ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

На правах рукописи

Голованов Георгий Анатольевич

# МНОГОПАРТОННЫЕ ВЗАИМОДЕЙСТВИЯ В ПРОТОН-АНТИПРОТОННЫХ СТОЛКНОВЕНИЯХ В ЭКСПЕРИМЕНТЕ D0 НА КОЛЛАЙДЕРЕ ТЭВАТРОН

Специальность 01.04.16— «Физика атомного ядра и элементарных частиц»

Автореферат

диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в Лаборатории ядерных проблем им. В.П. Джелепова Объединенного института ядерных исследований.

| Научный руководитель:  | доктор физико-математических наук, профессор, начальник сектора ЛЯП ОИЯИ                                                                                                                                                                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Скачков Николай Борисович                                                                                                                                                                                                                                                                                  |
| Официальные оппоненты: | Мочалов Василий Вадимович,<br>доктор физико-математических наук, ведущий науч-<br>ный сотрудник Отдела экспериментальной физики<br>Федерального государственного бюджетного учре-<br>ждения «Государственный научный центр Россий-<br>ской Федерации – Институт физики высоких энер-<br>гий» (г. Протвино) |
|                        | Катаев Андрей Львович,                                                                                                                                                                                                                                                                                     |
|                        | доктор физико-математических наук, ведущий науч-<br>ный сотрудник Отдела теоретической физики Феде-<br>рального государственного бюджетного учреждения<br>науки Институт ядерных исследований Российской<br>академии наук (г. Москва)                                                                      |
| Ведущая организация:   | Федеральное государственное бюджетное образова-<br>тельное учреждение высшего образования «Сара-<br>товский национальный исследовательский государ-<br>ственный университет имени Н.Г. Чернышевского»                                                                                                      |

Защита состоится "\_\_\_\_" \_\_\_\_ 2016 г. на заседании диссертационного совета Д 720.001.03 на базе ОИЯИ по адресу: 141980, Дубна, ОИЯИ, Лаборатория ядерных проблем им. В.П. Джелепова, корп. 1, конференц-зал.

С диссертацией можно ознакомиться в библиотеке ОИЯИ и на сайте http://wwwinfo.jinr.ru/announce\_disser.htm

Автореферат разослан "\_\_\_\_" \_\_\_\_ 2016 г.

Ученый секретарь диссертационного совета Д 720.001.03

Карамышева Г.А.

### Общая характеристика работы

#### Актуальность темы

Согласно партонной модели, протон представляется как связанное состояние трех фермионов с дробным электрическим зарядом (кварков), которые несут SU(3) цветовой заряд и взаимодействуют посредством обмена глюонами. Квантовая хромодинамика (КХД) – калибровочная теория, описывающая сильные взаимодейстивия между кварками и глюонами, является точным инструментом в описании множества характеристик процессов с участием адронов.

Партонная модель КХД описывает экспериментальные результаты, сводя взаимодействие пары адронов (нуклонов) к взаимодействию пары отдельных партонов внутри них. При таком механизме другие кварки внутри нуклона (спектаторы) не участвуют во взаимодействии. Однако, существует вероятность такого нуклон-нуклонного столкновения, при котором конечное состояние образовано не одной, а двумя и более парами взаимодействующих партонов, т.е. процессами с *многопартонными взаимодействиями*.

Сечение процессов с многопартонными взаимодействиями зависит от пространственного распределения партонов внутри нуклона. Если партоны распределены в нуклоне равномерно, то сечение процессов с многопартонными взаимодействиями будет низким, в то время как его значение возрастает с большей концентрацией партонной плотности. Таким образом, изучение подобных процессов несет новую и важную информацию о внутренней структуре нуклонов.

Структура адронов может быть описана с использованием КХД, однако используемые теорией уравнения являются непертурбативными, что делает затруднительным их решение стандартными методами. Несмотря на прогресс в описании структуры адронов с использованием компьютерного моделирования, на сегодняшний день, основными являются феноменологические модели, основанные на экспериментальных данных. Это делает актуальным измерение величин, таких как доля событий с многопартонными взаимодействиями  $(f_{DP})$  и эффективное сечение ( $\sigma_{eff}$ ) – процесс-независимый параметр, непосредственно связанный с пространственной плотностью партонов в адронах.

Помимо информации о внутренней структуре адронов, многопартонные взаимодействия также представляют интерес для лучшего понимания динамики КХД. В частности, механизм фрагментации партонов в адронные струи также является непертурбативным и основан на феноменологических моделях, требующих настройки параметров, извлекаемых из эксперимента. Это делает актуальным изучение многопартонных процессов с образованием адронных струй в конечном состоянии.

Процессы с многопартонными взаимодействиями также могут быть источником фона к некоторым редким процессам. В таких случаях, одно из партон-партонных взаимодействий способно породить пару адронных струй, мимикрируя при этом под пару струй сигнального события. Например,  $2 \rightarrow 2$  процесс ассоциативного рождения  $q\bar{q} \rightarrow HW$ , с последующими распадами  $H \rightarrow b\bar{b}$  и  $W \rightarrow l\nu$ , будет иметь такое же конечное состояние как и два  $2 \rightarrow 2$  процесса  $q\bar{q} \rightarrow b\bar{b}$  и  $q\bar{q} \rightarrow W$ , произошедших в одном  $p\bar{p}$  взаимодействии посредством взаимодействия двух пар партонов. Точная оценка уровня фона, обусловленного этими процессами, имеет большое значение в современной физике элементарных частиц, а физические наблюдаемые, чувствительные к кинематике процессов с многопартонными взаимодействиями, позволяют существенно подавить фон, повышая при этом эффективность поиска редких процессов.

#### Цели и задачи диссертационной работы

Основной целью диссертационной работы является исследование свойств процессов с многопартонными взаимодействиями в  $p\bar{p}$  столкновениях при энергии  $\sqrt{s} = 1.96$  ТэВ на экспериментальных данных установки D0. Более детально в работе преследуются следующие цели:

- Измерение доли двухпартонных взаимодействий в процессе  $p\bar{p} \rightarrow \gamma + 3 \ jets.$
- Измерение эффективного сечения двухпартонных взаимодействий

   *σ*<sub>eff</sub> процесс-независимого параметра, связанного с пространственным распределением партонов внутри протона (антипротона).
- Оценка фона, вызванного событиями с многопартонными взаимодействиями, в процессах ассоциативного рождения W-бозона и бозона Хиггса (pp̄ → WH) при энергии Тэватрона.

Согласно поставленным целям, сформулированы и решены следующие задачи:

- Обработаны экспериментальные данные протон-антипротонных столкновений, набранных в эксперименте D0 на Тэватроне в ходе сеанса RunIIa в объеме, соответствующему интегральной светимости 1.1 фб<sup>-1</sup>.
- Создано программное обеспечение для анализа данных установки D0, с помощью которого выделены события ассоциативного рождения прямого фотона и адронной струи pp̄ → γ + jet + X. Оптимизированы критерии, обеспечивающие высокую эффективность отбора фотонных кандидатов и адронных струй.
- Изучены кинематические особенности процессов  $p\bar{p} \rightarrow \gamma + jet + X$ и свойства фотонных кандидатов и адронных струй.
- События, отобранные для анализа, содержащие фотон с поперечным импульсом от 30 до 300 ГэВ и адронную струю с поперечным импульсом от 15 ГэВ, использовались для измерения тройного дифференциального сечения процесса pp̄ → γ + jet + X.
- Исследована зависимость сечения от поперечого импульса фотона в различных областях по быстротам фотона и струи, и произведено сравнение с теоретическими предсказаниями в следующем за лидирующим порядке КХД.
- В имеющейся выборке обработанных экспериментальных данных, отобраны события с однократными  $p\bar{p}$  столкновениями и конечным состоянием  $p\bar{p} \rightarrow \gamma + 3 \ jet + X$ .
- Создан комплекс программного обеспечения для моделирования сигнальных событий с многопартонными взаимодействиями на основе экспериментальных данных установки D0.
- Отобранные для анализа события, содержащие фотон с поперечным испульсом  $60 < p_T^{\gamma} < 80$  ГэВ, лидирующую струю с  $p_T^{jet1} > 25$  ГэВ и две дополнительные струи с  $p_T^{jet2,3} > 15$  ГэВ, использованы для определения доли событий с двухпартонными взаимодействиями, а также для измерения эффективного сечения  $\sigma_{eff}$  в трех интервалах поперечного импульса следующей за лидирущей струи, покрывающих область  $15 < p_T^{jet2} < 30$  ГэВ.
- Произведена оценка фона, обусловленного событиями с многопартонными взаимодействиями, для процесса  $p\bar{p} \rightarrow WH$ , для чего

смоделирована необходимая для анализа статистика сигнальных и фоновых двухпартонных сообытий, а также предложен набор переменных, чувствительных к кинематике многопартонных взаимодействий, которые способны существенно улучшить выделение сигнала над фоном.

#### Основные положения, выносимые на защиту:

- 1. Результаты измерения доли событий с двухпартонными взаимодействиями в протон-антипротонных столкновениях при энергии  $\sqrt{s} = 1.96$  ТэВ в конечном состоянии  $\gamma + 3 \ jets$  на установке D0 и исследование зависимости от поперечного импульса следующей за лидирующей струи в интервале  $15 < p_T^{jet2} < 30$  ГэВ.
- Результаты измерения эффективного сечения событий с двухпартонными взаимодействиями, связанного с распределением партонной плотности внутри протона при энергии √s = 1.96 ТэВ, и исследование зависимости от поперечного импульса следующей за лидирующей струи в том же интервале.
- Результаты измерения тройного дифференциального сечения процесса pp̄ → γ + jet + X и исследование зависимости сечения от поперечого импульса фотона в различных областях по быстротам фотона и струи.
- Результаты оценки фона, образованного событиями с двухпартонными взаимодействиями, в процессе ассоциативного рождения бозона Хиггса и W-бозона в протон-антипротонных столкновениях при энергии √s = 1.96 ТэВ.
- 5. Предложен набор кинематических переменных, используемых для разделения сигнальных *HW* и фоновых *W* + 2 *jets* событий, образованных посредством механизма двойного партонного взаимо-действия.

**Научная новизна и практическая значимость** заключается в том, что данная работа является первым измерением доли  $(f_{DP})$  и эффективного сечения ( $\sigma_{eff}$ ) событий с двухпартонными взаимодействиями в процессе  $p\bar{p} \rightarrow \gamma + 3 \ jets$  при энергии протон-антипротонных столкновений 1.96 ТэВ в с.ц.м. В отличие от предыдущих работ, имеющаяся статистика позволяет производить измерение в кинематической области с более энергетичными фотонными кандидатами ( $60 < p_T^{\gamma} < 80$  ГэВ), что позволяет подавить вклад фоновых процесов с фотонами, рожденными в результате распадов  $\pi^0$  и  $\eta$  мезонов.

В работе впервые исследована зависимость  $f_{DP}$  и  $\sigma_{eff}$  от поперечного импульса следующей за лидирующей струи в интервале  $15 < p_T^{jet2} < 30$  ГэВ, интерпретируемого как энергетическая шкала второго партонного взаимодействия. Измеренное значение получено на данных эксперимента D0, соответствующих статистике  $1.1 \ \phi 6^{-1}$ , и, с учетом систематических неопределенностей, является наиболее точным по сравнению со всеми предыдущими измерениями параметра  $\sigma_{eff}$ .

В порядке изучения свойств процессов с конечным состоянием "фотон + струя", впервые произведено измерение тройного дифференциального сечения  $d^3\sigma/dp_T^{\gamma}dy^{\gamma}dy^{jet}$  процесса  $p\bar{p} \rightarrow \gamma + jet + X$  в четырех областях быстрот фотона и струи, и произведено сравнение с теоретическими предсказаниями в следующем за лидирующим порядке КХД.

С помощью измеренного значения  $\sigma_{eff}$ , впервые при энергии Тэватрона была произведена оценка фона от событий с двухпартонными взаимодействиями к процессу  $p\bar{p} \rightarrow WH$  с последующим распадом  $H \rightarrow b\bar{b}$ . Предложеный набор переменных, чувствительных к кинематике двухпартонных взаимодействий, позволяет понизить вклад фона и может представлять интерес в задачах поиска редких процессов на LHC и будующих ускорителях.

#### Апробация работы

Результаты работы докладывались автором на совещаниях коллаборация D0; на научных семинарах Fermilab; на XI научной конференции молодых ученых и специалистов ОИЯИ (5 – 9 февраля 2007 г., ОИЯИ, Дубна); на международных конференциях American Physical Society (February 13 – 16 2010, Washington, USA; April 13 – 16 2013, Denver, USA; April 5 – 8 2014, Savannah, USA), Workshop on Multi-Parton Interactions at the LHC (21 – 25 November 2011, Hamburg, Germany), XXII International Baldin Seminar on High Energy Physics Problems (15 – 20 September 2014, Dubna, Russia).

7

<u>Личный вклад</u> автора в проведении исследований и получении представленных в работе результатов является определяющим. Все представленные в работе результаты получены либо самим автором, либо при его непосредственном участии.

#### Публикации

Основные результаты по теме диссертации изложены в 5 печатных изданиях [1–5], 4 из которых изданы в рецензируемых журналах и 1 – в материалах конференций.

#### Структура и объем работы

Диссертация состоит из введения, пяти глав, заключения и четырех приложений. Полный объем диссертации 149 страниц текста с 59 рисунками и 13 таблицами. Список литературы содержит 111 наименование.

### Содержание работы

Во **введении** обосновывается актуальность исследований, проводимых в рамках данной диссертации, формулируются цели и задачи работы, дается общая характеристика работы, включая ее структуру.

**Первая глава** посвящена общим характеристикам процессов жесткого взаимодействия кварков и глюонов, а также теоретическому обоснованию возможности наблюдения процессов с многопартонными взаимодействиями в протон-антипротонных столкновениях и связи сечений отдельных партонных процессов с  $\sigma_{eff}$  – параметром, имеющим размерность сечения и непосредственно измеряемым экспериментально.

В частности, сечение инклюзивного процесса с двухпартонным взаимодействием можно записать:

$$\sigma_{ab} = \frac{\sigma_a \sigma_b}{\sigma_{eff}},\tag{1}$$

где  $\sigma_{ab}$  – сечение одновременного рассеяния процессов типа a и b в протонантипротонном столкновении, каждое из которых отдельно имеет сечения  $\sigma_a$ и  $\sigma_b$ , соответственно. С другой стороны, если обозначить функцию перекрытия двух сталкивающихся нуклонов через  $A(\vec{b})$ , где  $\vec{b}$  – прицельный параметр налетающих нуклонов, то сечение процесса с n рассеяниями типа a можно представить в виде

$$\sigma_{a,n} = \int d^2 b \frac{1}{n!} (\sigma_a A(\vec{b}))^n.$$
<sup>(2)</sup>

Для сечения процесса с одним рассеянием типа *a* и другим типа *b* можно записать:

$$\sigma_{ab} = \int d^2 b(\sigma_a A(\vec{b}))(\sigma_b A(\vec{b})) = \sigma_a \sigma_b \int d^2 b A(\vec{b})^2, \tag{3}$$

откуда вытекает физический смысл  $\sigma_{eff} = [\int d^2 b A(\vec{b})^2]^{-1}$ , как параметра, непосредственно связанного с пространственной областью взаимодействия партонов внутри нуклона. В разделе 1.7 также приводится обзор измерений параметра  $\sigma_{eff}$  в предыдущих и нынешних экспериментах при различных энергиях.

Во **второй главе** описывается коллайдер Тэватрон и экспериментальная установка D0. В разделе 2.1 приводится краткое описание основных ускорительных элементов коллайдера: от формирования протонного и антипротонного пучков до достижения энергии 1.96 ТэВ в с.ц.м при их столкновении. Раздел 2.2 посвящен экспериментальной установке D0 и ее основным детектирующим системам, используемым во время сеанса набора данных Run IIa. Дается описание трековой и мюонной систем, калориметра и устройство триггерной системы для отбора событий в реальном времени.

**Третья глава** посвящена изучению свойств процесса  $p\bar{p} \rightarrow \gamma + jet + X$ . Статистика исследуемых событий соответствует интегральной светимости  $\mathcal{L}_{int} = 1 \ \phi 6^{-1}$ , набранной на установке D0 при энергии  $\sqrt{s} = 1.96 \ \text{ТэB}$ . Отобранные события содержат фотоны с поперечными импульсами в интервале  $30 < p_T^{\gamma} < 400 \ \Gamma$ эВ и быстротами  $|\eta^{\gamma}| < 1.0$ , а также струи с поперечными импульсами в интервале  $30 < p_T^{\gamma} < 400 \ \Gamma$ эВ. Быстроты струй ограничены интервалами  $|\eta^{jet}| < 0.8 \ u \ 1.5 < |\eta^{jet}| < 2.5$ . В разделе 3.1 обсуждаются основные механизмы ассоциативного рождения фотона и струй в протон-антипротонных столкновениях. Подавляющее большинство фотонов со средними и высокими поперечными импульсами являются прямыми фотонами, т. е. рожденными непосредственно из фундаментального партон-партонного взаимодействия нежели из распадов  $\pi^0, \eta, K_s^0$ -мезонов. В лидирующем порядке КХД эти процессы обусловлены вкладом двух основных подпроцессов: "комптоновским" рассеянием  $qg \rightarrow q\gamma$  и аннигиляционным процессом  $q\bar{q} \rightarrow g\gamma$ . Фейнмановские диаграммы, соответствующие этим процессам, приведены на рисунке 1.



Рис. 1 — Диаграммы, соответствующие процессам ассоциативного рождения фотона и струи: (a) "комптоновское" рассеяние  $qg \to q\gamma$  и (b) аннигиляционный процесс  $q\bar{q} \to g\gamma$ .

Изучение процессов "фотон + струя" при различных интервалах быстрот фотона и лидирующей струи позволяет получить детальную информацию о различных областях значений доли переданного импульса x взаимодействующих партонов. В разделе 3.5 описывается методика измерения тройного дифференциального сечения этих процессов. Приводится перечень критериев отбора событий, оценка доли сигнальных событий и эффективности отбора фотонов и струй. Результатом является измерение сечения  $d^3\sigma/dp_T^{\gamma}d\eta^{\gamma}dp_T^{jet}$  в четырех интервалах по быстротам лидирующей струи. На рисунке 2 точками обозначены измеренные сечения, а кривые соответствуют предсказаниям КХД в следующем за лидирующим порядке. Детально исследуются отношения сечений в данных к предсказаниям теории при различных взаимных конфигурациях фотона и струи. Показывается, что на текущий момент теория не способна с высокой степенью точности описать форму зависимости сечений от поперечного импульса фотона во всех интервалах измерения и требует более глубокого понимания.

В **четвертой главе** дается детальное описание метода измерения доли событий с двухпартонными взаимодействиями и эффективного сечения этих процессов.

Метод измерения эффективного сечения процессов с двухпартонными взаимодействиями основан на отношении чисел событий двух классов, обладающих одинаковым конечным состоянием, "фотон+3 струи", но полученных



Рис. 2 — Дифференциальное сечение процесса  $p\bar{p} \rightarrow \gamma + jet + X$  как функция поперечного импульса фотона в четырех интервалах по быстротам. Данные сравниваются с теоретическими предсказаниями КХД в следующем за лидирующем порядке (NLO QCD) с использованием пакета JETPHOX и набором структурных функций СТЕQ6.5М.

в результате различных физических процессов. Первый класс – это события, образованные посредством механизма двухпартонного взаимодействия (англ. DP – "Double Parton") при которых в налетающих протон-антипротонных пучках взаимодействует лишь одна  $p\bar{p}$  пара. Во втором классе событий, при столкновении протонного и антипротонного пучков, то же конечное состояние образуется вследствие взаимодействия двух различных  $p\bar{p}$  пар (англ. DI – "Double Interaction"). Полагая два партонных взаимодействия независимыми, оба класса событий должны быть кинематически идентичны.

Таким образом, при столкновении протонного и антипротонного пучков с двумя жесткими  $p\bar{p}$  взаимодействиями, вероятность наблюдать DI событие можно представить в виде

$$P_{DI} = 2 \frac{\sigma^{\gamma j}}{\sigma_{hard}} \frac{\sigma^{jj}}{\sigma_{hard}},\tag{4}$$

где  $\sigma^{\gamma j}$  и  $\sigma^{j j}$  – сечения рождения событий "фотон+струя" и "струя+струя" соответственно, которые в совокупности образуют конечное состояние "фотон+3 струи",  $\sigma_{hard}$  – полное сечение протон-антипротонного взаимодействия, а коэффициент 2 отражает тот факт, что два рассеяния, рождающие "фотон + струя" и "струя + струя", могут быть посчитаны двумя возможными способами, согласно расположению вершин  $p\bar{p}$  взаимодействий. Число таких взаимодействий  $N_{DI}$  определяется через вероятность  $P_{DI}$  после поправки на эффективность геометрических и кинематических критериев отбора  $\epsilon_{DI}$ , эффективность отбора событий с двумя вершинами  $\epsilon_{2vtx}$ , а также на ожидаемое количество событий с двумя вершинами взаимодействия  $N_{2coll}$ :

$$N_{DI} = 2 \frac{\sigma^{\gamma j}}{\sigma_{hard}} \frac{\sigma^{j j}}{\sigma_{hard}} N_{2coll} \epsilon_{DI} \epsilon_{2vtx}.$$
(5)

Аналогично, вероятность наблюдения DP события при столкновении протонного и антипротонного пучков с одним  $p\bar{p}$  взаимодействием, с учетом (1), определяется как

$$P_{DP} = \frac{\sigma_{DP}}{\sigma_{hard}} = \frac{\sigma^{\gamma j}}{\sigma_{eff}} \frac{\sigma^{j j}}{\sigma_{hard}}.$$
 (6)

Число двухпартонных событий  $N_{DP}$  может быть получено после поправки на геометрические и кинематические эффективности критериев отбора DP событий  $\epsilon_{DP}$ , эффективность отбора событий с одной вершиной  $\epsilon_{1vtx}$ , умноженную на ожидаемое количество столкновений пучков с одной вершиной  $N_{1coll}$ :

$$N_{DP} = \frac{\sigma^{\gamma j}}{\sigma_{eff}} \frac{\sigma^{j j}}{\sigma_{hard}} N_{1coll} A_{DP} \epsilon_{DP} \epsilon_{1vtx}.$$
(7)

Отношение уравнений (5) и (7) позволяет получить выражение для  $\sigma_{eff}$  в следующей форме:

$$\sigma_{eff} = \frac{N_{DI}}{N_{DP}} \frac{\epsilon_{DI}}{\epsilon_{DP}} R_c \sigma_{hard}, \tag{8}$$

где  $R_c \equiv 1/2(N_{1coll}/N_{2coll})(\epsilon_{1vtx}/\epsilon_{2vtx}).$ 

Важным свойством данного метода является то, что сечения  $\sigma^{\gamma j}$  и  $\sigma^{j j}$  сокращаются, а эффективности входят в уравнение (8) как отношения, что приводит к сокращению многих систематических неопределенностей. Экспериментально, числа событий  $N_{DP}$  и  $N_{DI}$  оцениваются с помощью чисел со-

бытий в выборках данных с одним и двумя  $p\bar{p}$  столкновениями, поправленные на доли DP и DI событий:  $N_{DP} = f_{DP}N_{1vtx}$  и  $N_{DI} = f_{DI}N_{2vtx}$  соответственно.

В разделе 4.2 сформулированы критерии отбора событий "фотон+3 струи". Отдельно формируются выборки данных с одиночными и двойными  $p\bar{p}$  столкновениями. Каждая реконструированная вершина  $p\bar{p}$  столкновения в обеих выборках должна иметь как минимум 3 ассоциированных трека и находиться в пределах 60 см вдоль оси z от центра детектора. Каждое событие должно содержать по крайней мере один фотон в одной из областей быстрот |y| < 1.0 или 1.5 < |y| < 2.5 и не менее трех струй с |y| < 3.0. Фотоны должны иметь поперечный импульс  $60 < p_T^{\gamma} < 80$  ГэВ, лидирующая (в порядке убывания  $p_T$ ) струя  $p_T > 25$  ГэВ, а две оставшиеся струи  $p_T > 15$  ГэВ. Дополнительно на фотонных кандидатов накладываются требования отсутствия трека, изолированности электромагнитного кластера и электромагнитной фракции.

Из полного объема данных, набранных в эксперименте D0 за период сеанса Run IIa в протон-антипротонных столкновениях при  $\sqrt{s} = 1.96$  ТэВ в с.ц.м., соответствующих значению интегральной светимости  $\mathcal{L}_{int} = 1 \text{ ф}6^{-1}$ , были отобраны "фотон+3 струи" события с одиночными и двойными  $p\bar{p}$  столкновениями. Количество отобранных событий приведено в Таблице 1.

Таблица 1 — Количество событий с одиночными и двойными  $p\bar{p}$  столкновениями в конечном состоянии "фотон+3 струи".

| Выборка       | $p_T^{jet2}$ , ГэВ |         |         |  |  |
|---------------|--------------------|---------|---------|--|--|
| данных        | 15 - 20            | 20 - 25 | 25 - 30 |  |  |
| $1 p \bar{p}$ | 2182               | 3475    | 3220    |  |  |
| $2 \ p ar{p}$ | 2026               | 2792    | 2309    |  |  |

Для определения доли событий с двухпартонными взаимодействиями необходимо построение модели, корректно описывающей кинематику DP процессов. Раздел 4.3 содержит детальное описание процедуры моделирования сигнальных двухпартонных событий. Такая модель может быть создана посредством композиции двух процессов в одном событии: процесса, содержащего " $\gamma + (\geq 1)$  струя", и другого процесса, содержащего " $(\geq 1)$  струя". Рисунок 3 иллюстрирует два возможных варианта смешивания: (а) комбинация фотона и струи из одного взаимодействия с двумя струями из второго; и (b) комбинация фотона, лидирующей струи и дополнительной струи, образован-

ной глюонным излучением в начальном или конечном состоянии, из одного взаимодействия и одной струи из другого. События выбираются случайным образом из наборов данных с одиночными  $p\bar{p}$  взаимодействиями " $\gamma$ + струя" для первого взаимодействия и из набора данных с одиночными  $p\bar{p}$  взаимодействиями, отобранных с минимальным триггером (*minimum bias*) для второго взаимодействия. В получившихся смесях отбираются события с конечным состоянием "фотон+3 струи", по аналогии с отобранными данными. Аналогичным методом конструируется модель сигнальных DI событий с той лишь разницей, что каждое из событий-компонентов отбирается с требованием наличия двух  $p\bar{p}$  столкновений.



Рис. 3 — Схематичное изображение процедуры смешивания событий "фотон + струя" и "струя + струя", используемое в модели сигнальных двухпартонных событий МІХDР. Конечное состояние "фотон + 3 струи" образовано посредством (а) комбинация фотона и струи из одного взаимодействия с двумя струями из второго; и (b) комбинация фотона, лидирующей струи и дополнительной струи, образованной глюонным излучением в начальном или конечном состоянии, из одного взаимодействия и одной струи из другого.

Отличительной особенностью двухпартонных взаимодействий является факт присутствия двух партонных рассеяний, одновременно происходящих в одном и том же  $p\bar{p}$  столкновении. Для идентификации таких взаимодействий в данных используются переменные, чувствительные к кинематике двухпартонных взаимодействий. Раздел 4.4 содержит описание характерных переменных, распределение которых выглядит по-разному в событиях с однопартонными и двухпартонными взаимодействиями. Одной из таких переменных является  $\Delta S_{\phi}$ , определяемая как азимутальный угол  $\Delta \phi$  между поперечными импульсами пар ( $\gamma + jet_i$ ) и ( $jet_j + jet_k$ ):

$$\Delta S_{\phi} \equiv \Delta \phi \left( \mathbf{p}_{\mathrm{T}}(\gamma, i), \ \mathbf{p}_{\mathrm{T}}(j, k) \right).$$
(9)

Здесь  $\mathbf{p}_{\mathrm{T}}(\gamma, i) = \mathbf{p}_{\mathrm{T}}^{\gamma} + \mathbf{p}_{\mathrm{T}}^{jet_i}$ , а  $\mathbf{p}_{\mathrm{T}}(j, k) = \mathbf{p}_{\mathrm{T}}^{jet_j} + \mathbf{p}_{\mathrm{T}}^{jet_k}$ , где пары объектов ( $\gamma, jet i$ ) и (*jet j, jet k*) выбраны таким образом, чтобы  $p_T$  дисбаланс между ними был наименьшим, посредством минимизации переменной

$$S_{\phi} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{\Delta\phi(\gamma,i)}{\delta\phi(\gamma,i)}\right)^2 + \left(\frac{\Delta\phi(j,k)}{\delta\phi(j,k)}\right)^2}.$$
 (10)

Неопределенности  $\delta\phi(\gamma,i)$  вычисляются как среднеквадратичное отклонение распределения величины  $\Delta\phi(\gamma,i)$  в сигнальной модели для каждого из трех возможных сочетаний пар. Аналогично находятся неопределенности  $\delta\phi(j,k)$  для струй *j* и *k*. Рисунок 4 иллюстрирует возможную диспозицию векторов поперечных импульсов фотона и струй, а также векторов дисбаланса.



Рис. 4 — Возможное взаимное расположение векторов поперечных импульсов фотона и струй в событиях "фотон+3 струи". Векторы  $\vec{q}_T^{\ 1}$  и  $\vec{q}_T^{\ 2}$  представляют собой  $p_T$ -дисбаланс пар "фотон + струя" и "струя + струя".

Спектр поперечного импульса струй, рожденных в событиях "струя + струя", падает быстрее чем спектр струй, излученных в начальном или конечном состоянии. Поскольку в конечном состоянии "фотон + 3 струи" вторая струя может быть рождена как в событии "струя + струя", так и в результате излучения, то в разных интервалах по поперечному импульсу этой струи ( $p_T^{jet2}$ ) можно ожидать разную долю двухпартонных событий. Взяв два соседних  $p_T^{jet2}$  интервала, мы можем получить набор данных с большей долей двухпартонных событий (например,  $15 < p_T^{jet2} < 20$  ГэВ) и набор с меньшей долей (например,  $20 < p_T^{jet2} < 25$  ГэВ). На этом факте основана методика измерения доли событий с двухпартонными взаимодействиями, описанная в разделе 4.5.

Распределение характерной переменной (9) в данных (D) может быть представлено как сумма распределений сигнальных (M) и фоновых (B) событий, взвешенных в соответствии со своими долями (фракциями). Тогда для каждого из интервалов по  $p_T^{jet2}$  можно записать:

$$D_1 = f_1 M_1 + (1 - f_1) B_1, (11)$$

$$D_2 = f_2 M_2 + (1 - f_2) B_2, (12)$$

где f – доля сигнальных событий, (1 - f) – доля фоновых событий, индексы 1 и 2 соответствуют двум наборам событий (1 – более насыщенный событиями с двухпартонными взаимодействиями, а 2 – менее насыщенный). В качестве сигнальных событий используется модель, описанная в разделе 4.3. После деления (11) на (12) уравнение примет вид

$$D_1 - \lambda K D_2 = f_1 M_1 - \lambda K C f_1 M_2, \tag{13}$$

где  $\lambda = B_1/B_2$  представляет собой отношение фоновых распределений,  $K = (1 - f_1)/(1 - f_2)$  – отношение фракций фоновых (однопартонных), а  $C = f_2/f_1$  – отношение фракций сигнальных (двухпартонных) событий. В предшествующих измерениях использовалось предположение, что однопартонные взаимодействия в двух соседних интервалах по  $p_T^{jet2}$  имеют одинаковые распределения. Полагая  $\lambda = 1$  в уравнении (13), можно полностью избавиться от вклада фоновых событий. В данной работе подобное упрощение не делается и рассматривается относительная разница спектров фоновых событий в соседних интервалах. Левая часть уравнения (13) имеет смысл разницы спектров двух наборов событий в данных, а правая – разницы спектров сигнальных событий (вклад от фоновых событий исчезает за счет множителя  $\lambda K$ ).

Параметр C может быть извлечен независимо следующим образом. Используя определение доли сигнальных событий, являющейся отношением неизвестного числа двухпартонных событий ( $N^{DP}$ ) к общему числу событий в данных ( $N^{DATA}$ ), можно представить этот параметр в виде

$$C \equiv \frac{f_2}{f_1} = \left(\frac{N_2^{DP}}{N_2^{DATA}}\right) \left(\frac{N_1^{DATA}}{N_1^{DP}}\right).$$
(14)

Отношение  $N_2^{DP}/N_1^{DP}$  можно заменить на отношение  $N_2^{MIXDP}/N_1^{MIXDP}$ , если предположить, что события "струя + струя", рожденные в однопартонных взаимодействиях, принципиально не отличаются от аналогичных событий, рожденных в двухпартонных взаимодействиях. Именно такое предложение и заложено в основу модели сигнальных событий. Таким образом, считая, что модель сигнальных событий корректно описывает свойства двухпартонных событий, уравнение (14) можно записать в виде

$$C = \left(\frac{N_2^{MIXDP}}{N_2^{DATA}}\right) \left(\frac{N_1^{DATA}}{N_1^{MIXDP}}\right).$$
(15)

Для извлечения фракции двухпартонных событий применяется  $\chi^2$  минимизация с использованием пакета MINUIT для функционала

$$F = |D_1 - f_1 M_1 - \lambda K (D_2 - C f_1 M_2)| / \sigma.$$
(16)

Параметр  $\sigma$  есть суммарная ошибка, складывающаяся из ошибок на величины  $C, D_1, D_2, M_1, M_2, \lambda$ . Единственным свободным параметром в этом выражении является  $f_1$ . Он находится из минимизации функционала (16) применительно к спектру характерной переменной  $\Delta S_{\phi}$  для каждой пары интервалов по  $p_T^{jet2}$ : 1)  $15 < p_T^{jet2} < 20$  ГэВ и  $20 < p_T^{jet2} < 25$  ГэВ и 2)  $20 < p_T^{jet2} < 25$  ГэВ и  $25 < p_T^{jet2} < 30$  ГэВ. Результат нахождения доли двухпартонных взаимодействий, усредненный по другим используемым характерным переменным, указан в таблице 2.

На рисунке 5 продемонстрирован результат процедуры фитирования для нахождения доли двухпартонных взаимодействий на примере переменной

Таблица 2 — Результат измерения доли событий с двухпартонными взаимодействиями в трех интервалах по  $p_T^{jet2}$ .

| $p_T^{jet2}$ , ГэВ | $\langle p_T^{jet2} \rangle$ , ГэВ | $f_{\rm DP}$      |
|--------------------|------------------------------------|-------------------|
| 15 - 20            | 17.6                               | $0.466 \pm 0.041$ |
| 20 - 25            | 22.3                               | $0.334 \pm 0.023$ |
| 25 - 30            | 27.3                               | $0.235 \pm 0.027$ |

 $\Delta S_{\phi}$ . Рисунок 5(а) иллюстрирует распределения этой величины для интервала  $15 < p_T^{jet2} < 20 \ \Gamma$ эВ в данных ( $D_1$ ) и в сигнальной модели ( $M_1$ ), взвешенной со своей фракцией ( $f_1$ ). На рисунке 5(b) показаны аналогичные распределения в интервале  $20 < p_T^{jet2} < 25$  ГэВ в данных ( $D_2$ ) и сигнальной модели ( $M_2$ ), взвешенное с фракцией f2. Из двух этих рисунков можно заключить, что области малых  $\Delta S_{\phi}$  (  $\lesssim 1.5$ ) в основном содержат сигнальные события с двумя независимыми взаимодействиями. На рисунке 5(с) черными точками изображена разница между распределениями в данных в двух интервалах по  $p_T^{jet2}$ , с учетом вклада фоновых однопартонных событий (фактор  $\lambda K$ ), т.е. левая часть уравнения (13). Как и ожидалось, разница всегда положительна, т.к. доля двухпартонных событий падает с ростом  $p_T^{jet2}$ . Закрашенная область представляет собой предсказание модели сигнальных событий, т.е. правая часть уравнения (13). Из рисунка 5(с) видно, что оба распределения хорошо согласуются. Это позволяет сделать вывод о качестве проведенной процедуры фитирования, а так же о том, что модель сигнальных событий адекватно описывает данные. Далее, посредством вычитания из данных ожидаемого вклада сигнальных событий, мы можем извлечь спектр переменной  $\Delta S_{\phi}$  для фоновых однопартонных событий. Эта величина представляет собой  $(D_1 - f_1 M_1)/(1 - f_1)$  и  $(D_2 - f_2 M_2)/(1 - f_2)$ для интервалов $15 < p_T^{\ jet2} < 20$ ГэВ и $20 < p_T^{\ jet2} < 25$ ГэВ соответственно. Распределения этих величин показаны на рисунке 5(d).

Расчет эффективного сечения двухпартонных взаимодействий  $\sigma_{eff}$  основан на уравнении (8). Значения  $N_{DP}$  и  $N_{DI}$  в каждом интервале  $p_T^{jet2}$  получаются из чисел событий с одной (1vtx) и двумя (2vtx) вершинами, указанными в таблице 3, посредством умножения на  $f_{DP}$  и  $f_{DI}$  соответственно. Результирующее значение  $\sigma_{eff}$  с неопределенностью (статистической и систематической, сложенными квадратично) показано на рисунке 6. Положение точек по оси абсцисс на рисунке 6 соответствует среднему значению  $p_T^{jet2}$  в модели сигнальных событий в данном интервале



Рис. 5 — Результат процедуры фитирования для нахождения доли двухпартонных взаимодействий на примере переменной  $\Delta S_{\phi}$  для комбинации двух  $p_T^{jet2}$  интервалов:  $15 < p_T^{jet2} < 20$  и  $20 < p_T^{jet2} < 25$ . На графиках (а) и (b) показаны распределения переменной в данных (обозначено точками) и в модели сигнальных двухпартонных событий (заштрихованная область). На графике (c) точками изображено предсказание формы переменной в данных за вычетом вклада SP составляющей, а заштрихованной областью – в сигнальной модели, как разница распределений (а) и (b). График (d) содержит извлеченное распределение переменной  $\Delta S_{\phi}$  для фоновых событий с однопартонным взаимодействием в двух соседних интервалах по  $p_T^{jet2}$ .

В таблице 4 приведены основные источники неопределенностей для каждого  $p_T^{jet2}$  интервала. Как это видно из таблицы, доминирующая систематическая неопределенность связана с определением доли событий с двойными  $p\bar{p}$  столкновениями. Затем в порядке уменьшения следуют неопределенности из-за определения доли двухпартонных событий, отношения эффективностей  $\epsilon_{DP}/\epsilon_{DI}$ , абсолютной шкалы энергии струй (JES) и произведения  $R_c\sigma_{hard}$ , давая полную систематическую неопределенность от 20.5 до 32.2% в зависимости от интервала  $p_T^{jet2}$ .



Рис. 6 — Эффективное сечение  $\sigma_{eff}$  как функция поперечного импульса  $p_T^{jet2}$  следующей за лидирующей струи.

Таблица 3 — Эффективное сечение событий с двухпартонными взаимодействиями в трех интервалах по  $p_T^{jet2}$ .

| $p_T^{jet2}$ , ГэВ | $\langle p_T^{jet2} \rangle$ , ГэВ | $\sigma_{eff}$ , мб |
|--------------------|------------------------------------|---------------------|
| 15 - 20            | 17.6                               | $18.2 \pm 3.8$      |
| 20 - 25            | 22.3                               | $16.3\pm3.7$        |
| 25 - 30            | 27.3                               | $13.9\pm4.5$        |

Измеренные значения эффективного сечения в разных  $p_T^{jet2}$  интервалах согласуются между собой в пределах своих неопределенностей, однако невозможно исключить и небольшое падение значений  $\sigma_{eff}$  с ростом  $p_T^{jet2}$ . Усредненное по всем трем интервалам  $p_T^{jet2}$  значение составляет

$$\sigma_{eff}^{ave} = (16.4 \pm 0.3 \text{ (стат.}) \pm 2.3 \text{ (сист.}))$$
 мб. (17)

В <u>пятой главе</u> рассматриваются двухпартонные события, имеющие в конечном состоянии W + 2 струи, как фон к процессам ассоциативного рождения W + H, с распадами типа  $W \to l\nu$  и  $H \to b\bar{b}$ . Рисунок 7 иллюстрирует возможный процесс рождения  $W + b\bar{b}$ , происходящий посредством механизма двухпартонного взаимодействия.

Таблица 4 — Систематические и статистические неопределенности (в %) для  $\sigma_{\rm eff}$  в трех интервалах по  $p_T^{jet2}$  (ГэВ).

| $p_T^{jet2}$ | $f_{\rm DP}$ | $f_{\rm DI}$ | $\varepsilon_{\mathrm{DP}}/\varepsilon_{\mathrm{DI}}$ | JES | $R_{ m c}\sigma_{ m hard}$ | Сист. | Стат. | Полная |
|--------------|--------------|--------------|-------------------------------------------------------|-----|----------------------------|-------|-------|--------|
| 15 - 20      | 7.9          | 17.1         | 5.6                                                   | 5.5 | 2.0                        | 20.5  | 3.1   | 20.7   |
| 20 - 25      | 6.0          | 20.9         | 6.2                                                   | 2.0 | 2.0                        | 22.8  | 2.5   | 22.9   |
| 25 - 30      | 10.9         | 29.4         | 6.5                                                   | 3.0 | 2.0                        | 32.2  | 2.7   | 32.3   |



Рис. 7 — Схематичное изображение процесса  $p\bar{p} \rightarrow W + b\bar{b}$  с конечным состоянием, образованным посредством механизма двухпартонного взаимодействия.

Раздел 5.2 содержит описание проведенной симуляции сигнальных и фоновых событий, для чего используется генератор РҮТНІА 8, который, унаследовав все преимущества РҮТНІА 6, обладает возможностью комбинации различных процессов в основном и дополнительном партонных взаимодействиях в интересующих исследователя кинематических областях. Разделы 5.3 и 5.4 содержат критерии отбора сигнальных и фоновых событий и описание применяемых коэффициентов нормализации сечений симулированных событий к экспериментально измеренным сечениям, либо к теоретическим NNLO предсказаниям. Сигнальный процесс *HW* симулирован, полагая массу бозона Хиггса  $m_H = 115$  ГэВ и  $m_H = 150$  ГэВ. Фоновый процесс с двухпартонным взаимодействием является комбинацией процессов инклюзивного рождения *W*-бозона в первом взаимодействии  $q\bar{q} \rightarrow W + X$  и инклюзивного рождения пары "струя + струя" во втором. Раздел 5.5 посвящен вычислению дифференциальных сечений  $d\sigma/dM_{jj}$  процесса рождения HW и фонового процесса рождения W + 2 струи посредством механизма двухпартонного взаимодействия, которые представлены на рисунке 8. В дополнение к полному DP сечению, на рисунке также приведены вклады от основных DP подпроцессов.



Рис. 8 — (а) Дифференциальные сечения сигнальных (*HW*) и фонового (DP) процессов как функции инвариантной массы двух струй (*M<sub>jj</sub>*). Пунктирной и штрих-пунктирной линиями обозначены сечения сигнальных событий с  $m(H) = 115 \ \Gamma$ эВ и  $m(H) = 150 \ \Gamma$ эВ соответственно, а сплошной линией сечение процесса с двухпартонным взаимодействием. (b) Относительный вклад различных подпроцессов в дифференциальное сечение фонового (DP) процесса.

Из рисунка 8 можно сделать вывод о превышении сечения двухпартонных взаимодействий над сигналом более чем на два порядка, а также, что сечение процессов с двухпартонным взаимодействием в большой степени обусловлено процессом W + 2 струи, происходящими от легких кварков (u/d/s)или глюонов. Далее в порядке уменьшения следуют вклады от подпроцессов W + gc, W + gb и затем  $W + b\bar{b}$  и  $W + c\bar{c}$ .

В сигнальных HW процессах в конечном состоянии присутствуют две *b*-струи, на которые распадается бозон Хиггса. Поскольку основным фоном от двухпартонных взаимодействий является процесс W + 2 струи, происходящими от легких кварков, то можно ожидать значительное подавления фона после требования наличия *b*-струй в конечном состоянии. Чтобы проверить это численно, специальный критерий идентификации *b*-струй был применен как к событиям HW, так и к двухпартонным процессам. Имея в наличие лишь быструю симуляцию Монте-Карло, невозможно проверить качество идентификации *b*-струй. Однако, взамен применяются эффективности пройти b - id требования для струй, произошедших от легких (*l*-струи), *c* и *b* кварков На рисунке 9 представлены сечения умноженные на эффективность прохождения b - id критериев ( $\epsilon_{b-id}^{jet}$ ) для сигнальных и фоновых событий, где каждая из двух струй обязана пройти ослабленный b - id критерий. Это требование



Рис. 9 — (а) Дифференциальные сечения сигнальных (*HW*) и фонового (DP) процессов как функции инвариантной массы двух струй (*M<sub>jj</sub>*) с учетом *b* – *id* требования для струй. (b) Относительный вклад различных подпроцессов в дифференциальное сечение фонового (DP) процесса с учетом *b* – *id* требования для струй.

существенно подавляет фон, однако сечения сигнальных событий также значительно падают. На практике, в таких случаях требования двойного b - id критерия зачастую комбинируют с требованием одинарного b - id.

Рисунок 10 иллюстрирует отношение выходов сигнальных и фоновых событий в бинах по инвариантной массе двух струй  $(M_{jj})$ , отобранных с комбинированным b - id критерием. Нетрудно видеть, что события рождения бозона Хиггса с массой  $m_H = 115$  ГэВ подавлены с фактором 3  $(S/B \simeq 0.35$  в



Рис. 10 — Отношение выходов сигнальных *HW* и фоновых DP событий с комбинированным *b* – *id* требованием для струй.

позиции пика), в то время как события с массой  $m_H = 150$  ГэВ подавлены с фактором 7.

В разделе 5.6 рассмотрены выходы событий  $dN/dM_{jj}$ , ожидаемые для процессов с конечным состояние W + 2 струи, происходящие посредством однопартонного (SP) и двухпартонного (DP) взаимодействия. Две дополнительные струи в однопартонном случае происходят из радиационных эффектов в начальном и конечном состояниях. Однопартонные события сгенерированы, используя подпроцессы  $q\bar{q} \rightarrow Wg$  и  $qg \rightarrow Wq$ , после чего к ним применены HW критерии отбора, описанные в разделе 5.3. Оцененные выходы событий для всего диапазона масс при интегральной светимости  $\mathcal{L}_{int} = 5.3 \ \phi 6^{-1}$  для SP и DP процессов составляют 5212 и 262 событий соответственно. Отношение (DP/SP) выходов W + 2 струи событий в бинах по  $M_{jj}$  составляют от 7 до 11% для  $M_{jj} \simeq 115$  ГэВ и от 5 до 8% для  $M_{jj} \simeq 150$  ГэВ. Такой существенный фон от DP процессов не является удивительным в свете измеренных фракций DP событий, наблюдаемых в экспериментах CDF и D0 в конечном состоянии "фотон + 3 струи"

Раздел 5.7 посвящен использованию искусственной нейронной сети (ANN) для разделения сигнальных и фоновых событий. Обсуждаются переменные, которые могут быть полезны с точки зрения разделения сигнальных HW от фоновых W + 2 струи процессов с двухпартонным взаимодействием.

Часть этих переменных широко использовалась в предыдущих экспериментальных исследованиях, другая же часть была предложена в теоретических работах. Некоторые из приведенных переменных использовались для тренировки нейронной сети на сигнальных HW и фоновых DP событиях, таким образом, чтобы на выходе иметь единственное значение равное 0 для фоновых и 1 для сигнальных событий. Фоновые DP события для тренировки, а впоследствии для тестирования сети, отбирались с инвариантной массой двух струй в пределах  $\pm 2\sigma$  от максимума распределения  $M_{jj}$  бозона Хиггса. ANN была обучена с использованием 200 000 сигнальных и фоновых событий и тестировалась на 50 000 событиях, которые не участвовали в процессе обучения, и применена для подавления фона, который доминирует даже после отборов с *b*-струями Отношение сигнала к фону при эффективности отбора сигнальных событий  $\varepsilon_s^{ANN} = 80\%$  показана на рисунке 11 и достигает величины 2.2 при массе  $M_{jj} \simeq 115$  ГэВ и порядка 2.7 при  $M_{jj} \simeq 150$  ГэВ, что существенно подавляет вклад процессов с двухпартонным взаимодействием.



Рис. 11 — Отношение выходов сигнальных HW и фоновых DP событий после применения нейронной сети с эффективностью отбора сигнальных событий  $\varepsilon_s^{ANN} = 80\%$ .

В <u>заключении</u> приведены основные результаты работы, которые заключаются в следующем:

1. В эксперименте D0 на коллайдере Тэватрон набрана статистика событий ассоциативного рождения фотонов и струй в протонантипротонных столкновениях с энергией  $\sqrt{s} = 1.96$  ТэВ в с.ц.м., соответствующая интегральной светимости  $\mathcal{L}_{int} = 1 \ \phi \delta^{-1}$ . Создано программное обеспечение для отбора и анализа данных процессов с конечными состояниями  $p\bar{p} \rightarrow \gamma + jet + X$  и  $p\bar{p} \rightarrow \gamma + 3jet + X$ . Оптимизированы критерии отбора.

- Изучены кинематические свойства процессов pp̄ → γ + jet + X, содержащие фотон с поперечным импульсом от 30 до 400 ГэВ и адронную струю с поперечным импульсом от 15 ГэВ. Измерено трижды дифференциальное сечение d<sup>3</sup>σ/dp<sub>T</sub><sup>γ</sup>dη<sup>γ</sup>dp<sub>T</sub><sup>jet</sup> и исследована зависимость сечения от поперечного импульса фотона в различных конфигурациях фотона и струи. Произведено сравнение с теоретическими предсказаниями в NLO.
- 3. Измерены доли процессов с двухпартонными взаимодействиями в событиях с конечным состоянием pp̄ → γ + 3 jets. Создан комплекс программного обеспечения для моделирования сигнальных событий с многопартонными взаимодействиями на основе экспериментальных данных эксперимента D0. Предложена методика измерения, минимизирующая модельную зависимость результатов измерения.
- Измерено эффективное сечение двухпартонных взаимодействий, *σ*<sub>eff</sub> – параметр, связанный с пространственным распределением партонов внутри адрона. Исследована зависимость эффективного сечения от поперечного импульса следующей за лидирующей струи.
- 5. Произведена оценка фона, вызванного событиями с двухпартонными взаимодействиями, в процессах pp̄ → WH на Тэватроне при энергии протон-антипротонных пучков 1.96 ТэВ в с.ц.м. Смоделирована необходимая для анализа статистика сигнальных и фоновых (двухпартонных) событий. Предложен набор переменных, чувствительных к кинематике многопартонных взаимодействий, применение которых способно существенно подавить фон, обусловленный событиями с двухпартонными взаимодействиями в редких процессах.

## Публикации автора по теме диссертации

- 1. Abazov V.M. et al. Measurement of the differential cross-section for the production of an isolated photon with associated jet in  $p\bar{p}$  collisions at  $\sqrt{s} = 1.96$  TeV // *Phys.Lett.* 2008. Vol. B666. Pp. 435-445.
- 2. Abazov V. M. et al. Double parton interactions in  $\gamma$ +3 jet events in  $p\bar{p}$  collisions  $\sqrt{s} = 1.96$  TeV // Phys. Rev. 2010. Vol. D81. P. 052012.
- Bandurin Dmitry, Golovanov Georgy, Skachkov Nikolai. Double parton interactions as a background to associated HW production at the Tevatron // JHEP. 2011. Vol. 04. P. 054.
- Golovanov Georgy. Study of multiple partonic interactions in DZERO // Proceedings, 3rd International Workshop on Multiple Partonic Interactions at the LHC (MPI@LHC 2011). 2012. Pp. 127–133.
- 5. *Abazov Victor Mukhamedovich et al.* Jet energy scale determination in the D0 experiment // *Nucl. Instrum. Meth.* 2014. Vol. A763. Pp. 442–475.