindow containing the cell was determined for each cell type.
The dimensions of the window side were 52, 52, 55, 15, and 17, respectively.

For each region of interest (a sub‐image specified by a window having 𝑛 × 𝑚 pixels),
we have created a sequence 𝐼0, 𝐼1,…𝐼𝑁 is an original subimage of maximum resolution) of
images of lower and lower resolution by the down sampling procedure. The structural com‐
plexity at the given scale 𝐶𝑘 (𝑘 = 1,… ,𝑁 − 1) is defined by the expression (1)

𝐶𝑘 =
𝑛

∑
𝑗=0

𝑚

∑
𝑖=0

(𝐼𝑘+1 (𝑖, 𝑗) − 𝐼𝑘(𝑖, 𝑗))
2, (1)

where indices 𝑖, 𝑗 specify a pixel s̓ vertical andhorizontal position. Multiscale structure com‐
plexity is defined as a sum of partial complexity (2)

𝐶 =
𝑁−1

∑
𝑘=1

𝐶𝑘. (2)
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(a) (b)

Figure 1. Raw data (a) image (b) fits of complexity distributions of 5 types.

For multi‐channel images, the structural complexity was defined as an arithmetic average
of the complexities of each channel (details of the calculations can be found in Ref. *1+).

The range of complexity values was from 0,0013 to 0,1416. For each type, we then con‐
structed distributions of structural complexities. Distributions were represented by his‐
tograms with 15 bins of equal width, covering the interval *0, 0.15+ in the complexity space,
obtained by counting the number of cells having complexity values within the interval cor‐
responding to each bin in the complexity space. In the end, the obtained histograms were
fit by Rayleigh distribution given by expression (3)

𝑓 (𝐶, 𝜎) =
𝐶

𝜎2
⋅𝑒

𝐶2

2𝜍2 , (3)

where 𝜎 is the scale parameter of the distribution.
In our analysis, we examined images in 𝑅𝐺𝐵 and 𝑌𝐶𝑏𝐶𝑟 color spaces. The 𝑅𝐺𝐵 color

space represents images as an m‐by‐n‐by‐3 numeric array whose elements specify the in‐
tensity values of the red, green, and blue color channels. Individual color components of
𝑌𝐶𝑏𝐶𝑟 color space are luma 𝑌, chroma 𝐶𝑏, and chroma 𝐶𝑟 *8+. For transporting from 𝑅𝐺𝐵 to
𝑌𝐶𝑏𝐶𝑟, we used formula (4) given in the Ref. *8+,

𝐶𝑏 = −0.169⋅𝑅 − 0.331⋅𝐺 + 0.5⋅𝐵 + 128,

𝐶𝑟 = 0.5⋅𝑅 − 0.419⋅𝐺 − 0.081⋅𝐵 + 128,

𝑌 = 0.299⋅𝑅 + 0.587⋅𝐺 + 0.114⋅𝐵.

(4)

Sharpness is the level of clarity of detail in a photo and is a valuable tool for emphasizing
textures of subjects and subjectsʼ details in an image. The sharpness of an image is described
by two main factors: resolution and acutance. The IS parameter of an image detail 𝑠, is in
Eq. (5) defined as the difference between the largest and smallest its light intensity values

𝑆 = min (𝐼) −max(𝐼). (5)

Ʒǧ Results

The image of row data and fits of normalized complexity histograms by a Rayleigh distri‐
bution is shown in Figs. 1a and 1b. Note that fits for type 2 and type 4 overlap significantly.
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(a) (b)

Figure 2. (a) Raw data, (b) filtered data

Similarly, distributions for type 3 and type 5 are also almost identical. Therefore, in many
cases, the classification of the cells based solely on the complexity values ismultivalued and
thus ambiguous.

In our approach, the global IS, is defined by Eq. (6)

𝑆 =
1

𝑁

𝑁

∑
𝑛=1

𝑁

∑
𝑚=1

(
𝐼𝑛+1,𝑚 − 𝐼𝑛,𝑚

𝛥𝑥
+
𝐼𝑛,𝑚+1 − 𝐼𝑛,𝑚

𝛥𝑦
) . (6)

It actually measures an average gradient norm of the light intensity distribution 𝐼. As its
representative, we have chosen the 𝑌 channel of the image s̓ 𝑌𝐶𝑏𝐶𝑟 color representation. To
enhance the difference between pixels and increase IS, the values of image s̓ 𝑌 channel were
recalled to the interval from 0 to 255. Let 𝑌𝑟 represents the rescaled image,𝑚 = min(𝑌), and
𝑀 = max(𝑌). The rescaled intensity is then given by the following relation

𝑌𝑟 =
255(𝑌 − 𝑚)

𝑀 −𝑚
. (7)

After rescaling, a low‐pass filter was applied, implemented by the convolution method
with the function of a two‐dimensional rectangular window with a size of 52 pixels. The
window size was determined iteratively, starting with the minimum window containing a
neural cell, and was set to obtain the highest value of the IS for the final image. After that,
the obtained values for 𝑌𝑟 of pixels were again rescaled to values from 0 to 255 using (7).

The last stage of preprocessing was the return from a single‐channel image to a color
one. It is an important thing to do, since color is a crucial feature when working with his‐
tological images of brain cells. There are cases when the final decision on whether a cell
belongs to a particular type is made based on the color scheme of this cell. To ensure that
colors are not affected by the processing, the obtained 𝑌𝑟 channel was combined with the
𝐶𝑏 and 𝐶𝑟 channels of the original image to produce a final color image.

Figs. 2a and 2b show the original and processed images side by side. First, as can be seen
from the comparison, the black areas at the edges disappeared, which made it possible to
see the cells that were previously in the dark. Note that due to themicroscope, the area that
was bright enough for analysis was only 67å of the image. The second result is that the cells
became more clearly visible and had clearer edges than the initial data.

Fig. 3 shows new fits of rescaled complexity histograms by Rayleigh distribution for the
processed data. The comparison of the fits shown in Fig. 1b and Fig. 3 provide the second
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Figure 3. Filtered data. fits of complexity distributions of 5 types

proof of the algorithms̓ good performance. Obviously, the cell classification can now be
done with significantly lower error, because the respective maxima of new fits differ more
than those of the raw data.

This fact can be confirmed by quantifying how different the obtained curves are. Firstly,
we defined the rectangle approximation for the distributions by the following relation (8)

𝑓(𝐶) = max(𝑓)⋅rect (𝜎𝑓⋅ (𝐶 − 𝐶𝑓)) ,

rect(𝐶) =
⎧

⎨
⎩

1, |𝐶| ≤
1

2
,

0, |𝐶| >
1

2
,

.
(8)

In our case the distinguishability was defined by relation (9)

𝐷 = 1 −

∞

∫
0

𝑔(𝑥)⋅𝑓(𝑥)𝑑𝑥

√

∞

∫
0

𝑔2(𝑥)𝑑𝑥⋅
∞

∫
0

𝑓2(𝑥)𝑑𝑥

, (9)

where 𝑔(𝑥) and 𝑓(𝑥) are distribution functions for two different types approximated by rect‐
angular functions.

The obtained values of the mutual‐distinguishability parameters were summarized in
Table 1). The distinguishability parameter improved in seven out of ten cases for process
data. The improved ones are colored with green.

This algorithmhas also been comparedwith an existing algorithm *9+ to improve IS, that
is used for superficial vein enhancement and blood vessel enhancement in retinal fundus
images. As you can see, this algorithmwas too aggressive, so even though the IS of the image
in Fig. 4a exceeds the difference in Fig. 4b by more than 10 times (230 and 22, respectively)
based on the presented images, it becomes clear that the algorithm is not applicable to the
analysis of our data due to the following factors. Firstly, the black‐and‐white image cannot
be analyzed in terms of tinctorial properties (it is impossible to determine hyperchromic
and hypochromic neurons); secondly, the grain of the image does not allow us to establish
where the nucleolus is located, and where other cellular elements; thirdly, clusters of glial
cells or blood cells and blood vessels merge are also misleading, or even do not allow to
determine the type of cell at all.
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Table 1
Distinguishability in the case of: (a) the raw and (b) processed data.

(a) Type 1 Type 2 Type 3 Type 4 Type 5
Type 1 0 0.811 0.323 0.878 0.445
Type 2 0.811 0 0.485 0.438 0.377
Type 3 0.323 0.485 0 0.608 0.074
Type 4 0.878 0.438 0.608 0 0.507
Type 5 0.445 0.377 0.074 0.507 0
(b) Type 1 Type 2 Type 3 Type 4 Type 5

Type 1 0 0.489 0.328 0.888 0.143
Type 2 0.489 0 0.207 0.444 0.387
Type 3 0.328 0.207 0 0.62 0.224
Type 4 0.888 0.444 0.62 0 0.546
Type 5 0.143 0.387 0.224 0.546 0

(a) (b)

Figure 4. (a) An equivalent result obtained by application of the SOUCE algorithm, (b) The output of our
image shapes improving algorithm.

Ƹǧ Conclusion

A specializedmethod for preprocessing histological images of the brain has been devel‐
oped. Thanks to this method, it was possible to improve the quality of images for analysis.
The improvement includes: 1) getting rid of the darkening at the edges due to the micro‐
scope, whichmade it difficult to recognize the cells on them, 2) increasing the clarity of the
cells, which made it possible to more accurately calculate the complexity for the cell.

Appendixǩ Algorithm

1. Transporting image from RGB to 𝑌𝐶𝑏𝐶𝑟;
2. splitting the image into channels 𝑌, 𝐶𝑏, and 𝐶𝑟;

448 Информационно-телекоммуникационные технологии и матмоделирование — 2024



3. rescaling channel 𝑌;
4. convolutional rescaled channel𝑌filtering using the 52‐pixel rectangularwindow func‐

tion;
5. subtraction of filtered channel 𝑌 from initial channel 𝑌;
6. rescaling the subtraction;
7. combining channels: the one received at the point 6 and channels of color from the

point 2 into one image.
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Задача распознавания и классификации нейронов в настоящее время актуальна для гистоло‐
гического анализа изображений. В настоящее время подсчет клеток ведется вручную, поэтому
обработка изображений сопряжена с ошибками и занимает много времени. Вот почему важно
создатьинструмент, помогающийклассифицировать клетки в соответствии снекоторымимате‐
матическими свойствами, которые точно отражают их гистологическую классификацию. В на‐
шем случае классификация была выполнена в соответствии с многомасштабной структурной
сложностью.
Ключевые словаǩ гистология, клетки головного мозга, предварительная обработка изображе‐
ний, цветовое пространство 𝑌𝐶𝑏𝐶𝑟, многомасштабная структурная сложность, четкость изобра‐
жения
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