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341 INTRODUCTION

A concept of colored quarks as fundamental fermions po-
ssessing a specific quantum number, color, and like leptons, being
elementary constituents of matter, forms the foundation of current
theoretical ideas about the world of elementary particles and atomic
nuclei.

When in 1964 Gell-Mann [1] and Zweig [2] suggested the existence
of quarks as hypothetical particles that make up mesons and baryons
(i.e. every strongly interacting particles observed) gquarks were

imagined as purely mathematical objects. Using them, the then discov-

ered unitary SU (3) symmetry of strong interactions [3] could he

described in the most simple and elegant way. These particles, which
possess fractional electric charges and are not observable in free state, _

eventually gained am appropriate physical interpretation.

First of all, constructing hadronsfrom quarks having spin 1/2 lead i

to a contradiction with the Pauli principle for systems of particles
with half integer spin.

The problem of statistics was not, however, the only obstacle
standing in front of the theory. The following questions remain
unanswered: why in nature do only those systems which correspond to
three quarks or quark-antiquark pairs exist? Why are there no indi-
cations of the existence of other multiquark systems?

Of special interest is the question as to whether quarks could exist
in the free state (the problem of quark confinement or non-emission).

In 1965 an analysis of these issues led Bogolyubov, Struminsky,
and Tavkhelidze [4], as well as Nambu and Han [5], Freund [6],
and Miyamoto [7] to the fundamental idea that the quarks possess
a new and hitherto unknown quantum number afterwards called
color [8].

For more than 15 years this idea lies at the base of elementary
particle physics. Once hadron spectroscopy problems could be solved,
the colored quarks hypothesis led on to the development of the
quantum chromodynamics (QCD) of strong interactions, and enliv-
ened numerous versions of the “grand unification” theory (GUT).

The present paper considers the main topics for the development
of the theory of colored quarks and exposes a number of the impor-
tant achievements for the physics of elementary particles, atomic
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nuclei, and high energies [9-11] which were obtained from this
theory. |

The paper begins with a discussion on the dynamic treatment of

‘hadrons as composite quark systems and the construction of form

factors and amplitudes of various processes, in which hadrons take
part (Sec. 3.2). ;-

A dynamic quark model [4, 12] proposed in 1964 at JINR (Dubna)
offered a systematic description of both static and observed parame-
ters of elementary particles (magnetic ‘moments, axial-vector con-
stants of weak transitions, etc.), and hadron form factors [13]. These
studies gave an impetus to the development of the current quark
models of elementary particles, among which the quark bag model [14,
45] and quark parton model are the most popular.

An important step for the developing the dynamic hadron theory
was made by Nambu, who first introduced vector fields, i.e. the
carriers of the color interaction, which became the prototype of the
QCD gluon field [16]. QCD, whose rapid progress we have observed
in the last few years [17], originated then as a result of a unification of
the hypothesis of colored quarks and the color SU® (3) symmetry
with the principle of local gauge invariance by Yang and Mills [18].

It is important to emphasize in this respect that the Greenberg
hypothesis of the parafermi statistics of quarks [19-20], as shown '
in Sec. 3.3, does not admit the gauge SU° (3) symmetry, since this
symmetry forms the basis of QCD and the Greenberg hypothesis is
thus a physically unacceptable alternative to the hypothesis of colo-
red fermi quarks [21].

It is obviously not possible in a paper of this size to elucidate all
the achievements of QCD, the development of which was a substantial
advance for the theory of strong interactions.

Secs. 3.4 and 3.5 show how QCD and the ideas of composite had-
rons can describe a wide range of phenomena from approximate scale
invariance to automodel behavior in a consistent theoretical way and
can substantiate the quark counting method for high momenta trans-
fer processes.

The scale invariance discovered when inclusive and deep inelastic
processes were investigated is one of the most universal regularities
in high energy physics [22].

The automodel hypothesis formulated in [23] results in unified
approach to the study of the scale properties of high-energy, strong,
weak, and electromagnetic interactions based on similarity principles
and dimensional analysis. The compatibility of the automodel hypoth-
esis asymptotic behavior with the fundamentals of quantum field
theory has been rigorously corroborated in [24], where a one-to-one
relation has been found between the automodel’s amplitude and
cross-sectional asymptotes for deep inelastic processes and the be-
havior of a local currents products near the light cone.
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In 1973 the automodel hypothesis and the ideas about hadrons’
quark structure led to the formulation of the quark counting rules.
These specify the pattern of the asymptotic behavior of amplitudes
and cross sections of the various exclusive processes depending on
a degree of “complexity” of the partaking hadrons [25, 26].

The quark counting formulas describe the numerous experimenta}
data on the elementary particle scattering surprisingly well and
enable straightforward information about the number of elementary
hadron constituents to be taken from the experiments.

In the last few years the idea of colored quarks and fundamental
QCD forces has started penetrating into the theory of nuclear reac-
tions.

It is to be noted that the most immediate manifestation of the
quark nuclear structure is an experimentally observed law of the
exponential falling of the electromagnetic form factor of deuteron at
high momenta transfers, which agrees well with the quark counting
formula and exhibits the presence of a hard 6-quark deuteron struc-
ture [27, 28]. _

Sec. 3.6 treats the problems of allowing for the quark degrees of
freedom in describing pure nuclear phenomena, especially those
taking place at high energies and momenta transfers. A possibility is,
in particular, indicated of exciting the “hidden” color in nuclear
matter and of a number of other consequences [29].

The final Sec. 3.7 is dedicated to discussing the unified gauge theo-
ries of strong and electromagnetic interactions having a spontaneous-
ly broken color symmetry and integral charge quarks [30, 311.

3.2
3.2.1

COLORED QUARKS AND HADRON DYNAMICS

A Hypothesis of Colored Quarks

According to the colored quarks hypothesis formulated
for the first time in [4-7], quarks obey Fermi-Dirac statistics, each
type of quark appearing in three unitarily equivaient states:

g = (q1, G2 qs)s

which differ in the values of a new quantum number called afterwards
the color. Since only three quarks were known when the new quantum
number was introduced, i.e. u, d, and s, the colored quark model be-
came known at the three-triplet model.

The wave function of an observed baryonic family, which can be
approximated for spin unitary symmetry by afully symmetric 56 com-

ponent tensor @y, was assumed to be fully symmetric with respect

to the color variables of the three constituent quarks:
(3.1)

1
Vagc (x4, @, xs) = ﬁ Eaﬁvmabc (245 2y, 33),
where 4 = (o, a), B = (f, b), and C = (y, ¢).

|
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From this assumption it can be concluded that the observed mesons
and baryons are neutral relative to the new quantum number and
conform to singlet states, if expressed in terms of unitary SU® (3)
symmetry corresponding to the quantum number. So, for example,
the known mesons and baryons are built up from quarks and anti-
quarks in the following fashion:

(1) ¢4 (2) mesons, _
e*Bvg,, (1) g5 (2) gy (3) baryons, - (8.2)

where the color indices o, B, y each have only three possible values.

Thus, starting from the colored quark hypothesis, the Pauli
principle requirements can be met both for spin quarks as well as
hadron spectroscopy.

Colored quarks can have both fractional and integral charges.
In the latter case the quarks could be created in high energy particle
collisions without violating the basic law of electric charge conserva-
tion and would be, generally speaking, unstable particles decaying
into known hadrons and leptons [30].

Below we shall discuss the consequences which result from the
hypothesis that charge on the quarks is integral (see Sec. 3.7).

Let us stress that the introduction of a new quantum number led
to the quarks being seen as normal physical objects accessible to
direct or indirect observation.

3.2.2 Dynamic Quark Models

The introduction of colored fermi quarks as fundamental
physical particles has opened a way to the dynamic description of
elementary particles.

It is the absence of quarks in the free state that has been difficult
to explain. Yet explaining this phenomenon, known as quark con-
finement or non-emission, is one of the crucial problems now facing.
elementary particle physics. Although the confinement problem will
obviously be solved after experiment, a number of attempts have
been made to explain the “permanent detention” of quarks inside
hadrons in a logically consistent way. In particular, the quark “bag”
model has been suggested.

The quark bag model originated in the work done at Dubna (the
“Dubna quark bag”) [4, 13] and at MIT [14].

A dynamic quark model, whose development started in 1964 at
Dubna, was based on the assumption that quarks were very heavy
objects bound in hadrons by immense forces. On the one hand, these
forces ensure a large mass defect of the quarks inthehadrons, and on
the other prevent them from being emitted 1.

1 The description in terms of heavy, composite [11] quarks is, in
a sense, complementary to the description in terms of light or “current” quarks
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Quark confinement is not unconditional and in principle quarks
can be freed if the hadrons acquire a sufficiently high energy..

The dynamic composite model offers a systematic description both
of the static observable properties of elementary. particles (u, g4/gy,
etc.) and the hadron form factors. Note that among the others it gave
the first satisfactory explanation of the enhancement of the magnetic
moment of a heavy quark bound inside a hadron. This effect could be
simply described by the Dirac equation for a quark bound by a scalar
field described by a rectangular potential well with U (r) =
— U (ry — 1), and in the presence of an external magnetic field
H by

[E + i (V + ieA)lp = BM™*; r<Cr, (3.3)
where M*¥ = M — U, and H = curl A.

Solving equation (3.3) in the limit of an infinitely heavy mass M
of the free quark at a fixed value of the effective mass M*, which
hereafter we will assume is zero, we can obtain the following expres-

~ 0.83 == ;

sion for magnetic moment of the bound quark:
=5 6 Ere—1) 2E ° )

e 4Er,—3 ( i
We emphasize that the finiteness of the magnetic moment of an
infinitely heavy, bound quark can be inferred from an assumption
about the scalar nature of the binding potential but does not obtain
in the vector case, for example.

This result makes it possible to obtain a good qualitative estimate
of the absolute values of the nucleon’s magnetic moment, taking one
third of the nucleon’s mass as the energy of the bound quark and
using SU (6) symmetry, i.e.

2.04

To

(3.4)

Lp 2~ 3 nm, pp & — 2 n.m

and a number of other relations.

Comparing these results with the experimental values reveals the
importance of studying the relativistic corrections for the matrix
elements of the electromagnetic and weak currents of composite
particles. The nature of these corrections can be demonstrated in the
most simple and elegant fashion in terms of a model of quasi-inde-
pendent quarks.

In this model the quarks that make up a hadron move independent-
ly within some self-consistent scalar potential U (r), their binding to
which compensates for their mass®. If the weak and electromagnetic

which is a more adequate notion when analyzing a hadron’s point structure.
Light quark confinement is associated with the non-Abelian nature of the fun-

damental QCD interaction.
2 A. Salam has figuratively called this effect an “Archimedian bath”
33].

|
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interactions are introduced in a minimal way [32],
ed, electromagnetic interaction,
idy,—i0 G . :
b u V3 Ty, weak interaction, (3.5)

where A , is the electroma i i 5

a gnetic potential, [ charged weak lepton
currents, and G !;he Fermi constant for weak interactions, we Izvv-ill
obtain the following for the ratio of the axialto the vector constants

of the weak interaction, g,/g .
g v, and for the
proton, say, A magnetic moment of

ga/8v=—2 (tlo.Ih), (3.62)

e
e LA (3.6b)
Here 0,/2, L,, and E, are respectively the spin and orbital moments

and the energy of an individual, bound i
_the , quark in a nucl
projection of total angular momentum is R

A7 =g o+ L,

]
|>H :. (3.7)
Whence it is not difficult to find out that
gal8v = —% (1—29), (3.8a)
e

By =3, (1—0), (3.8D)
where the parameter §,

=L =—i [ & (x5 v, v, (3.9)

specifies the value of the relativistic corrections. For an ultrarelativ-
istic case, when (q*>}/E?~ 1, we have 6 ~ 1/6 which vields a cor-
rection of the order of 30% for the g,/gy ratio. This example shﬁws
up the degree to which the effect of relativistic corrections could be
essential for predictions of non-relativistic quark models. So-called
conﬁguratu_m mixing is another indication of the role of relativistic
effects. This is when, in the most general vector representation of
a baryon (cor_nposed of three quarks), P- and D-waves add to the
S-wave contribution [34]. The spin unitary part of the wave function

_Will then not be fully symmetric, being a superposition of the con-

tributions corresponding to 20-, 56-,
the SU (6) group.

The dynamic composite models led t itati
amic ite 0 a qualitative explanati
and quantitative description of an entire set of tI‘&I]SH)?lt&tiOi](:ir]l

15--0630

and 70-tuple representations of
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particle and resonance processes. We specially mention t.he‘ quarlk
model of electromagnetic and weak meson decays [35, 36] which hag
been developed using the dynamic approach. :

This model offers an explanation of the weak leptonic decays of the
pseudoscalar m- and K-mesons and the electromagnetic degays of the
vector meson resonances (p°, o, and ¢°) into electron-positron pairs
as the annihilation of quarks and antiquarks bound.inside these
mesons. The widths of corresponding decays are governed by the
values of the wave functions of bound quark-antiquark pairs.in
matching coordinates [35], i.e.

F(n—»pv):%ma (1_ Z: ) 9= (02, (3.10)
F(Tf"’—»e*e‘):%: gvlvy (0)1% (V0=p° o ¢° ...),
(3.11)
where :
g8o=1/V2; g.=1/3V2;  ge=—1/3;

G is the weak Fermi constant, and 0 the Cabbibo angle®.

An analysis of the data on the widths on the meson resonances
based on these formulas led to the known conclusion about a depend-
ence of distance scale (effective sizes) on the quantum numbers of

a bound systemn (the Weisskopf-Van Royen paradox). e.g. [36],

vk (O)* ., mx
[$n (02 T m

In the case of the decay m®— 2y the annihilation model indicates
that the width of this decay is proportional to the number of
different quark colors.

The constituent annihilation model and formulas (3.10-3.11},
allowing for the first QCD corrections to it form a basis for the con-
temporary theoretical analysis of the various decay modes of the
members of a new family of heavy particles, namely the J/{,-, and
y-mesons. ‘

, etc. (3.12)

T

3.2.3 Hadron Currents and Form Factors

The above examples illustrate the importance of allowing
for relativistic corrections when a hadron’s local currents and form
factors are being constructed. A consistent solution of this pr(?blem
can only be given using the relativistically covariant description of

2 ) " An allowance for the renormalization of the magnetic moment
and axial vector, weak constant of the bound quarks is made by introducing
additional factors (1 — 28) and (1 — §), into formulas (3.10) and (3.11), re-
spectively. i ;

|
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the system of bound particles within the scope of quantum field
theory.

One of the first attempts to construct the local currents of compos-
ite particles was performed for [13]. In this work a relativistically
covariant equation for mesons and baryons was postulated and this
marked the beginning of relativistic, composite quark models..
- The equation proposed, the choice of which was dictated by a requi-
rement there should be a generalized SU (6) invariance and that
the large mass of the bound quarks was compensated for, enabled
many relationships to be obtained for the vertices and form factors
of weak and electromagnetic transitions with hadron participation.

It has been proposed in [37, 38] that the three dimensional, dynam-
ic (quasipotential) equations in quantum field theory [39] be used
to construct the local currents of the composite particles. :

With this approach the matrix current’s elements for the bound
particle systems will be defined by expressions of the type

(P' Bl (0) Py )

H dq?’z dqha

=1

= v @) T (P, 6ilP, ) ¥ (@) (3.13)

where 1 (q;) is the simultaneous wave function of a bound state in
the C.M.S.4

The construction of the vertex integral operator I' (P’, q; | P, q )
and the quasipotential equation for the wave function ) (q;) is a basic
problem for the simultaneous approach to the description of a system
of interacting particles [40-42].

For the case of two spin particles (the quarkonium)

the quasipoten-
tial wave function equation reduces to the form i L

(vok — M) =0,

Pop = Vo' =",

(3.14a)
(3.14b)

where E is the total energy of the system, and M the mass operator
which is a function (generally nonlocal) in momentum q, as well as
in iV, 0y, and E [41]. .

For non-interacting particles the mass operator is merely

M=2W=2Vmi+q. (3.15)

‘ Below in Sec. 3.5 when the asymptotic behavior of hadron form

factors are studied for the high momenta transfer range, the three dimensional
dynamic equations in the variables of the “light front” (i.e. on the zero plane)
are used. b : i '

156 -
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Given an interaction, the operator M reads

Mp=2V T v @+ |V (E a 0)v@)de. (3.1

The quasipotential V (E; q, q') which enters this expression is speci-
fied by the relation
B i | 317
G =G — gV, (3:17)
where G—* and Ea‘ are operators for the inverse bitemporal Green func-

tions of two interacting and two free particles, resgectively. In the
C.M.S. and in the Foldy-Watthausen representation they are

—

G(E;q.q')
+oo +.°°
—aty{ quo 5 dg.Goo (E; q, q’)’} Tk, (3.18)
Here
(m+W—y-q) (n+W-+vy-q) | VvV La®
Tq = T ACES ; W=Vm*+q
(3.19

is the operator for the unitary Foldy-Watthausen transformation for -

a two particle system, and

Ay = 1+ Yo (;) Yo (2) (3.20)

is the projection operator of the 16-component bispinors onto a subs
space which can have an inverse operator (3.17).

The work [37] demonstrated how the dynamic moments of I_ocal
vector and axial currents for the bound states of two spin partvlcles
can be found from the three-dimensional qua‘si-potential equations.

Suppose a quark interaction is introduced with the weak homogenie-
ous and time dependent external vector (V) and axial-vector (Ay)
fields thus:

Vudu— D == 9,0, 4 NV, + A ALYy, (3.21)

(here A are the generators of the flavor group). !
As a result, the mass operator becomes a function of th? externa
field and can be expanded into the powers of the field, viz.

ﬁV,A:M+61ﬁ?',A+---1 (3.22)

|
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where the first non-vanishing correction is controlled by a variation
of the two-particle Green function,
8y, 4= 2miG1-8Gy, 4G (3.23)

and so 8Gy 4 can be found by standard perturbational methods.
The vector and axial charges of the particle system,

Q* = <hound ”Jg‘ (x) dxl h_ound> 5
_ (3.24)
Q= (bound | { Jz,(@)dx| boundy (i=1, 2, 3),

can be defined in terms of the total energy variation with the external
fields present, i.e.

0F = V5Q= + AoQz + . . .. (3.25)

Whence (in the lowest order of perturbation theory for the vertex
operator) it follows:

Q*= 5 P* (q) {A% + A2} p (q) d, (3.26a)

Q= § 1% (0) (228, + 2240) ¥ () da, (3.26D)
where )

A=y lotaodn], w=Vmite. (3.27)

These are exactly the same charges for which the SU (6) algebra was
first postulated. In a nonrelativistic approximation, when g2 < m?,
A ~ o, SU (6) algebra is trivially satisfied for quantities (3.26a, b)
given that the two particle states are completely described by the
wave functions | (q).

However, as was shown above, relativistic corrections may be
significant. For example, if the operator A is averaged over a
spherically symmetric state, we find that

q?)

W =0(1—) 1L 0 (1/my. (3.28)
This agrees with the mode! of quasi-free quarks, where the renormal-
ization of the axial constant is constrolled by a factor in [13], viz.

(1—28) =18 1 0(1/E3). (3.29)

aq

In other words, the corrections of the order of 1/m? are needed by
relativistic kinematics and are independent of the nature of the
particle’s interaction.

In the paper by Gell-Mann and Dashen [43] the problem of deriving

relativistic quark dynamics from the current algebra in a system with
an infinite momentum (the “P, = oo” system) was posed.
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The above analysis allows us to state that_ t.hit;?zlézltsi rfoihzléﬁ
i ents o :
es on the vector and axial vector curr ' °
;};{;ﬁs can be reproduced without reference to the!jommutatlon rela
tions of current algebra at infinite momentum [4 ita e
In fact, the diagonal matrix current element‘s,_ oi:' f 2 : -3
States are related to the current’s diagonal matrix elements,
by the Lorentz transformation:

Al : il
—— [{Jyp=o0] + P (S dp=0lp-1-
g ol e

As a result usihér (3:.26), we find for the limiting values of the vector
and axial vector charge matrix elements that

lim — <S Juudx> - j v (@) (07 A7) b (o) dgs (3.31a)

(3.30)

(J0>PZ*°°'+

Pz:—oo PO
- lim 5= <SJg‘Ddx'.§:S * (@) (A2 A7) v () dg,
Pzvoo 10 ! ' (3.31b)
where S :
m (1)q Yz 3.3
Zi:m[czm)%“m (1+ erW)J, C

Ez:ﬁ?i—qf[“z(z)— S (1—“1_""” b

st i ‘ ‘der of 1/m? to axial constant
Note that relativistic corrections o_f the or : ) ‘
ofothe two spin particles, which is glefmed by (3.32), have thg sama.
form as before, namely, : S

Ey=0.0) (1 -2

(3!33%

.

) % O (1/m%). -

It is not difficult to show that 1
[2,]2 = [Z,]* =1, (3.34*_

whence the validity of the SU (3) x SU (3) algebra follo\&l’s fOTrhﬂ;‘:
charges of vector and axial octet curre'nts of two ‘free quar ig:ffectiv"
the three-dimensional dynamic equation can serve _a‘s1 ant ‘nﬁnitg
means to check the current algebra of composite particles at 1 {
m(gflﬁzlias'ults above pertained to the charges, i. e._to the matrlixlgurgent
elements at zero momentum transfer. In [44] it .WIELS ‘ggnela 1;(;9 mﬁg
slowly varying external fields. This allows the hig 1elt‘ ynzrr:lectr&_
ments of the particle syst?m’sdcurrents, such as magnetic an ;|
ipol nts, to be found. : oo ot gyt
dll}[);)l ;aﬁ(i)glltlaar, evaluating a variation of two spin particles’ ener '
given homogeneous electric and magnetic fields,

8E — M-H + D.E, @

or into elementary particle

An important role

of interaction between the colored quarks and were the
the QCD vector fields
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we find the following expressions for the magnetic and electric dipole

moments of the system (in the lowest approximation of perturbation
theory for the vertex operators): -

M = [ 4% (q) {esm, + e;my} 1 (q) da, (3.362)

D= ¥ (0) {eud + es3} ¥ () das (3.36b)
where \ e
1 , 7}
m,-zz-—-W(L—[—ui), L=—i [q>< EJ: (3°37)
+W - '
b= mzi; 0;+q (,,%g%] ’ (3.38)

b i 0. . [axe@)]
¢_%{2M+me+m .
Relativistic corrections to the magnetic moment of a bhound quark
that were found by averaging over a spherically symmetric state, i.e.
1

(m;) =S

0 (13240 (1/m9) (3.39)

agree with results from the quasi-free quark model. In this model

renormalization of the magnetic moment of the bound quark is
governed by the factor

(1—8)=(

Relativistically covariant quasi-potential equations have been
used in [45] to construct form factors for composite particles at
arbitrary momentum transfer values.

(g%

— 555 ) +O (L/E (3.40)

3.2.4 QCD as the Gauge Theory of Colored Quarks

and Gluons

One of the most important implications of introducing col-
physics is the development of QCD,
Le. the gauge theory of colored quarks and gluons treated as an up-
to-date basis of strong interaction theory.
QCD has emerged as a result, of bringing the local gauge invariance
idea of Yang and Mills [18] into the color SI/° (3) symmetry [17].
in developing QCD was played by the concept of
vector particles introduced in 1965 by Nambu. These are the carriers

prototypes of
of gluons [16].
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Hopes for a theoretical explanation of quark confinement or non-
emigsion’ are pinned on the non-Abelian nature of a QCD gauge in-
variance group..

A most important feature of QCD is the asymptotic freedom [46]
associated with the discovered weakening of short-range interactions
between quarks, i.e. with the increasing momentum transfer:

> ( 2) = 12x 1
s \T) ~ {IN, —2Ny) In /A2 ?

where N, and N are the numbers of colors and flavors, respectively,
and A the fundamental scale.

The QCD’s asymptotic freedom corresponds-to the idea that the
quasi-free quarks, which originate in the dynamic, composite hadron
models where light quarks whose mass is “erased” by the interaction,
are effectively confined only by the walls of the potential well and
remain practically free inside the confinement region (the “Dubna
quark hag”).

Unifying the heuristic quark bag picture and QCD has led to the
development of a number of the modern approaches to hadron dy-
namics [47, 48].

Theorists at MIT [15] have introduced the assumption that there
is some constant density of bag volume energy which is specified by
universal parameter B ~ A% This assumption guarantees the stahili-

ty of a quark bag which has zero complete color with respect to the

quark-gluon fields filling the bag.

In a number of works there have been some attempts to substan-
tiate the quark bag model on the basis of a nontrivial topological
structure of the QCD vacuum state which is related to instantons
(i.e. the effects of tunneling between classically degenerated states
which differ by the value of theirso-called topological gauge potential
number and which conform to zeroth QCD field strengths [47]).

In particular, the application of the finite energy sum rules [49] to
analyze the annihilation of e*e~ pairs into hadrons and to describe
the dynamics of quark-antiquark systems (the quarkonium) has led
to the following values for the average vacuum fields of light quarks
and for a physical vacuum’s energy 'density [50]:

(uu) = (ddy >~ —(0.25 GeV),

; (3.41)
= — =5 (%:GuvGuv) = —(0.25 GeV)*

5 Note that the “elusiveness” of a rigorous proof of color confinement
in the non-Abelian theories, in spite of considerable efforts and isolated partial

advances in this direetion, could indicate that color confinement is, by way of

a mathematical analogy, the “Fermat” theorem of contemporary particle theory.
In other words, quark confinement or non-emission cannot, generally speaking,
be inferred from the first principles of QCD.
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(here Gj, are the color gluon’s field strengths, a = 1, 2, .. ., 8).
The negative sign of € leads to a positive volume density of the bag
energy. However, since the quantity B used in describing the hadrons
in the quark bag model is almost an order of magnitude less than the
energy density of the physical vacuum | e | signifies, apparently,
that the physical vacuum inside the hadrons is“destroyed” only par-
tially [48].

Note that recently, in connection with studying a possibility of
a spontaneous breakdown of color symmetry, the theory is entered
by the colored scalar particles of small mass equally with quarks
and gluons. A principal corollary of similar theories is the existence of
a new hadron family that include the scalar color fields [51-53].

It will be shown below (see Sec. 3.7) that given a condensate of the
scalar fields

(s Sgrp) ~ (1 GeV)e, (3.42)

1 2
here b = Z(“ — ENf_ é N.,), N, being the number of fundamental

scalar triplets and allowing for large perturbative corrections in the
QCD with scalar fields, the masses of the new hadrons can amount to
several tens of a GeV [53]. Observing states such as these would be
equivalent to discovering a new flavor, namely, scalar quarks.

3.3 PARASTATISTICS AND COLOR

3.3.1 Parafermi Statistics for Quarks

The first attempt to solve the problem of quark statistics
was initiated in 1964 by Greenberg [19] and has been used assuming
that quarks are parafermions of rank 3. In this framework, baryons
can be explained and described by completely symmetric spin-
unitary wave functions. In particular, the baryons built up of three
quarks with the identical quantum numbers have been explained, e.g.

A+ (T, = 3/2) or Q- (J, = 3/2).

Earlier works (see, e.g. [20]) have emphasized that the use of parafer-
mi statistics for quarks and the introduction of a new quark quantum
number (color) together with an appropriate color SU* (3)-symmetry
are not equivalent approaches in elementary particle theory and lead,
generally speaking, to different physical consequences. Even so, in
the last few years a number of works have appeared in which they
have been erroneously equated [54].

It is essential to understand this problem properly not only for
quark theory, but also for the future development of elementary
particle theory. In this section we want to clarify the problem and,
using just a brief analysis of the most essential features of both ap-
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| Jes, we shall show that the use of parastatistics is not equivaleng
fﬁiihssiroduction of quark color and the appropriate gauge .S Us (38
symmetry, which  form the basis of 'QCD: 20112 191 o
. " Remember first of all that parafermi statistics are governed by the
following set of the trilinear permutation relations g

(6 @), [ Y@= — 28 G—) (e - (343

: i i i i f the free
where S (z — y) is the ordinary permutation function o

fermi fields. As has been shown by Green [55], who was the first to
introduce parastatistics, a parafermi field of rank P allows the co-
variant representation '

s | i 1
(@) = 2 ¥ (@) | | (3.44)

to0 be made, where the fields \; (z), commonly calleai the Green para-
field components, obey bilinear permutation relations of an anoma-
1lous type, viz.

[9: (2), %; @)= — i8S (z—y). - (345)
Here the sign “--” (the anticommutator) corresponds to the same
componentsg(i = j) and, the sign“—" (the commutator) to different
ones (i == j) 3 (LA

Using a parafermi field représehted in terms o_f Green components,
it is not difficult to show that in the'interesting case of P = 3 we
have, in contrast to ordinary fermi fields:

2 (z) [0) £ 0, ¢ (z) |0) 0. (3.46)

The last condition solves the problem of baryon spectroscopy tha.t
has required it to be possible to place up to the three identical parti-
<cles into the same quantum state. Note also that the symmetric ch.ar-
acter of the completely spin-unitary (the SU (6)—part) wave func‘u‘on
of observed baryons is because the only composite operator which
possesses a unit baryon number in this approach is the operator
‘described in [54, 56] and follows from the ordinary anticommutational
Fermi-Dirac relations, namely,

[lpe (), 9° @)+, ¥ (@), ~(3.47)

where a, b, and ¢ are the spin-unitary field indices.

However, in addition to the ordinary mesons and baryons, for

which

M~ [, ) B~ (% Vlsr ¥l

(3.48)
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a consequence of the normal permutation relations.for composite
operators leads to systems with the quantum numbers corresponding
to a .diquark and quark-meson, namely,

D~ 1%, Y, F ~ ([, bler Pls (3.49)

These have no analogues in the spectrum of the hadron states ob-
served. ' ,

It should be emphasized that for the parafield to be presented as
a sum of Green components does not signify, per se, that there are
any internal degrees of freedom, i.e. it is only a convenient mathe-
matical means just like the higher spins in the theory of angular
momentum can be constructed as a sum of several 1/2 spins. Besides,
the anomalous character of the permutation relations of Green com-
ponents does not allow any physical sense to be directly attached
to them.

There is, however, one transformation, i.e. the so-called Klein
transformation, that is nonlinear and nonlocal but allows the permu-
tation relations to be reduced to a normal, canonical form. The trans-
formation is of the form [57]

‘ ¥, = K,
P> 00 =V, ¥, = ip,kK, (3.50)
¥, =,
The ‘operator K is described by the relations
P = Kpy;
YK = — Ky,; KK* = K* =1, (3.51)
YK = — Ky
and can be selected in the following form:
K=expin(N,+N,); N;,= ) d3x Pip;. (3.52)

It can be easily checked that the ¥, fields, obtained from the initial
Green parafermi field components as a result of the Klein transforma-
tion, follow the normal permutation relations:

(¥: @), ¥;W)ly = — i8;;8 (x — y),
[qfi (.’,t:), 11fj (y)]+ = 0.

Let us stress that the Klein transformation changes the form of the
permutation relations and is, therefore, either noncanonical or non-

(3.53)

- unitary. If the Klein transformation does not change the character of

the theory of free fields, then the possibility of applying this trans-
formation to interacting fields generally puts extremely strong re-
strictions upon the theory, i.e. the so-called superselection rules [58].
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In the case we are interested in, i.e. parafermi-statistics of rank 3,
as Govorkov showed for the first time in 1966 [59], the relevant super-
selection rules can be formulated as a requirement of theory invariance
given in terms of the normal fermi-fields ¥; = 0711;0 with respect
to the transformations of the SO (3)-rotation group of the three-
dimensional matter space. In other words, the space of the admissible
physical states of the parafields is mapped by the Klein transformation
onto the set of those elements ¥; of the Fock normal fermi fields
space, which are invariant relative to SO (3)-transformations of these
fields. ' ;

Thus, the observed quantities from the initial theory of parafields
of rank 3 will be specified by the vacuum averages of the operators
that are invariant relative to SO (3)-transfermations of the ¥;-

fields.

3.3.2 Parastatisties and Gauge Symmetry

If locality or microcausality are required, extremely se-
vere restrictions are imposed on the possible forms for parafield inter-
action Lagrangians [56]. In particular, attempt to construct a para-
fermion gauge interaction requires parabosons of the same rank to

be introduced [60].
Indeed, out of the two parafermion vector currents,

j!l (‘T") :% [E\s Vulp]r-v (3543)

i (2) = = [F Tubls, (3.54b)

only the first is a local operator and can be associated with the electro-
magnetic current. The second current (3.54b) is generally nonlocal
(except for the case when P = 2) and satisfies paraboson-type trilin-
ear permutation relations on a spacelike surface.

Let us introduce a paraboson vector field B, (z), which obeys the
following permutation relations:

[Bu(z), [By(y), By (2))+]-

— iguD (a—) B1.(3) +igunD (z —2) By (0); (3.59)
where D (z — y) is the scalar field permutation function. As was the
case of the parafermi fields, the field B, (z) can be given as a sum of
Green components:

Pl .
By (z)= 2}1 By, (x) © (3.56)
with the fields B}, (z) obeying anomalous permutation relations like

[Bi(2), BY @)= —igwD(@—y) (=)
[Bi(z), Bi@)l.=0 (i]) (3.57)
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Generalizing the Klein transformation (P = P'),
 K=expin(Ny+ Ny),

= d bty + { sz B 3,1, - (3.58)
leads to the normal form of the permutation relations of the Green
components both for the parafermi- and parabose-fields.

Following the work in [60], we can see that the most general form
of the Lagrangian of a parafermion interaction with vector fields
that is compatible with the locality requirement is the following:

L=—lF2_1_Gz l \Ir i s .
4 IV g YT g “’:f_’“’]f Epphpt g[fu-,Bu]+, (3.59)

where

g= f}’u a}l"'m,
. =
vy B =98y 193 [ B0,8v] s 3.60)

and A, and F, being the vector potential and strength tensor of the
electromagnetic field, respectively.

We stress that the requirement P = P’ = 3 emerges automatically
as a condition of self-consistancy when constructing a local Lagran-
gian which contains only Yukawa trilinear couplings of the para-
fermions with the vector fields.

Passing over to Green field components and using the Klein B-trans-
formation,

¥, =0-4y,8, B, =0"B.8,

from (3.54), and when g = g', we get a Lagrangian of the gauge theo-
ry with the SO (3)-symmetry group, thus:

12 12 o -
L=—7Fm— 7 Spv oV +ony [T, v,¥]_

+g(e73p,[fﬁx ypw]Jr) . (3.61)
where
prsapczav_a\!tﬁp‘l' g [ﬁ}l X cﬁV]-

‘Note that both fermions (¥) and bosons (B,) are transformed here
via a three-dimensional (vector) representation of the SO (3)-group.
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We shall finish by proving the limited equivalence of the gauge
theory with local SO (3)-symmetry and the theory of parafields of
rank 3 which was given in [60]. As opposed to QCD, this theory has
only three gluons and diquarks are absent in the particle spectrum,
as are fermions with quark-meson quantum numbers and other exotic
hadrons. Besides, the gauge theory with SO (3)-symmetry only posses-
ses asymptotic freedom if the number of flavors does not exceed two
which contradicts experiment. : i
equivalent to the introduction of color, or a colored SO (3)-symmetry,
since it leads to results which are unacceptable on physical grounds.

34  HADRON QUARK STRUCTURE :
AND AUTOMODEL BEHAVIOR AT HIGH ENERGIES
3.4.1 Scale Laws in Particle Physics

The study of interaction processes at high energies and
momentum transfers is of primary importance for understanding dy-
namics of strong interactions and elementary particle structure. The
scale properties of these processes have been intensively studied over
the last decade, both theoretically and experimentally. All the
interaction types, strong, electromagnetic, and weak, exhibit.auto-
model, asymptotic behavior or approximate scale invariance in some
form. Ferly o g enfonay : _ _ v

In this section we will show how the scale properties can be de-
scribed starting from the most general, model independent laws of
physical similarity, using dimensional analysis, and considering ele-
mentary particle quark structure. :

Experiments with the high energy particles produced in modern
accelerators are now a chief source of information about the elemen-
tary particles structure and properties of the fundamental hadron
constituents. i ool

As the energy of the interacting particles is increased, which cor-
responds to ever shorter distances, large numbers of secondaries are
produced, since new inelastic channels are opened. The diversity of
the processes of interparticle transmutations, the complexity of
experimental observation and description of various end products of
reactions at sufficiently high collision energies make many of the
traditional methods of investigation untenable.

An entirely new approach to studying inelastic high energy parti-
cles interactions was proposed by A. A. Logunov in 1967 and has come
to take the place of traditional methods. The basis of this method
called the inclusive method is that only secondaries of a given sort
are observed in the final state of reaction. This allows a model inde-
pendent description to be madeofhigh energy multiparticle processes
based on the fundamentals of quantum field theory [22, 61].

Thus, the hypothesis of parafermi statistics for quarks is'mnot,
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A theory of inclusive reactions has been developed in the works of
Logunov and his disciples® and has led to the establishment of a num-
ber of rigorous asymptotic relations and limitations on the high
energy interaction cross sections, and demonstrated the fruitfullness
of the approach in analyzing such important regularities as scale:
invariance. Lihah s

As soon as the proton accelerator at the High Energy Physics
Institute (HEPI) in Serpukhov, which was then the world’s largest,
was commissioned in 1969, a remarkable feature of scale invariance in
the inclusive hadron reactions was discovered when the secondary:
spectra were studied. d

The discovery of scale properties of inclusive processes and their:
theoretical investigation by R. P. Feynman [62], C. N. Yang [63]
and others has deepened our ideas about strong interactions and givem
a new impetus to the development of the inclusive approach.

The investigations of deep inelastic processes in inclusive electron~
nucleon scattering that were carried out in SLAC (Stanford) led to
the discovery in 1968 of scale reaction properties (Bjorken scaling).
These indicate the existence of a “hard”, pointlike structure of a nu=
cleon (the quark-parton structure).

Several years earlier, in 1964, the pointlike behavior of the total
cross sections of lepton-hadron interactions was suggested by
M. A. Markov [64] from purely theoretical considerations of the
dominant role of the channels opening anew, compared to the suppres-
sion factor owing to hadron form factors. Experiments on the other
big accelerators including those at CERN (Geneva) and Fermilab
(Batavia, USA) have supported the pointlike behavior of the deep
inelastic scattering of neutrinos and antineutrinos with nucleons.
In other words, the effective nucleon size seems to have disappeared
in these interactions. ‘

3.4.2 Automodel Principle

In 1969 it was suggested [23] that the experimentally
discovered scale properties shown by the electron-nucleon interac-
tions might be assumed to be common for all deep inelastic lepton-
hadron processes and could be derived in a model independent fa-
shion using dimensional analysis and physical similarity laws.

An automodel principle was formulated in these works that was
universal for describing . the scale properties of the widely differing
processes of deep inelastic interactions between elementary particles.
Essentially, the automodel principle was an assumption that, the
form factors, and other measurable quantities of deep inelastic pro-
cesses, were independent at the asymptotic limit of high energies
and momentum transfers, of any dimensional parameters (such as

s See the second paper in ‘the present collection.



240 N. N. Bogolyubov, V. A. Matveev, and A. N. Tavkhelidze

particle masses, strong interaction radius, etc.), which can fix the
scale of measuring lengths or momenta. Thus, deep inelastic form
factors appear to be homogeneous functions of relativistically invar-
iant kinematic variables, whose homogeneity is specified by dimen-
sional analysis”.

Consider, for example, a deep inelastic process interaction where
leptons transfer a momentum ¢ to hedrons having momenta p;.
At the so-called Bjorken limit of v; ~ s;; ~ | ¢* | > p? = m? (m;
is mass of the ith hadron) and for fixed values of the dimensionless
ratios of the large kinematic invariants v;/g%, s;;/¢% where v; = gp,,
8 = pipy (i 7= J), an observed parameter, F (g, p;), of the process
under study behaves with a momenta scale transformation

qu —> Ay, Pip = Ap;y ) (3.62)

that corresponds to the automodel principle like a homogeneous func-
tion of order 2k, viz.:

F(Q? pi) =% F(A'Qi A‘Pi):?\’ZkF (q1 Pi), (363)
where 2k is the physical dimension of the quantity F (g, p;), i.e.
F(q, p;)=m?*. (3.64)

It is not difficult to see that the most general version of the form
factor that satisfies these requirements is

F (g, pa)= (" f (vilgs, s1;/9%), | (3.65)

where the function f depends only on the dimensionless ratios of
the large kinematic variables that are constant in the Bjorken limit.

For electron-nucleon deep inelastic scattering where the differen-
tial cross section is specified by the formula

d3c _ Ana?

> ., 0 il
T e [0032 -S-We.(q% v) +sin? = W, (¢?, V)J,
(3.66)

(8 is the electron scattering angle in the laboratory frame) the auto-
model principle leads to scale invariant behavior of the form factors
W, and W,. This was found for the first time by Bjorken [65], i.e.

vWs (¢% v) = F, (¢*/v), Wi (g% v) = F, (¢°/v), (3.67)
since
(Wi (g? v)I =m®, [W, (g% v)] = m™

Applying the automodel principle to other lepton-hadron proces
ses has led to a set of important results. In particular, a scale law

i Automodel behavior in high energy physies is closely analogous
to the similarity or automodel property in gas- and hydrodynamics [68] (the
term automodel has been bhorrowed therefrom).
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was found which for the first time describes the spectrum of the
muon pairs produced in the high energy proton-proton collision
p+ p—p*+ p-+ hadrons, namely [67],

ar ~a ¥ (25, (3.69)

where M is the effective mass of the muon pair and £ the initial
energy of the colliding particles. Experimental studies of this pro-
cess initiated in 1970 by L. Leberman’s group in Brookhaven sup-
ported this scale law demonstrating the universality of automodel
asymptotic behavior for a wide class of deep inelastic lepton-hadron
interactions [68].

Note that in the case of pure, high energy, hadronic collisions the
automodel principle leads to so-called Feynman scaling for the in-
clusive cross sections of the production of secondaries having the
limited transverse momenta (with respect to the collision axis),
viz.

d?c

(E' _d:UT)a+b—>c+...xf(p*’ P2/ E). (3.69)

That is to say, the collisions in this case result in the inclusive spectra
being dependent only on the ratios of the longitudinal momentum
components of the isolated secondaries and on the energy p./E of
primaries. This scale law is derived by analogy with a “flat” ex-
plosion in hydrodynamics and uses generalized dimensional anal-
ysis of the independent units of measurement of the lengths and mo-
menta along and perpendicular to the collision axis.

Thus, the experimentally observed scale properties of elementary
particle interactions can be described in a unified manner based on
the automodel principle, which starts from physical similarity laws
and dimensional analysis. :

At the same time it should be asked to what extent the automodel
asymptotic behavior is compatible with the fundamentals and re-
quirements of quantum field theory, such as the conditions of
locality, microcausality, and spectrality.

This problem has been fully studied by N.N. Bogolyubov, V. S. Vla-
dimirov, and A. N. Tavkhelidze, who have found sufficient and,
in certain cases, necessary conditions for the existence of the auto-
model asymptote in quantum field theory. One result of this approach
has been the establishment of an exact correlation between the
automodel asymptote of observables, i.e. amplitudes and cross sec-
tions and interaction properties, at extremely short distances [24].

Although providing a theoretical basis from which to understand
the general, model independent features of scale regularities, a sim-
ilar axiomatic approach cannot, quite naturally, pretend to give
a concrete form for the functions of the dimensionless ratios of the
kinematic variables. These functions characterize the automodel

16—0630
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asymptote and their form is defined by the dy_nami}(is c;f s;tegfac;;ﬁzgé

The additional information recgiuir.ed :}? S%‘i]?pfoysiieequ(;rk ol
i i ec

functions can be found by considering ( s

i tors of the deep inelas P
hadrons. In particular, the form fac Rl
i j -Feynman quark-parton

hadron processes in the Bjorken-Fe g D i
essed in terms of the distribution functl . i

;};?1];1; constituents of hadrons or the partons, i.e. quarks, antiquarks,
" gluons. ; s _ 3

an%hg :;[luantum mechanical correactions to this model will be dis

cussed below (see Sec. 3.5).

3.4.3 Quark Counting Rules

i i i d important consequ-
Some especially interesting an [
encies have resulted from the idea th;}t hadrons h}fved a coirr?e;l)g;tig
nature. These consequences are associated WIJ:}:lC Jlaer xea?}?en binael
i . - . 0 ar 1 ;
or exclusive interactions of hadrons, in p ) -
i igh- hadron scattering are co
reactions of the large angle high-energy, are oon
is ki i i he energy and momentum
ered. In this kinematic region all t gy ¢ Y ek
i 1 with interactions whi
are high and, consequently, we dea ; ]
i?)l;fcentrat%d within a region of malply short distances ?Iiﬁd dt;(l)rlalg
intervals and where the “hard” pointlike quark structure o
xhibited in an explicit manner. !
m%it 1b997§ a general formula was estabhs&hed [Zil,ré)lthlllw.ieS ?gsgoﬁ
, inci ite hadron nature.
he automodel principle and composite : I 5
1‘éhg c}liaracter OF the energy dependence of the dlﬁere?tlﬁll (i;ro:fl es;(;cy
tion for an arbitrary binary reaction for large angle hig

(E = V;) scattering and the form tfactors asymptote at high mo-

mentum (Q = }/—t) transfers, viz.
do _(na+ﬂb+nc+”d'2)
——(ab — cd) ~s ) i
@ (3.70)
Fo(@)f~ 1" Te™b,

where n;_, p c.q are the numbers of elementary constituents of the
s participating in the reaction. ] g

ha’%fﬁg fOII'Jmula 11; known as a quark counting formula ?ir}d _esfus}ll)iléshzi
a direct correlation between the rate of expo.nentl_al‘ )11:[1‘1;1;6“0 ng 2
the differential cross section for an exclusive blnfaly T e
large-angle scattering and the energy and degree o lcomr?tary o
the participating particles, i.e. the number of their eleme

ituents. .
Sh%‘iiee discovery of the quark counting formulas has:1 aﬁorclflc(li %aglﬁstt
opportunities to investigate the quazr{lii] structure of hadrons

tomic nuclei experimentally [25, 61. o ;
) Following [25], we shall dwell briefly on the derwat_lont chhflfi?[?:e y
las (3.70) which were based on dimensional analysis te
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(“dimensional quark counting”). An advantage of this approach
to the derivation of quark counting formulas is its universality and
independence of special details of a composite structure model of
a hadron: '

Consider a general binary reaction, @ + b — ¢ + d. Assume that
at the high energy and momentum transfer limit, particle a behaves
like a composite system containing n, point constituents, quarks,
say. The vector of state of such a system .can be written thus:

| @) = J\A’a | ng, quarks), (3.71)
where the symbol N o« denotes the operation of multiplying the vector
of the free quarks’ state by a suitable system wave function and inte-

grating (summing) over the quark variables.

The binary reaction differential cross section v can be given in the
form

d 5 af
w@—e=1r( [ 5,2, (3.72)
i=a, b, e, d
where
pi=N; x NY, (3.73a)
1 ’
g =57 |y me | T | ne, ma) | (3.73b)

The dimension of a single particle state that is normalized in a
elativistically invariant way is known to be

[ | single-particle)] = m~t,

whence the dimensions of the operator factors p; and of do/dt which
describe corresponding multiquark process follow, i.e.
n_—1)

il =m" ", (3.74a)

dgt ] = m Mgty et -2) (3.74b)

Assuming, in accordance with the automodel principle, that short-
range quark interactions are scale invariant, i.e. independent of di-
mensional dynamic parameters, we arrive at the conclusion of the
exponential fall-off of quantity (3.73b) as energy and momentum

- transfer decrease, as does the differential cross section of the exclu-

sive reaction, i.e.

9 (ab — cd) -~ (=

s

1 (t/s).

ng+ngtn,4n -2
e (3.75)
16+
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i t/s) depends only on a ratio of the igrge kinematig
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i short- and long ranges.
tlo'}‘lhgfe?;oigﬁﬁiloiall off law (3.70) for the hadron form factor can
be found by treating a special case of the exclusive I'eactmné dl.?)-n the
scattering of a structureless lepton from a hadron compos N,

qualllliasllk counting rules can be generalized for more complicated

- :ve reactions as well. . . .
ex%galavthat applying the aforementioned con51‘derat10_ns to s;ln anal-

sis of inelastic production processes of partlc_:lgs with high trans-
zerse momenta, P, in high energy hadron collisions leads to point-

; ; %0 p-a 8.
like asymptote in the inclusive cross section, 1.e. E ~ps P4 [69-71].
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possible suppression of elementary quark-quark shor raogite nidg
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Le]‘i‘ulz*éhég stuill)y og’thetse érocesses, however, shows a .dev1e;t1§p ffo;n
the canonical behavior (P3*) of ix_mluswe cross sect13n a .1%“.0 1;
to be correlated with scale invariance (Bjorken sca mg)f :ﬁ(i)s ile-
in deep inelastic lepton-hadron scattering. The natuét'a 0 ‘thinpt,he
nomenon is now the object of intense theoretical studies Wi

sramework of QCD and the composite picture of hadrons.

35 QUARK COUNTING RULES AND QCD

Exponential Asymptotic Behavior of
Exclusive Processes

3.54

i f a composite
In Sec. 3.4 we have shown that the notion o
quark structure of hadrons together with the fundame_ntals of 10(_:3:
quantum field theory provides a basis for understand?g the ma]j
i iti i ticle interactions.
namic regularities of high energy par
dyA special %osition among them is taken by the so—cglled pov‘vegr 1111:;:
of particle physics which include the guark counting rules. ti-ai
establish a direct correlation between the rate of the exponel

te P3¢ to match the quark counting rules,
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fall off of the inclusive reaction cross section with energy and par-
ticle complexity, i.e. the number of elementary constituents, namely,

(3.76)
(3.77)

A quark counting formula describes, surprisingly well, numerous
experimental data on high energy particle scattering and allows im-
mediate information about the number of hadron elementary con-
stituents to be inferred from experiments.

It is of interest to note that experimental results on electron-
deuteron scattering at high energies and momentum transfers indi-
cate an applicability of the quark counting fundamentals to the
nuclear interactions as well. An analysis of the data of relativistic
nuclear physics corroborates this conclusion (see the discussion in
Sec. 3.6).

We stress that the exponential asymptotic behavior of exclusive
cross sections as predicted by quark counting rules differs qualita-
tively from Regge mode behavior which results in exponentially
low probabilities of high momentum transfer interactions.

The success of quark counting formulas has made it imperative
to substantiate it within QCD. Below we shall discuss various ap-
proaches to the solution of the problem as well as some new results
produced in this direction.

i —(n +ny+n 4n,~ 2)
‘?z—(ab-—»cd)»vs atptnc Ty :

Fo(t) ~t™Ma™h,

3.5.2 QCD Corrections to Quark Counting Formulas

A number of current works have been dedicated to the
corroboration of quark counting rules within QCD. Most of them rest
on some summing technique of perturbative QCD diagrams and are
applicable, generally speaking, only to short distances (high momen-
tum transfers) [73-76]. _

The key role in such an approach is played by a statement about
factorizing all infrared-divergent contributions (corresponding to
long distances) in the form of some structure factors of a hadron wave
function type which cannot be found within perturbation theory.
The remaining finite factors, which dictate the asymptote of the
exclusive amplitudes in the high energy and momentum transfer
limit, are given by a renormalized series in a perturbative QCD.

Although a number of difficult questions arise when deriving the
factorization and remain inadequately answered, the outcome of
this approach to the study of the asymptotics of exclusive processes
is worthy of attention. In particular, it is unlikely that it can be
rigorously proved that the assumed expansion into a perturbational
series and retention of only the diagram’s main asymptote in the
sum of this series will not destroy the pole structure of bound states
of the appropriate Green functions [72].
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In Sec. 3.5.3 we shall discuss another approach to the frﬁlﬁ?
of corroborating the quark counting rqles which resC’IL.s on ai(m}; : foﬁ
treatment of the composite systems in the thr?e— imens
mulation of quantum field theory on the zero plane.

We now briefly enumerate some of the results of studying exclu- |

sive processes in perturbative QCD.

' son Form Factors ;

r(‘1}2eﬂ/{a-fs,ynaptote of the meson electromagnetic form_ fac-t.ors have
the following form (neglecting higher twist contributions):

s (Q3)

QZ

2 an (]n ?\22 )7"’"
=0, 2, v

i i i tial asymptote of the
The logarithmic corrections to th? exponentia : .
form fact%r are dictated by the QCD’s effective charge behavior, viz.

F(Q?) =12aCr

2040 (o, m/Q).  (3.78)

N
AN

g 4n Nt g 2N, (379
a’s(Qz):"HN’_ﬁ‘(lnTg‘) . B 3 Vs )

and by the value of the anomalous dimensions

n+d 20n , —h—
Lr 1 __ 2 9 3.80
Vn = ﬂF {1+42 % (mt)) (n12) } (3.508

h=2
(Cp = nini) which depend on the way the spins of the quark
5 23’?'(; 1

and antiquark meson constituents are added. If h, and k7 are the
corresponding helicities we have

5 { 0 for parallel spins (p,_, ) (3.81)
h , —h- —

g 1 for antiparallel spins (71, Pr=o)-

The a, coefficients in formula (3.78) are defined in _t?frmsdolflsgge
meson’sjéystem wave function and cannot, in general, be foun g
turbative QCD techniques. . y
pel};{:altaining o?lly the first term in formula (3.78) in the asymptotically
high momentum transfer limit, we shall obtain
| 2 -
_ ]!1q+.’xq|
2 . 3.82
F(Q2) —~ t6np2 282 (In 7 ) , B8y
where the normalization factor f* is .controlled by tlhe phys;;:ai\tllg
measurable transition constants and it takes the following
for m- and p-mesons:

" 2~ (93 MeV): n — p,“vJ, (3.89)
= { f2 >~ (152 MeV)?, p —- ete.
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According to theoretical estimates, the asymptotic formula (3.82)

can be applied far beyond the momentum trasfers attainable in mo-
dern accelerators.

We also present the leading asymptote of a pion’s transitional form
factor that is associated with the et — ey process. This asymptote
has a purely exponential form, viz.

Fﬂ"r‘ (02) S 2f;rr,/02.

(2) Baryon Form Factors
The asymptotic baryon magnetic form factor has the form

Gy (@) —>—(e- ) [C_aségz) ]2

2Cp

(%) "

(3.84)

IhQ1+h02+hQs|

’ (3.85)

where (e_y) is the average electric charge of constituent quarks which
have helicities &, that are opposite to the baryonic ones.
Note that at the limit of SU (6)-symmetry we get

0 (proton),
—1/3

where p is the magnetic moment and Q the electric baryon charge.

The nucleon electric form factor is exponentially suppressed in
contrast to the magnetic one; i.e.

(
(E-pk= % (=30 i (neutron) (3.86)

m2

Q% - (3.87)

Gg/Gy — const.

This is because the amplitudes are suppressed as the helicities change
(here Ak = 4-1). Baryon form factors which have the helicity |2 | >
> 1 are suppressed in an analogous fashion.

(3) Large Angle Scattering

The differential cross section of the large angle high energy scat-
tering has the following asymptote:

d s (0%) \n-2
—g—(ab — cd) %(—-_aég ) )
—220%
2 i
x (In%7) fab-ca (0), (3.88)

‘where

n:na+nb+nc+nda

Yi=1hi|CelB, i=a, b, ¢, d.
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As in every other exclusive process, the amplitudes dominate
which satisfy the conservation law of hadron helicities, viz.

RS S SRS (3.89)

This law is the result of the vector nature of a QCD interaction,

There is virtually no information about the form of the angular
dependence of a binary reaction differential cross sections that is
controlled by the functions f,;. .4 (0), nor is there any information
about the values of the absolute cross section. :

The unsolved problem of the so-called “pinch” singularities hag
to be noted here. Their contributions to large angle scattering am-
plitudes are characterized by the rate of the exponential decrease
of the cross sections, which is smaller than was predicted by quark
counting rules (the Landshoff paradox). More investigations must
be made before a statement about the suppression of the pinch sin-
gularity contribution by Sudakov form factors and the factorization
of exclusive binary reactions can be made.

3.5.3 The QCD Description of Composite Systems

We now discuss another approach to the problem of being
able to give a consistent account of the quantum mechanical effects
when describing high momentum transfer, hadron interactions.

The basis of these methods are the dynamic quasi-potential equa-
tions for composite particles given in the “light front” variables which
were first introduced by Dirac. The convenience of light front variables
is first that when high energy and momentum transfer interactions
are studied, particle masses play no significant role and can be taken
to vanish®. This makes it unacceptable to describe the process in terms
of C.M.S. variables. Besides, a theory of composite systems in terms
of light front variables most closely approximates the description of
interacting hadrons in Feynman's parton model, which imparts the
required clearness to rigorous results.

In order to describe the simplest composite system, i.e. a meson
which has a 4-momentum P and a set o of quark and antiquark quan-
tum numbers, we choose a gauge invariant two-point function of the
Bethe-Salpeter amplitude type [77], i.e.

%p (%1, 75| C)

=Tr(0| T (1]; (24) P () expS igfiu dxu) [P, a), -(3.90)

x1

8 Obviously, by neglecting exponential corrections of the 0 (mlQ)
type, where Q is the large transferred momentum. This corresponds to the higher
twist contributions to the asymptote of the quantum mechanical perturbative
theory diagrams.

i

either the fermion fields
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where the operation 7' involves both the chronological ordering of
the fermion’s quark fields and the ordering of the variables of the

non-Abelian vector field Ay

% iﬂA; alongfan arbitrary integration

contour C which joins the points z, and z,. In formula (3.90) a trace
is taken in the color variables so that all the color of the meson Sys-
tem that is described by the vector of state | P, &) vanishes.

In the case of a baryon system, the gauge invariant amplitude gener-
ally depends on three contours C; (i = 1, 2, 3) which joins the
points x; (i =1, 2, 3) to some arbitrarily chosen point z, namely,

X =10 | T (8" (x,, Ty, T3] C;) Vo (24) Yy (23) Ve (23)) | BY,
gabc (-rp 1'2, Zg f CL)

(3.91)
a b c
= ga’b’c’ [6 Ja’.[e Jc‘9

:L.J |:3
with an assumed ordering along each contour.

Note that as a consequence of formulas (3.91) and (3.92) all color
of the three quark fields vanishes only at the limit of matching coor-
dinates z; (or in any other state which is symmetric in coordinates,
this corresponding to a requirement of standard SU (6)-symmetry).
Yet in general the summed quark color is compensated by gluon field
color.

The dependence of (3.90) and (3.91) on the arbitrary contours is
obviously an inevitable result of requiring gauge invariance for the
QCD description of the composite systems. To justify such an ap-
proach we note that gauge invariance must be primarily understood
as a requirement of observability. The quantities like (3.90) and
(3.91) pertain undoubtedly to the observable, i.e. measurable quan-
tities, since they control the probabilities of such processes as, for

example, 7t — uv,p — e*e~, etc. In addition, they are in the expres-
sions for the exclusive amplitudes of hadron interactions. As will
be shown below, we can thus exploit gauge invariant wave functions
to construct composite systems’ form factors and in doing so factorize
the infrared singularities in perturbative QCD in a natural way.

Mandelstam, for example, has used a gauge invariant description
for electromagnetic systems [78]. Note, however, that in quantum elec-
trodynamics physical quantities remain invariant if the gauging of
(¢ — ei*Qqp) or electromagnetic potentials
(Ay'— A, 4 8,B) alone are changed by virtue of the current con-
servation of the charged fermion fields, i.e. 8,j, = 0. This means
that the formally gauge invariant Green functions can be used for
calculations with perturbative QCD.

X1
'igg dxnﬁ
z

Xq
ig | dx.4
z

x3

"

ig 5 dx+ A
z

(3.92)
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Since the gluons carry the color charge, only the sum current of e
fermions and bosons, i.e. 4, (j, + ig[4,, F,y]) = 0, is known tg
be conserved in QCD. As a result those quantities which vary in com-
mon gauge transformations of the fermion and color vector fields
generally appear to be infrared divergent, i.e. they simply do not
exist. The exceptions are those quantities which, by definition, allow
only short-range contributions. Thus, the QCD wave function of
the bound system whose dynamics is tangibly controlled by long
range interactions must be defined in a gauge invariant manner.

Let us discuss briefly how an amplitude like (3.90) depends on the
shape of the contour C. By parametrizing the point z, on the contour
C joining the points x;, and z,, as

z2,=2z,(8); 0=s=1

(with z,, (s = 0) = 2,, 2, (s = 1) = x,,) we find that the amplitude
variation (3.90) with respect to the contour shape is:
&y,
60 (2)

=T (%4, 4, 2/C)
{ e ; 1g332 dx A}
=Tr (0| T () P (z5) ig 2y (s) Fuv(2) € =t
X | P, oy, zu(z)=dz,(s)/ds. (3.93)

Tt is not difficult to see that the first variation of quantity (3.90)
with respect to the contour’s shape is proportional to the amplitude
of the bound quark, antiquark, and gluon system which has the
quantum numbers of the initial meson system.

Using the QCD equations of motion for the quark-gluon fields we
get

T (0u 4 1gA) v =0,
O+ i [Ayy Fonl=fur
Tr A%, =g (¥va 7 1%)

and we find that the relation

(3.94)

a gt
aru (Iiv Lo, ZIC):IgZH (‘S)

{ zgaL2 dx A} -
X TrO | T W (2,) (22) Ju (2) € | P, a),

links the divergence of I', with the four quark amplitude.
"All the above show that any dependence gauge-invariant ampl-
tudes have on the contours’ shape should not be significant when
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considering high momentum transfer processes, where the quark
counting rules and perturbative computations reveal that any con-
tributions configurations with more than the minimum number of
elementary constituents make are suppressed exponentially (the
“higher twist” contributions).

The exact equations of motion for the QCD gauge invariant am-
plitudes of composite systems obviously should define the dependence
not only on the end points (the coordinates of the constituent quarks),
but also on the shape of the connecting contours. So, for example,
a generalization of the Dirac operator on the contour is

ey
D=1 [ 0195, | dstuy (2) 8/6C, ()] (3.96)
0
which is dependent on the following displacement field:
. A
by () = lim 228, (3.97)

which is described on the contour C (see Fig. 3.1).

AZF=EPVAX,,

E_pv [Z (S= 0)]= 0
Epr[z(s=1)]=2yy

Fig. 3.1. The displacement field on the contour &, (z (s)), which

determines the variation of the shape of contour € when the end point is dis-
placed.

The problem of deriving and investigating a whole system of equa-
tions and relations which specify a gauge invariant amplitudes lies
beyond the limits of the present paper [79].

We shall, however, stress that a dynamic QCD description of a
composite system can be developed on the basis of the three-dimen-
sional equations for a wave function related to a gauge invariant
amplitude like (3.90), (3.91) for a fixed contour shape.

In particular, when the system's dynamics is described in terms
of the light front variables, i.e. on the zero plane,

Zy= (T —Zg)p, T =12y +2,=0, (3.98)

it is convenient to choose the contour C as lying on hyperplane (3.98).
The most convenient gauging here for the vector field is the axial
one, Viz.

A¥ = Ay L4, (3.99)
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Indeed, the gauge invariant amplitude is readily seen to be ex-

plicitly dependent only on the transverse dynamic degrees of free-
dom of the vector field, i.e.

exp [ingz-fi;lzexp[—-igjdzl-Al], (3.100)
¢ ¢

where C lies on the zero plane (z; — z,)* = 0 and 4% = 0.

When the interactions have a high momentum, Q, we are inter-
ested in the role played by the small impact parameters such that
(x; — x3)1 ~ 1/Q. Whence it follows that the exponential factor
can be dropped from the definition of the gauge invariant amplitudes
like those of (3.90) and (3.91), and the relation will remain accurate
to exponential m/Q corrections.

Below we shall briefly show the fundamentals of the theory behind
QCD’s three-dimensional dynamic equations for composite systems,

" If, in the case of meson systems, we use the transformation to the
momentum representation, viz.

%e (@)= | dz e s (5, —5|C) , (3.101)

and define the light front variables as

 ar=g(@Ee); ¢t=(0Ee) Pr=(PyxP),
| (3.102)
then we can introduce a quantity
+ oo
Tp (¢, 4.) = S dgXp (q), (3.103)

which is dependent on the gauge invariant amplitude (3.90) only
in the zero plane, i.e. at ¥ = (2; — z,)*/2 = 0.

The meson system wave function will then be defined by the rela-
tion

Vo (2, q1)=Tr(@xp (¢ qu)s (3.104)

where the quantity z = % + ¢*/P* varies between 0 <Cz<C1 by
virtue of the so-called “projection” properties of yp (3.103).

The presence and form of the operator m in formula (3.104) is
controlled by the procedure chosen to project the multipoint Green
functions of the Dirac quark fields onto the zero-plane.

A detailed discussion of related problems can be found in [72, 77}
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As has been shown in [77], the operator Tt can be chosen, in accord-
ance with the total spin of the quark-antiquark system, in the fol-
lowing form:

~ LYYt (gt R =0), '
Tl (rgthg==1).

In this way the function (3.104) satisfies the quasi-potential equa-

tion thus:
-

1
= {ao' [@quv (2, aus @', @) ve (s q),

0

(3.105)

-+ :r—i- P 2+m‘3
(ql (;,,(133;) -L) }"PP(L q.)

(3.106)

where P? = P*P- — P3 = M?, and the quasi-potential is defined
in the standard way using an inversion, i.e. finding the operator
which resolves the appropriate four-point Green function when it is
projected onto the zero plane of initial and final states.

In the approach to describe composite systems developed here
using the gauge invariant amplitudes (3.90), the following expression
is natural for the four-point Green functions:

G (24, x5 | 2], 7)) =(0| T {0(zy, 25| C)O (2], 2,] C'}| 0},
(3.107)
where
( _ ig jz dx-ﬁ)
Oz 25| C=Tr\p (zy) P () e = (3.108)

and is the gauge invariant operator which is bilinear in terms of
the quark fields and dependent on the arbitrary contour C which
joins the points z; and x,. The limiting value of the Green function
(5.32) at g, = 0 (in well chosen gauging of the vector fields) will be
denoted by s (zy, s ;, x,).

According to the general method of the Logunov-Tavkhelidze
approach, the relation of the quasi-potential ¥ to the Fourier-images
of the Green functions projected onto the zero-plane can in quantum
field theory be given in the following symbolic form:

(i)t V = G- — 51 — §- (SKG) G-+,
G— S+ SKG.

(3.109)
(3.110)

The projection operation here assumes the axial gauging of the
vector fields and the contours C and €’ which lie on the zero plane
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(see formula (3.10)) as well as the convolution with the operator g
prescribed by formula (3.105), namely,

“+ oo 5
S dg-dg'~ Tr(aGp (¢, ¢')n). (3.111)

— 00

Gz, qu; 2’ q))=

The resolvent of the integral ‘operator (3.111)
following relation:
1

[ar [aai 8(a ai; o, q0) F1 (@ abs @7 @)
0

is defined hy the

(3.112)

In [74, 77] expression for the contribution of the single gluon ex-
change diagram to the quark-antiquark interaction quasi-potential
has been found by standard perturbational means, viz.

=8(z—2") 6 (qL—ql).

V =51.(SK,S) 3 + 0 (o),

TIoL Iey -+ nyk,
K, = e si(} C ,,,S)_,.,Lz) [ g ny v(nk’)"v 1 ]

in the axial gauging, i.e. at n} =0, n-k = k* =k, + k,.
Depending on quark and antiquark helicity values, the single-
gluon exchange quasi-potential will be of the form

hg+he=0
{hq+h3=i 1} ACE THERE bV
' 86

- z(1—2)y(1—y) [(y(i_y) Qi+x(1—x)ﬁ)

4 g(z—y) , [zy+(—2)(1—y)
X({O}-f-w)"f-(h'(h{ 0

1

% E Bq(;l;z—-z)
=) (1) =@ —ap 10
+ o ST . (3.114)
q3 qy

Note that using axial gauging leads to the occurrence of singular
expressions like & (r — y)/(x — y) in equation (3.114), which should
be regularized. As was shown in [74, 77] the Ward identities enable the
regularization of the quasi-potential singularities to be related to
corresponding Green function renormalizations whilst allowing for
their QCD multiloop corrections.
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A study of the asymptote of the quasi-potential equations for the

high transverse momenta range led Brodsky and Lepage to formulate

the so-called evolution equation:
‘ 1

§ dyV(z, y)¢(y, 7)
0

Lr

2@ 9=5 (3.415)

for the function

QZ

¢ @)= |da v ab)
0

where
Q2
i 2 2 s a

v = g B | dRia, (k)R I [ 2O

Q3

The integral kernel of equation (3.115) is determined by the asym-
ptote of the single gluon exchange quasi-potential:

(¢1)-V (z, y)

4atong

V(x" ql; x’! (Il) — 1‘(1-*1‘) (3.116)
Q‘L —> 0Q, l
g, is fixed,

and it has the following form:

} o } 0 (y—z), (3.117)

where the standard Gel’fond-Shilov regularization of the singularity
is assumed; for example

P () —¢ () )

r—1y

(2=, o) = ay (3.118)

0
Note that the eigenfunctions of the integral operator (3.117) are
Gegenbauer polynomials, i.e. ¢, = G¥* 2z — 1), viz.
1

[y v (2, ) pn 0) = (1 +4n) by (2),

0

Ap= —Bv,/Ck, (3.119)

and the eigenvalues are defined by the dimensions of the nonsinglet
quark distributions y, which are determined by a QCD single loop
approximation (see formula (3.80)).
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If we expand the solution of the evolution equations in the eigen-
functions of the operator V (z, y), we find that

P, D=c(l—a) 3 enpa(@)[ L] (3.120)

s (3)
n=0, 2, +--

This result has been used in [73-75] to study the logarithmic cor-
rections to the exponential asymptote of the meson form factors
predicted by the quark counting rules.

3.5.4 The Hadron Form Factors at High Momentum
Transfers :

Using the pion electromagnetic form factors as examples,
we can show how the QCD of composite systems enables the amplitude
asymptote of exclusive hadron interactions to be investigated in the
high momentum transfer range.

In the dynamic approach of describing composite systems, pion
form factors are defined by the following general expression:

(@ (P (0) 7 (P)) = (P + P)y Fx (2)

1

:j dz dz' S d2y d2qj_EP, (z', q})
0
X T ulP's 2’y q1|P, z, (IL)ilJP(JU, q_]_)-

The vertex operator 7, = E*l'ﬁua'l is defined in terms of the
following five-point Green function:

Ry = (0| T (0 (22} C") Iy (2) O (1, IC)}IO), (3.122)

where O (x;, x,, | C) is the gauge invariant bilinear operator of

(3.108) and J, = (z) ey, (z) the electromagnetic quark current.
The projection of the chosen contour C; shape onto the zero-plane

R — R and the corresponding gauge conditions are discussed in [72].

Since the vertex operator .7 , (as opposed to the five-point Green
function R ) has no poles in the bound states whose existence is
controlled by long-range interaction, perturbative QCD techniques
can be used to find & ,,. This is one of the advantages of the approach
being developed here. _

Something else important is that the factorization of infrared sin-
gularities (the “factorization” theorem) allows the hadron form fac-
tor to be expressed naturally as an integral over the wave functions
which accumulate long range contributions with relevant nonpertur-
bational effects. The integral kernel, 7, is defined by a perturba-
tive QCD renormalized series in the constant o, (Q%).

(3.121)
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The relation of thg factorization theorem becomes more transpa-
rent.once the expression for the pion factor is transformed to

Facx | %(571(6r6) 5, (3.123)

Here the relations used result from the dynamic equation:

G'i-tng‘i.lpo,

- - = 3.124
Y=Y+ SV, Gt=8"1_7V, ( )

where 1, is the part of the composite s stem wav i i
corresponds to the contribution pof onlyythe “soft"? ??Cil;loonz \:;111102
component responsible for the quark confinement. The “hard” (shofg;-
range) QCD interactions are taken into account by the potential V
Let us write out the first few terms of the perturbational serie'é
and appropriate Feynman diagrams for the vertex operator viz.

v 4o
I'={5-1.(GT6)« 5.

Using the expansions of four-point and duced -poi
functions into perturbational slt)aries, we ;;t R RSTIE P
Gv—= 8 J=SK.8 4 SK.8 SK,SK,§ + ...,

P=E 4TIy ., (3.125)
and find that,

T,=s (srTs) 5= [rGJ=[—_’E~] , (3.126a)
T ’s?(sr'_}—'s) 54 'S‘T-f(SKISFU) 5+ '§_1(srosx,sj 5
=[I]+[KisTo+ ToS ki
=[£} + [ﬁ + *—_'—f_ + 2o+ s (3.1261)

where symmetric diagrams are dro
‘ pped from the last bracket
The brackets in formulas (3.126) signify a transformation to a ma:s§é

17—0630
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surface which assumes, for example, a substitution in “light front?
variables like

m2--pi 5 ? :
Pt=z;-P¥, Pi=—pr —0" (3.127)

for the momentum components of ith parton in a system having a
total momentum P. :

/2 2
af,q:<|t]=Q
k2=(1-x)(1-y) t
,2:-'_- (1—){)[

xP+q,

(1-x) P2

Fig. 3.2. One of the four diagrams of single gluon exchange domi-
nating in the asymptotic limit of high transfer momenta Q.

The main contribution to the asymptote of the pion form factor is
given by the diagram of the quark-antiquark single gluon exchange
(Fig. 3.2).

Computations yield

4mets (QF)

Q‘z

1
Fa(t)= Cr l 5
’ (3.128)

Assuming further that in the region under consideration, once the
wave function 1 (z, q ) has been integrated over the relative trans-
verse momenta, according to the quark counting rules for the parton
distribution, it behaves as follows:

[ @00 a)~Claa=a™ ", e~ 0 (31290

If ny; = 2 and we use the condition of normalization to a known con-

stant of decay = — ;ﬁ, i.e.
1

2]/1-7,:5 d.a:S aq b (z, q,)=fx

(3.130)
&
0 ¥

B

s,

we find the leading asymptote of the pion form factor:

A6mas (Q%) ﬁ[ (3_13";‘_‘.

Fﬂ(t)_>' Qz

S
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This result coincides with that obtained on the basis of the per-
turbational techniques (cf. (3.82)). Substituting the evolution equa-
tions solution for a partially integrated pion wave function (3.120)
into equation (3.128), we find the aforementioned asymptotic ex-
pansion of the pion form factor (3.78).

Note that the pion form factor value predicted by formulas (3.82)
and (3.131) is several times less than that given by experiment at
the momentum transfer values achieved today. This may suggest,
first, that the asymptotically high momenta range lies substantially
higher than the value customarily assumed, and, secondly that it is
necessary to study hoth the exact form of the composite system wave
function and the contributions of the perturbational and non-pertur-
bational corrections to the form factor asymptote.

3.5.5 Angular Dependence of Binary Reactions

The angular dependence of binary reactions contains the
important information about the nature of the quark processes that
take place in short-range hadron interactions with high momentum
transfer. :

The study of the angular dependence of the binary reactions in
a number of theoretical models has led to the establishment of the
so-called generalized quark counting rules [80]. These control the
main contributions to the asymptotes of large-angle scattering di-
fferential cross sections, in terms of the topologies of the various
quark diagrams corresponding to the process:

T(ab—>cd) ~ X T}, (3.132)

1
where i is the quark diagram topology.

Each of the contributions in (3.132) is a homogeneous function
(up to the logarithmic corrections) of the large kinematic variables:

R e (3.133)
with the exponents, which correspond to the topology of the quark
diagram, obeying the condition

N
i kel
J=a,b,c,d

2(@+p+y) = (ty—1), (3.134)

which ensures the appropriate exponential decrease in the differential
cross section with increasing energy.

The exponents o, p and y are individually controlled both by the
fquark diagram’s topology and by the nature of the kinematic singu-
larities of the appropriate helicity amplitudes.

17%



260 N. N. Bogolyubov, V. A. Matveev, and A. N. Tavkhelidze

If. as is shown in [80], the kinematic singularities in each reaction
channel are isolated in the form :

el L B NIRRT
R

Ty(h, W)= (cos T

: (3.135)

i tering angle in the scattering channel, say, a +
(—l}iéll;e«—g cls—lfhg, Sgiiltrl A =g Ag g—- Ay, M = Ao, — Ag, Where the_?\,i are
the hadron helicities) and the generalized quark counting rulles are
used for the reduced amplitudes a;, 2 formula f_or the angular de-
pendence can be obtained for a wide class of binary react;lons:

By way of example, the angular dependence formula for the pion-

proton elastic scattering can be given in symbolic form as:
2 2
ac

1
ET("P *’”’)*?e

bl

) = Jyp—
S C4+cos— S

.12
Afst? Bt

, (3.136)

=
Tyt e cos

i i i i - litude con-
where, by assuming asymptotic yg-invariance, a T,,-amp o
tribution alone isbpresented, which conserves the proton helicity,
Thus only the quark diagrams are taken into account and they are

topologically {lat. . A
OII)Jsingg they expressions for half-angle cosine scattering in the s-

and u-channels,

6
cos%—:}/——-’%— cos—-zl‘-x]/——:',

]
we can reduce the angular dependence formula (3.136) to the form
z = cos 0,)

4B |2

d iy e g
% (ap D) = 1o | AT Uo7 (3.137)

We can find the angular dependences for the other binary reactions
in a similar way. . _ ‘
The development of QCD computational techniques for exclusive
processes means that the problem of corroborating and improving
the generalized quark counting rules, which are at present only heu-
ristic, can be approached. i
Below we will briefly show, without much substant1at1qn, the
results of the angular dependence studies in QCD for the simplest
binary reaction, i.e. the elastic quark-pion scattering [81].
The scattering amplitude, assuming y;-invariance, has the form
- b4p
I (qn—qm) = (U —

uq) B (s, ©),

with .
T..=V —usB(s t), Te=0.

(3.138)
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Treating the pion as a composite system yields
B (s,42)
1

= | dzaz | @q, @qi 9@, 01) (@ 0520,) V(3 q,),
0
(3.139)

where the integral operator # is defined in terms of the six-point

Green function Rg projected onto the zero plane, i.e. # =G™1- R4 G4,
with ¢ (x, q ) being the pion wave function.

As in the case of the vertex operator 7 ,, which specifies the pion
form factor, # does not contain pole singularities corresponding
to the bound states and, as a consequence, can be found using per-
turbation theory.

The principal asymptotic contributions to the amplitude of the
quarkpion scattering will generally be governed by 16 perturbative
graphs of order a}. In the limit of many colors, N ., the contribution
of the topologically nonflat quark diagrams appears to be suppressed
by the ratio 1/N, compared to the flat ones. In this way we get

. (4niz,)? : [(A=2)(1—y) | @ty
B = z(l—z) y(1—y) {CF [ 52 + st J
1 —r—
— 5 CeCy [ — (1—:2—;})]i(s.‘_+u)} (3.140)

(= stand for odd and even amplitude charges).

Integrating (3.140) with the wave functions (3.129), we obtain the
following angular dependence for the large-angle quark-pion scatter-
ing:

20 (gn— qn) ~ (—“CF?&S )4 (1_59‘32%),2 S

which fully agrees with the generalized counting quark rules.

3.5.6 A Quark Counting of Anomalous Dimensiens

of Inclusive Processes

As indicated in the previous section, the assumption ahout
the dominating role of the elementary quark-quark processes and
the exact scale invariance of the hadron structure functions leads to
point-like asymptote for inclusive cross section at high transverse
momenta, P;.

It was noted, however, that the deviation from the canonical asymp-
totic law, P;7%, that has been observed experimentally reflects a
scaling violation in deep inelastic lepton-hadron processes.

Studies of the QCD corrections to the point-like, exponential asymp-
totes of deep inelastic and inclusive reactions at high transverse
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momenta have shown that the form of the logarithmic factors which
define the deviation from the scaling in these processes is controlleq
by the hadron’s quark structure. The value of the exponent of the
large log Q® (Q is the large transferred momentum), the so-called
anomalous dimensions of the inelastic form factors, turns out to he |
controlled by the number of quarks that constitute the hadrons that
take part in the reactions.

A general formula was established in [82] which defines the leading —
logarithmic corrections to the canonical point-like asymptote of an
arbitrary deep inelastic or inclusive reaction between interacting
particles at high momentum transfers in terms of the active and pag-
sive quarks which relate to the reacting hadroms.

This formula, called the quark counting rule of anomalous d
mensions, expresses an element of the differential cross section of
an arbitrary inclusive reaction in the following form:

(3.142)
. .

¥ 9
Here do, is the appropriate element of the elementary point-like

interaction of quarks and/or gluons, and r some group factor equal to
16/25 when N, = 3 and N = 4. The value of &

b3

i(hadrons)

(1—z!

Lt [(log 2"+ 7).

do = do,

S 2(n;—1)
is the double number of the passive quarks (the spectators) related
to the participating hadrons and # the full number of active quarks
taking part in an elementary hard scattering event, which coincides
with the full number of hadrons taking part in the reaction.

The quantity

(3.144)

1 2
& n(n+1)]

DM =

yim=—[1+4
2

1s the standard expression (in the single-loop perturbative approxi
mation) for the anomalous dimension of the so-called non-singlet
part of the quark-to-hadron fragmentation function.

Consider, by way of an illustration of the general formula (3.142
the deep inelastic electron-nucleon scattering (Fig. 3.3), for whick
we shall have

d3c

o, 42l —ayls
dk? )

1
: [2 T(4) [(oggepreiss G2y

o« ( .
(3.4

where Q% ~ Ky >m?, A =2 (n, — 1), and o ~ 1/37.
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- For the inclusive hadron jet production with the high transverse
momentum Pi = Q? (see Fig. 3.4) formula (3.142) yields

| dso oy (P} y2 (1—azp2t 8=
E I oc( P? ) T (A1 B)
% f(log PYY AT Dteinothy (3.146)
where 4 = 2 (ny — 1), and B = 2 (ng — 1).
0_2
T
! s
a
A
b S=A+B
B

}s=a

Fig. 3.3. Deep inelastic
scattering e+ 4 —e4+ ..., §
=4 =2(ny —1), H=1

Fig. 3.4. Inclusive formation
of the jet 4 + B — j +
§=A+B=2(ny + ng—2),

An inclusive hadron production with high transverse momentum
(Fig. 3.5), as opposed to (3.146), will have the following cross section:

dsg as (P3) )2 (1—z)A+B+C-1
aps P r@Ad+4+s840)

E

o

(3.147)

This set of the applications of the quark counting rule of anoma-
lous dimensions (3.142) can, if desirable, be continued.

e

Fig. 3.5. Inclusive hadron production 4 + B —~C + ..., §
=A+B+C=2(ny+ng+ ne—3), H=3.

A simple and physically transparent derivation of formula (3.142)
can be made starting from the model of the hard scattering of hadron

constituents [82, 83].
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Indeed, the hard scattering model, for example, in the cases of the
inclusive production of a high P; jet in a hadron collision leads to
the following cross section formula:

d3g

2% z SS dxﬂ dbealA (xm Qg) Fb/B (.’E;_.,, Qz)
A :

a c

X %(ab—»cd)-s?a (s+i41), | (348
t
where (see Fig. 3.4)

s=(pa.+ pb)2 ~ ZoZpS; L= (Pa— Pc)? ~ Zl;
U= (pb_pc)2 ~ Tpll,

do A . .
and d—? (ab — cd) is the relevant hard scattering cross section defined

by the sum of the Born diagrams of perturbative QCD.
The hadron structure function in the first QCD logarithmic appro-
ximation (at x ~ 1) has the following form:
A-1
Foa(z, 00 oc U=0"""
u/A( Q )OC T ()

A=A+ rE=2(n,—1)+rE,

exp (&),
(3.149)
where
g=In[ln %/m%], r—16/25,
c=r(ln2—1/2)~0.12.

Substituting (3.149) into (3.148) and changing the integration va-
riables, we obtain

s . s (P3) '

E d_l;:'(A—l‘B —jet 4 .. )OC(i-}%rt-*) F(is B DL
(1.150)
where
7= eyt ld—e)F
r(Ar (s
e A-1 B-1,2E
u v e

XOSUS = (—mFI—sd—zF “W
XA —zz))d[uv (1 =2, — ) — (1 —u—v)]. (3.151)
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Here we used the following notations:
sin? 6/2

&y~ = A(Uh Sy = 2p s
20/2
Zy=—ult+8) =Tr——ggr i

zp=—(u-t+1t)/s=1—M2?s.

where M? is the square of the missing mass, and 0 the scattering ang-
le of the a and b constituents in their center of mass system. .

As zp approaches unity, the integral (3.151) can be computed ex-
plicitly as

J = U=t [(log )

rAd+s) ((:052 %)X-(sinzg)g

v(A+B)+r In (1-—053)]2

, (3.153)

where

v 2 < 1
v(m)= —r¢(n+1)+m——}ig—n{n+i)+4§2 +]»

c=r(ln24-—;—) ~ 0.12

and  (n) is the digamma function.

It is interesting to note that the dependence of initial hadron mo-
menta on the fraction zy at xp ~ 1 and the high momenta transfer Q,
which follows from formula (3.153), exhibits an effective “collectivi-
zation” of the constituents pertaining to different hadrons. Indeed,
the whole zz-dependence enters via the effective structure function
of the unified dihadron system D = (4 - B) which unifies the A
and B constituents, i.e.

1___:5 §—1+
Fatoyads s (Tr, Q) OC% :

S=A4+B=2(n,—1)+2(ng—1)-+2rL.

The @ and b components are isolated from here and carry away the
xp fraction of the total momentum of the dihadron D.

The contribution of the two-loop corrections and the double loga-
rithmic factors (the quark form factors), which modify formula (3.142)
of the hard scattering model near the phase space boundary, was in-
vestigated in [83].

(3.154)

3.6 QUARKS IN NUCLEI
3.6.1 Quark Degrees of Freedom of Nuclei

The role of the quark degrees of freedom in describing
nuclear phenomena, especially those at high energies and momenta
transfer, is a topical item of contemporary nuclear physics.
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The starting point of the majority of the works in this direction
is an attempt to answer the following question: does the simple fact
that the nucleons, which make up known atomic nuclei, are composed
of quarks allow us to understand better regularities of purely nuclear
phenomena such as the high excitation behavior of nuclear matter,
short-range nuclear structure, etc.?

In other words, can atomic nuclei be understood simply as mul-
tiquark systems? Under what conditions could quark degrees of free-
dom be exhibited explicitly?

These questions introduce us to a new and promising branch of
research which could lead to radical changes in our notions of the
world of atomic nuclei. Undoubtedly, the notion of colored quarks
and gluons as the fundamental constituents of matter could shed
new light on the nuclear properties of matter and on the nature of
nuclear forces.

We shall now briefly discuss only some aspects of the quarks-in-
nuclei problem referring to details to the original and review papers.

3.6.2 Nuclear Form Factors at High Momentum

Transfer

The most straightforward indication of the quark struc-
ture of nuclei stems from the experimental data on evolution of deu-
teron’s electromagnetic form factor at high momentum transfer.
This is in a good agreement with the quark counting predictions
24 28], 1i.e:

Bos (a2, (3.155)

Here 34 is the total number of the valence quarks inside a nucleus
composed of A nucleons. Formula (3.155) predicts the following
exponential fall in the nuclear form factors, viz.

FD (t) -~ t—ﬁ?
Fsge (t) ~ Fys (t) ~ 8,
F-lI-Ie (t) ~ ™11 ete.

(3.156)

Available experimental data enable us to trace a “leveling off”
trend of the deuteron form factor (¢%)°® Fp (¢?) which is normalized
in an appropriate way.

The data under discussion have been obtained at SLAC (Stan-
ford, USA) and they concern the effective form factor, Fp (1) =
= [A (¢)]*/?, which is controlled by an elastic electron-deuteron scat-
tering cross section [27]:

d{r_(dc

. : ' f- e
=T ) o LA @)+ B () tan> |, (3.157)
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where (v = ¢*/4M})
: o 8 g
A(¢?) = G5 (¢°) + 5 G} (¢*) +5 n*GL (¢7) (3.158)

is the combination of squares of the electric dipole and magnetic

“quadrupole form factors, respectively.

As the SLAC data show, the deuteron electromagnetic form factor
in the 0.8 < ¢ << 6.0 (GeV) transferred momenta range behaves
almost exponentially close to Fp, (q?) = (g% ~%-0%0-5, This is in re-
markable agreement with the quark counting rules and accords with
an expected six-quark deuteron structure.® Note that for the nuclei,
*He and *He, the momentum transfers are too sufficiently high as
yet to come to any definite conclusions about their quark structures.

3.6.3 Deuteron as a Six-Quark System

The results above show that deuteron’s short-range be-
havior, i.e. at hich momentum transfers, is more adequately de-
scribed in terms of quarks than nucleons.

Does it follow therefrom that deuteron should be considered as
a six-quark system, bound together by color QCD forces like, say,
a quark bag?

To anticipate a little, note that the analysis of this question leads
to the concept “hidden color”, a notion which plays a significant
role in the physical interpretation of exotic multiquark systems (di-
baryons, tribaryons, tetrabaryons, etc.) and in the description of the
short-range features of nuclear matter.

Suppose we discuss the properties of a six-quark system as having
deuteron quantum numbers and described by the quark bag model.
All six quarks are assumed to belong to a ground state with the ener-
gy E, (j® = 1/2*) = 2.04/R (m, ~ 0) in a static, spherically sym-
metric cavity of radius R.

The structure of multiquark system’s wave function is defined
by the following basic principles:

(1) the Paali principle,

i.e. a complete antisymmetrization of all quark wvariables in-
cluding spin, isospin, and color;

(2) the zero color request,

- which by virtue of an assumed colorlessness of a multiquark system
allows only singlet group representations of the colored SU<¢(3)-
symmetry.

For a system of six quarks all of which are at the same energy level,
these requirements lead to a wave function which can be written in

9 An analysis of cumulative particle 11311'()dl!.c1;i()11 processes in nuclear
collisions at relativistic energies agrees with these conclusions [84].
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a symbolic form as

spin—
colour  isospin
114 -
st AL e 1/2183
w(ﬁq)_wo_(l ZP”) gg *[4]s]e] ’ (3.159)
i=1,2,3

j =458

where the P;; are the permutation operators of the spin (S), isospin
(I), and color quark indices. Moreover, the color and spin-isospin
parts of the wave function (SUSI(4)-symmetry) are denoted by the
appropriate Young schemes.

Thus, the six-quark system described by the static, spherically
symmetric quark bag model has a wave function which corresponds
to the 50 component representation of the spin-isospin group of the
SUSL (4)-symmetry (the quark analogue of the Wigner symmetry
group in nuclear spectroscopy).

The reduction

SUST (&) — SU® (2) x SU* (2) (3.160)
splits the 50-plet into a sum of (2J 4 1, 27 4 1) type terms, i.e.

50=@3, 1)+ 1, 3)+ 5, 3)+@3 5+ (7, 1)

=+ 15 2) (3.161)

The first of these has the quantum numbers of deuteron, the second
one, of the virtual 1S state, etc.

In connection with the aforementioned experimental indications
of deuteron’s hard six-quark structure it is natural to ask, “can the
six-quark system which has the wave function corresponding to the
first term in expression (3.161) be identified with real deuteron?”
To answer the question, we must analyze the baryon composition of
the six-quark system under consideration. This concerns the relative
weights of the various configurations obtained by dividing the ini-
tial six-quark system into two subsystems with three quarks each, i.e.

[6g],_,—[3ql,_,+[3q]p_,- (3.162)

In this way we come inevitably across the notion of “hidden color”,
i.e. the presence in the decomposition of the six-quark system (3.162)
of components in which individual three-quark subsystems have
nonzero color (colored baryons B.) [86].

Taking, as a concrete example, a six-quark state having deuteron’s
quantum numbers, we find the following for the relative weights of
the various dibaryon configurations:

Dog— PN (1/9); AA (4/45); BB (4/5). (3.163)
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Such a large value for,the admixture of the hidden color configu-
ration (80 %) for the six-quark system, as described by the quark bag
model, does not enable it to be identified with real deuteron.

3.6.4 Hidden Color in Nuclear Matter

To reconcile the results of the experiments that measure
deuteron’s form factor with the large weight of the hidden color
component in a six-quark bag, it has to be assumed that real deute-
ron, which is mainly a weakly bound proton-neutron system, has
only low, but finite, probability of going over into the six-quark
state as described by the quark bag model. Qualitatively, this can
be expressed by the simple formula

|Dy=a| PN)Weam sound 12169} 1(3.164)

system

where |a 24+ |0 |2 =1,

The admixture of the six-quark component in deuteron can be
determined from the experimental data on deuteron’s electromagne-
tic form factor at high momenta transfer. These yield [85] o =
= | b |> >~ 7-10-%, Using this value as well as the weights of va-
rious components in the six-quark bag with deuteron’s quantum num-
bers, we can readily find an estimate of the exotic admixtures in a
real deuteron, namely

AA-component ~ 0.6%, (3.165)
“hidden color” ~ 5.6%.

This estimate obviously has a qualitative character and does not
allow for a number of important details, such as the presence of D-
waves, the weak non-orthogonality of two vectors of state in formu-
la (3.164), etc.

In any case we conclude that the ordinary, orthodox theory of
nuclear matter, which does not allow for the color of fundamental
constituents, quarks and gluons, is incomplete.

The search for the experimentally observed consequences of hid-
den nuclear color is one of the most important problems of relati-
vistic nuclear physics.

One feasible way of research could be to study deuteron electro-
disintegration at high energy and momenta transfer. This produces
two baryons or hadron jets which are emitted at large angles and
have the quantum numbers of the colored three-quark systems con-
tained in the deuteron. Starting from an assumption about the small-
ness of the ranges corresponding to the dynamic mechanism of the
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processes under consideration, we must expect the following relation
etween the various reaction channels.

do (y*D— PN): do (y*D— AA) : do (y* D— BeBs) =5:4: 36,
(3.166)

We refer the reader for details to the original papers and now only
show that the differential cross section of the deuteron electro-dis-
integration in exclusive channels behaves in the following manner
in the high momentum transfer (Q) range, if allowance is made for
QCD corrections:

da og (Q2) Y 11 <y
o~ () og )™, (3.167)

where

v = ZEE (|hp) + [hm | + [my])

is the anomalous dimension (kp, and % g, are the helicities of the deu-

teron and final baryons). The rate of the exponential fall-off in cross
section (3.167) as momentum transfer increases agrees with the quark
counting rules and consists of the canonical exponent which is equal

to two plus 2 (7 —1).

i=D.B1 B,

The search for hidden color in nuclei is difficult both because of
the smallness of the relevant effects and because it is not possible
directly to observe the hidden color. The discovery of more explicit
manifestations of quark color and QCD fields in nuclei would,
therefore, be of great importance. We would like to indicate in this
connection the interesting possibility that highly excited states of
nuclear matter might exist and which could be mainly pure hidden
color excitations [29].

The analysis performed on this shows that at excitation energies
of the order of AE ~ 0.5 GeV, the state widths are controlled by
the hidden color “discharge” via a single-gluon exchange and com-
prise the values T'g << 10 MeV, thus making them accessible for
observation. g

3.6.5 Quantum Theory of Nuclear Forces

When discussing the role of quark degrees of freedom in
the description of purely nuclear interactions, it would be quite nat-
ural to ask whether it is possible to understand the principal features
of nuclear forces from a knowledge of fundamental QCD interactions.
Is it possible, in particular, to determine the nuclear parameters and
hadron-hadron interaction constants such as, say, the pion-nucleon
coupling constant, in terms of the principal QCD constants?
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As we have shown above, the quark model provides a natural ex-
planation of a short-range repulsive core of forces acting between two
nucleons. As is indicated in a number of texts, quark exchange bet-
ween different nucleons is one source of exotic nuclear components
and, in addition, it leads to the occurrence of multi-nucleon forces
in nuclear matter.

Below we shall give some of the arguments as to how QCD could
explain the long-range components of nuclear forces. This is gene-
rally done in a phenomenological manner as an exchange of “white”
(i.e: colorless) particles, i.e. pions, vector mesons, etc. This is a dif-
ficult problem, inasmuch as at long ranges we come across the strong
coupling and confinement phenomena.

To simplify the issue, we shall try to answer a simple question,
“do two quark bags interact at interbag separation distances exceeding
two bag radii?” Obviously this should be understood in a positive
way, since it is difficult to imagine a quantum object as having a
rigidly fixed boundary. Indeed, the quantum fluctuations of a quark
bag’s surface over time will result in the formation of the interbag
joins (where the color fields are non-vanishing) which would permit
quarks to tunnel from one quark bag to another. The tunnelling pro-
bability has an exponentially low value at large relative separations,
R, between the bag centers, namely, ~exp (—uR) when R > 2a
(a is the bag radius), this corresponding to the Yukawa interaction
fall-off law.

As is shown in (29], the evolution of a system of two quark bags
separated by the distance R (R > 2a) is described by the amplitude:

(R|¢™T| Ry = | a0 dip dpdAe’ ¥ 41,

o is fixed

(3.168)

Here o is the three-dimensional hypersurface in space-time that
confines the domains with non-zero functions of the colored quark-
gluon fields. Over large evolution times, 7, amplitude (3.168) has
an asymptote at ~exp [—iTU (R)], where U (R) is the interaction
static potential of the bags. The amplitude of a single tunnelling
act of a quark pair from different bags through the joint under the po-
tential barrier AE >= 1/t (7 being the fluctuation time or joint thick-
ness) is proportional to the product 7-U (R). According to the qua-
siclassical nature of the tunnelling, this amplitude is exponentially
small, namely,

U(R)~exp[—8,(R)], (3.169)

where S o.(R) is governed by the action integral taken over the re-

gion of joint and minimized over its thickness at a large and fixed R.
As can be shown [29]

Sy (R) > pR as R — oo, (3.170)
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where p is defined by the energy spectrum minimum of the quark-
antiqugrk system, i.e. p = mg. The result is nothing but the I?ng-
range part of the Yukawa interaction which can thus be explained
by fundamentals QCD.

3.7 BROKEN COLOR SYMMETRY
AND INTEGRAL-CHARGED QUARKS

The Problem of Quark Charges

Even the first work on the three-triplet model havg shown
that colored quarks could possess both the fractional and integral
ic and baryon charges.
el%:f::cassumptioﬁl of an exact color symmetry and the non-obhser-
vability of color is compatible only with f::actlonal charges. I'-Iowe-f
ver, owing to quark confinement, the stralghﬁorward detection o
the electric charge of individual quarks is a major problem.

Charge is known to play a double role in quantum electrodyna-
mics. On one hand, it is an integral of motion, whose values govern
the states of observed particles, and on the other, it is !:he interaction
constant which is renormalized due to vacuum Polgmzatlon effects.
It is perhaps possible to speak of quark charges Wn_;hm the framework
of QCD as only effective constants that characterize the electromag-
netic quark interaction at sufficiently small separation distances.
. Therefore, the values of the electric charge on quarks can be estab-
lished by comparison with the electric charges on leptons at the same

aration distances. .
Selin the case of integrally-charged quarks, color symmetry is not
as yet being broken (either locally or globally) at least in electni-
magnetic interactions. Indeed, in models_ which have mtegcrg -
charged quarks the electromagnetic current is the sum of the SU*(3)-
group singlet and octet terms, i.e.

3.7.1

TR =T ()T (8). (3.171)
So, in the three-triplet model, i.e.

U= (ul’ u2’ u’3)5

d = (dy, dy, dy), (3.172)

§ = (S1, Sz Ss)
integral quark charges,

Q.= (1, 1, 0); Qz = Q, = (0, 0, —1), (3.173)
are chosen according to the formula

(3.174)

Qq = Qomz + Yo
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Here Qguz is the standard fractional charge in the Gell-Mann-Zweig
model, and

1
Yo=—
is one of the generators (the 8th component) of the color group.
Generally, we have in integral charged quark model

Qq = Qc¢mz + Qc; Q¢ = 7 s 250 (:3'176)

where 7' is an array of the eight generators of the SU(3)-group in
the basic representation. It follows from the hermiticity condition
of electric charge, i.e. Qf = Qc, that if an appropriate selection of
the representation basis is made, the color part of the charge Q. can
be reduced to the diagonal form viz.

. b b 2
Qc:aTs‘i'b‘“V—gfs:(a‘}“j, —a+—§, "‘T)

Ag=(1/3, 1/3, —2/3) (3.175)

(3.177)

The requirement that the charges be integral leads to 2¢ and (a + b)
being integers. Quark charges do not exceed unity at @ = 0 or b = 1
and this corresponding to selection (3.175). The same is valid when
a = b = —1/2. The last case, however, also converts into (3.175)
when the first and third colored quarks are permutated.

It should be stressed that according to the Gell-Mann-Nishijima

formula integral-charged quarks must be correlated with integral
baryon charges, i.e.

1
Qq:Ts'}‘?Bq; Bq—”_‘—(is 1, —1)

The dependence of quark charges on their color state obviously
leads to a breakdown of global color symmetry in electromagnetic
interactions. This is exhibited, for example, in the mass-splitting
of colored quark triplets, etc. However, as has been demonstrated
in the works cited, hadron neutrality relative to the color (i.e.
matching the observed mesons and baryons with singlet color wave
functions), guarantees the disappearance of any manifestation of the
aforementioned breakdown of global color symmetry for all observed
hadron characteristics (charge, magnetic moment, form factor, etc.).

However, the following two important items must be emphasized.
First, it appears to be possible in electromagnetic interactions to
excite particle states with a nonzero color, having an energy which
is assumed to be fairly high, much higher compared to the mass
spectrum of the observed mesons and baryons. Secondly, the inte-
gral nature of quark’s electric and baryon charges makes it possible
for them to transform into leptons and other observable particles.
We would eventually draw some conclusion about the instability
of quarks which could explain the negative results in the search for

18—0630

(3.178)
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them both in the environment and in accelerator experiments. Ip
this way, as Pati and Salam have demonstrated [89], quark instability
would not contradict nucleons’ high stability or the extreme suppres-
sion of the observed effects of haryon charge non-conservation.’
In allowing for the QCD quark interaction described by non-Abe-
lian gauge theory, the introduction of integral-charged quarks poses
a new problem. The straightforward selection of a quark’s electro-
magnetic current in the form of (3.171) would bring about a break-
down of the local gauge SU* (3)-symmetry and, as a consequence, an
inability to normalize the theory. The problem is removed once
spontaneously broken color SU*® (3)-symmetry is considered. Thig
requires new degrees of freedom to be introduced into the theory,
e.g., Higgs color scalar fields.

3.7.2 Spontaneously Broken Color Symmetry
The simplest model of strong and electromagnetic inte-
ractions with the spontaneously broken color symmetry and integral-
charged quarks is the gauge model based on the SU® (3) X U(1)-
group with the scalar triplet ¢,.

The Lagrangian of the model has the following form [31]:

1 1 a
L= — i (F&V)z“T(Fuv)2+ Lqg

+q (0 +—1%l“ﬁ“+g’YqAA°~mq) q

+1(i0+ gY, 2—m)l, (3.179)
where

Flv=0,4y—0,45; A°=y,AS; (3.180)

Fine= 0,45 — 0,45, + gf*" AL A%, Av =y, A2, '
and L, is the Lagrangian of the Higgs scalar field:

. & a AC " 2
Lo :’ (u—1 Ty M —ig Yodp) o
—h (¢*q)* — m2pq. (3.184)

If tl_le S[_f“ (3) X U (1)-symmetry is not broken, the A} field has
to be identified with a photon and so the electromagnetic properties
of leptons and hadrons result in the following choice of hypercharges:

Yi=Yu=—1;, Y,=2/3; Y;=Y,=—1/3.
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When m? << 0, the symmetry is spontaneously broken, the nonzero
vacuum averages of the ¢, fields being chosen in the form

(@q) (0, 0, v/ 2),

where v equals (—m?/n) ¥/? in the tree approximation.

To match this choice, the new vacuum must be invariant with
respect to the SU’ (2) X U’ (1)-group that is composed of elements
like

(3.182)

g=-expi{A%0®+ (A +2/V3) o}, (3.183)
a=4, & 3.

As a result of a spontaneously broken symmetry, the vector bosons,

4% :%(Agi i4,), A% ==«‘—}E(A6 +id;),  (3.184a)
e A8 A0 g 3y
U= A%cosB—AsinB, tanf= p ( > ),
and the scalar field,
1 - =
L. = ' 3.184b
V2 (CP3+'133 VZU) ( )
gain mass, viz.
m§5:m§7:g202/3, mi::2|m2]:2hv2
o ho? 37 \2 (3.185)
iR R )
The vector field,
A = Acos B + A8 sin 0, (3.186)

is the only one massless field to be associated with leptons. For this
reason vector field (3.186) must be identified with a photon.

It can be easily derived that the electric charges on quarks and
leptons in the case of a spontaneously broken symmetry are equal to

L] ), (3.187)

Qe:Qu:e; Qq:e(yq+yc( 2q)
where e = g’ cos 0.

If we choose Y, = 2/3, then all the particles in the theory will
have integral charges.

The theory under consideration differs from standard QED in
two ways. First, additional scalar degrees of freedom have been in-
troduced which are necessary to break the color symmetry. Second,
as a result of the spontaneous breakdown, the lepton symmetries
acquire an additional short-range interaction (the U-boson exchange),

18% .
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and photons become “colored”, i.e. they interact in different ways
with quarks of different colors.

The Lagrangian mass of the U-boson, my, can be chosen as the
characteristic scale of the symmetry breakdown. It is known that
at momentum transfers when Q%> m} the initial SU°(3) x U(1)-
symmetry is reestablished and the effective quark charge becomes
integral. In the hlgh momentum transfer range the theory differs
from QCD only in the occurrence of scalar particles.

The choice of the parameter my has been investigated in [31, 53],
where the limit my < 1 GeV was established by analyzing the sum
rules for the annihilation of e*e~-pairs into hadrons [49], and by
studying the radiative decays of heavy meson resonances and the
corrections to the anomalous magnetic moments of muons.

Thus, a model with a spontaneously broken color symmetry and
integral-charged quarks does not contradict the available experi-
mental data provided the symmetry breakdown originates at values
of momenta beyond the asymptotic freedom range or at distances com-
parable to the QCD confinement radius.

Lepton electrodynamics simply indicates that the scale of symmetry
breakdown cannot be too large. Actually, when my == 1 GeV, a
weal coupling mode will act over all distances in strong interactions
since the strong interaction constant a, is “frozen” at the energies
lower than a U-boson’s mass, i.e. [51]

as (Q%) o o, (mp) < 1,
Q* < my.

Thus, the U-boson must be observed (with a mass close to the
Lagrangian mass) as a resonance in the e*e™ — p*p-annihila-
tion and having an electronic width

r my =70 keV (3.188)

s 9ot (m 2
when

my =1 GeV, a, (n}) ~ 0.3.

The results of an experimental search of the resonances in the
e*e -annihilation at the current energies exclude this possibility.
In addition, the assumption that my values could exceed a few GeV
contradicts the achievements of the SU* (3)-symmetry in classifying
hadrons.

The occurrence of scalar charged fields in the models considered
brings additional contributions to the asymptote of the total cross
section of the annihilation of e*e~-pairs into hadrons, viz.

o (ete~ —> hadrons) ¢ ac
R= o (ete~ —> p,"’lu,—) g Rg + Rs 1

(3.189)
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where
Ry =\Y3=2 (for u-, d-, and s-quarks), (3.190a)
q
and
. (for a scalar triplet). (3.190D)

It is important to emphasize that Vs> my is an insufficient con-
dition for formulas (3.189) and (3.190) to be applied to the descrip-
tion of experimental data, i.e. it is necessary to require the corrections
to be small including both the perturbational (logarithmic) and
non-perturhational (exponential) corrections to the leading asymp-
tote of the annihilation cross section.

The allowance made for two-loop and three-loop corrections in

the MS renormalization scheme in the model which has a triplet of
scalar fields (Y, = 2/3) [87] yields

- S vi{1 +%.-;_1.47 (%)2%4 o N
q

Rf“:%{i—if ”‘is 4 36.6 (%)’ZJr -

(3.191a)

(3.191b)

Here the effective quark-gluon coupling constant e is defined in the
following way:
as 1

= 3.192
ﬂ blns/AiTS’ (09

where

b:%(m_%m—%m),

and /V; and IV, are the numbers of quark and scalar triplets respective-
ly.

In a rigorous sense, the value of the fundamental scale A in models
with integral charged quarks differs from the relevant value in stand-
ard QCD owing to the additional scalar degrees of freedom. Choos-
ing Agg =100 to 200 MeV as a reference point, which follows for
example from deep inelastic lepton-nucleon scattering, we find that
the contribution of the perturbational correction to the annihila-
tion cross section within a scalar sector is significant at least in the
energy range Vs < 10 GeV.

This shows, perhaps, that there is a production threshold of the
physical hadronic states that incorporate color scalar fields their
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structure and it lies at higher energies. We shall demonstrate below
that a theoretical estimate of the mass scale of hadrons (i.e. hadrons
having one or more quarks substituted by color scalars) agrees with
this conclusion. : :

3.7.3 Sealar Quarks and New Hadrons

The above analysis of spontaneously broken color sym-’

metry was based on an introduction of fundamental color scalars.
One major implication of such models is that a new hadron family
made up from quarks and colored scalars strongly bound by QCD
forces could exist. The experimental observation of states like this
would be commensurable with the discovery of a new flavor, namely,
scalar quarks.

As was shown above, all the available experimental data does not
preclude the possibility that color symmetry could break down spon-
taneously, provided the scale of the breakdown in terms of mass is
sufficiently small, e.g.

(o) =v <1 GeV.

Thus, scalar quarks in models with the spontaneously broken color
symmetry should have small mass.

At first sight, low-mass colored scalars, or scalar quarks, should
result in new hadrons that have masses of the order of the scale char-
acteristic of low-energy hadron physics (~1 GeV). This, however,
contradicts experiment.

Below we will show that thanks both to the large perturbational
corrections in QCD with scalar quarks and to the nonperturbational
effects due to a possible scalar condensate, i.e.

(s re) >~ — (1 GeV)e, (3.193)

the mass of a new hadron would be of the order of several tens of
a GeV. Thus, the new hadrons could, in principle, be discovered and
investigated at accelerators like PETRA, LEP, SPS, and UNK in
colliding beams experiments.

A hadron’s properties are substantially governed by the structure
of the vacuum state. Introducing low-mass scalar quarks into CQD
changes the vacuum structure, since in addition to the well-known
quark and gluon condensates [50] viz.

(q9) >~ —(0.25 GeV)s, q=u, d,
(sGauvGy) 22+ (0.5 GeV)s,

it emerges that there is a scalar condensate (p*g).

The value of (p*@) cannot be determined at the present time
in a purely theoretical way. It is, like the quark and gluon field con-
densates, a phenomenological parameter. We do have, from dimen-

(3.194)
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sional considerations, that {(p*¢@) = ¢A? where A is the fundamental
scale (the inverse confinement radius) of QCD.

However, QCD coupling is known to be substantially different
for different channels and is characterized (depending on the chan-
nels’ quantum numbers) by different effective scales A (o).

The computation of the three-loop corrections to the total cross
section of the annihilation of e*e~-pairs into hadrons with funda-
mental scalar triplets shows that the effective scale in the production
channel for the ¢*¢~-pairs is about an order of magnitude larger than
the corresponding scale in the quark-antiquark channel, i.e. A (p*¢) ~

~ 9A (gg) in the MS renormalization scheme. This plays a signifi-
cant role in the subsequent discussion!®. The mass of a bound state
of a colored scalar is defined by the average (p*¢) in the same way
as the mass of a meson made up from quarks and antiquarks is de-
fined mainly by the quark condensate.

Further we shall consider the bound states of the scalar and normal
quarks to have the quantum numbers of the following local currents:

ps:(P+Vu(P?
. 8 4q 40 , s 2 0
Vae=0u— i a0di—ig' 2 4L, (3.195)
Mg = a;l/B (CP+(P)1
T’ (9*g),

where b = 3: (11 - %Nf — %Ns). The quantities o'/, a'/?* provide

the renorm-invariance of the two-point Green functions that cor-
respond to the currents ;i and 4, in the main logarithmic approxi-
mation.

The current and a corresponding particle p, which we call the vec-
tor phionium, have quantum numbers J?¢ = 1--. Like the p-meson,
the p-particle may be produced in e*e~ collisions and will manifest
itself as a resonance.

The quantum numbers of the scalar phionium m, are JPC = (++,
The bound state of normal and scalar quarks 7., has spin 1/2 and
can be called the “white” quark. The electric charges of p, and m, are
equal to zero and the charge on the y, depends on the flavor of the
corresponding quark, for example, @+, = 0, Qu+q = —1, etc.

The properties of the bound states of the scalar quarks (3.195)
can be studied using QCD’s sum rules taking into account the non-
perturbational effects.

10 We should point out in this connection, what was mentioned above
(see Sec. 3.3.2) when we discussed the annihilation model of meson decays con-
cerning the dependence of the effective radius of the mesons’ quark-antiquark
systems on their quantum numbers [35, 36].
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Using the well-known techniques of operator expansion and QCD’s
sum rules [49, 50] we present the basic relations:

[ o]

; Sds e=*/M'R, (s) :%{14—%“3 (1, A (p2)
0

MZ
ey (M, Ay ()1 HO (UMY, (3.496a)
i § dsem e By (9= 1, 012, A, ()"

0
+ 32 o, (M2, A (w1 + O (415, (3.196b)
A [ aser o Ry, =10, 1%, A, (e

0

1 32m2 100

= (1+Eas) St 00 (1/M), (3.196¢)

where
MB
o= (@ Pp*q), o, (M2 A)=n/bln S

The quantities Ry, (s), Ra, (s), and Ry, (s) are positive deﬁn'ite spec-
tral densities related to the two-point Green functions which have
_ the corresponding currents pg, g, and ¥, e.g.

i | 017 L@ ol ()]0 eto= dia

= (gugv— 7%8uv) Ro, (%), (3.197)

etc.
The scale parameters A;, which are computed allowing for the per-
turbational corrections, are equal to

Ap(ps) 22 8V Ag(ps) 22 2.7 VA5

MSs
Ay (71,) = 3.29A —

198
T v==1.33 (319

(y being the Euler constant), respectively.

The sum rules for the new hadrons differ qualitatively from the
similar quarkonium relations by the contribution of the non-pertur-
bational effects arising here from the terms which are of the order of
1/M?, rather than of 1/M*. This fact has a simple explanation and is
associated with the dimensions of the fields since dim (¢p*¢) = 2,
i.e. the term with the lowest dimension in the sum rules is proportion-

alto (@*@)/M? for the scalar field. For the fermion fields, dim (qq) =
= 3 and the expansion starts from the m,{gg)/M* and (G}, )/M*

o

IR ST R N I ———
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term. It is this difference which leads to the significantly larger mass
of the new hadrons (the phioniums) as compared with the masses
of quarkoniums.

An analysis of the sum rules (3.196) leads to the following esti-
mates for the mass of a phionium:

mpy 2 (45 & 5) (—oa)¥2,
(3.199)

.1 5
mns —_— mxs St 7’3- mps,

where the quantity ¢ varies within the limits
(0.5 GeV)2 << |o | << (2 GeV)

Unfortunately, a numerical value for the scalar potential cannot
be extracted from the experimental data available, since it does not
significantly influence the parameters of the known resonances of
quarks. Assuming, for example, that the value for the scalar conden-
sate is related to the phionium scale (A, (p,) ~ 9yAxs) in the same
way as the quark condensate value is related to the quarkonium scale
(Aq (p) 2~ 1.4yAxm), we can obtain the following for Ags ~ 100 MéV:
1/2

— (@381 | 1 5 Gev.

(97e) A (p) T

(3.200)

Thus, the mass characteristic of the new hadrons is significantly
larger than that of hadrons constructed from low-mass quarks and
can be up to some tens of a GeV.

In a rigorous sense, a small value for the scalar condensate, say,
(—0)/* ~ 0.5 GeV, cannot presently be excluded by the theory.
In this case the new particles would have been observed in the exper-
iments in the accelerators now in operation. Note that the experi-
mental search for long-lived (v > 10-1% sec) particles in the e*e--
annihilation processes [88] yields a limit for the “white” quark mass,
namely,

‘mys =12 GeV.

In the model under consideration the lightest y-particles must be
absolutely stable by virtue of baryonic number conservation. When
S§U¢(3) X U(1)-theory is embedded into grand unification models,
the stability property of the lightest “white” quarks vanishes. In theo-
ries with “late” unification (such as SU(5), SO(10)), the lifetime 7
of ys-particles is about 10% years, and in theories with small unifi-
cation scales (for example, SU%(4), SU%(8), etc., [89, 90]) it is about
10-8-1076 sec. - '

As has been noted above, colored scalar particles with small La-

grangian masses occur naturally in theories which permit weakly
broken color symmetry. It

190680
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A question arises as to how color breakdown influences the proper-
ties of the new hadrons, if they do in fact exist.

In this case the vacuum average (p*%p, ), in addition to a contri-
bution from the color symmetry’s scalar condensate, which has a nega-
tive sign (as was shown above), contains a positive addend due to the
color breakdown, namely,

a 1 a 7 oy | 1 1 IR
{p* (‘Pb):—B‘ﬁb(fP* (P)-I-"Z-U Uh,

2 el o (3.200)
Qo = Qa+ l/-E Vg (@a)—ﬁ'va#o.

Obviously, the properties of the new hadrons in theories with spon-
taneously broken and those with exact color symmetries are practi-
cally coincident when v? < ({@*¢)).

Yet the so-called U-boson, which occurs in the model and which
together with the y-quantum diagonalizes the mass matrix of the
vector particles, is perhaps unobservable, i.e. is not a physical state
when there is a weak color breakdown.

The experimental implications of theories with the spontaneously
broken color symmetry are discussed in more detail in [53], to which
we refer the reader. : '
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