Characterization of ternary and quaternary particle emission in spontaneous fission of ²⁵²Cf

Authors: Gadir Ahmadov¹; Daniyar Berikov¹; Michael Holik²; Yury Kopatch¹; Farid Ahmadov³; Sebuhi Nuruyev¹; Azer Sadigov⁴; Afag Madadzada⁵; Mehdi Nasri Nasrabadi¹; Ramil Akbarov⁴

¹ Joint Institute for Nuclear Research

² Institute of Experimental and Applied Physics

³ Institute of Radiation Problems under Ministry of Science and Education

⁴ Innovation and Digital Development Agency Nuclear Research Department

⁵ Innovation and Digital Development Agency Nuclear Research

Corresponding Authors: daniyar.berikov@gmail.com, ahmadovgadir@gmail.com

In this study, the energy spectra and yields of various ternary and quaternary particles produced during the spontaneous fission of ²⁵²Cf were measured and analyzed. Particles with atomic numbers Z = 1 to 6 were clearly identified, including hydrogen and helium isotopes such as ¹H, ²H, ³H, ⁴He, ⁶He, and ⁸He. Distinct energy distributions were observed for each particle type, and Gaussian fitting was applied to estimate their yields and energies. The analysis successfully quantified the yields of ternary particles, including ¹H, ²H, ³H, ⁴He, ⁶He, ⁸He, as well as heavier fragments like lithium (Li), beryllium (Be), boron (B), and carbon (C).

In addition to ternary particle emissions, this study investigated quaternary fission (QF) processes in ²⁵²Cf. Two main pathways were identified: pseudo-quaternary fission, resulting from the decay of unstable light charged particles (LCPs) such as ⁷Li, ⁸Be, and ⁹Be^{*}, and true quaternary fission, characterized by the independent emission of two LCPs. Angular distributions of α -particle coincidences from ⁸Be decays were analyzed, and the results aligned with the predicted decay kinematics of ⁸Be from both its ground and first excited states.

Although the statistics were limited, the energy spectrum of (α, t) pairs from the second excited state of ⁷Li was successfully analyzed and compared to the ternary Li particle data. The study reported yields and energy spectra of particles from these processes.

Notes: