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1 Introduction
1.1 Actuality of the problem

The non-relativistic nuclear many-body problem requires the solving of the many-particle Schrodinger

equation

HΨ(r1, . . . , rA) = EΨ(r1, . . . , rA), (1)

which is formidable task. Not able to solve the equation (1) because of its complexity, we replace

it by the following one

H0Ψ0 = EΨ0, (2)

for the restricted HamiltonianH0, which we hope to solve. The HamiltonianH0 is an appropriately

chosen part of H that corresponds to some, e.g. collective, effects of nuclear dynamics using some

particular criteria. For instance, as such a criterium can be used the irreducible decomposition ofH

with respect to some group G. Then, an additional integral of motion (or in quantum-mechanical

terms, exact quantum number) appears. The physical picture of the nuclear structure that is

described by the wave function Ψ0 thus provides a dynamical model of the nucleus, generated by

the Hamiltonian H0. Thus, an alternative to the exact solution of the many-particle Schrodinger

equation is the algebraic approach to nuclear structure, based on the symmetry.

Symmetry is an important concept in physics. In finite many-body systems, such as atomic

nuclei, it appears as time reversal, parity, and rotational invariance, but also in the form of

dynamical symmetries [1, 2]. Dynamical symmetry is arguably the most fundamental concept in

physics. In nuclear physics, dynamical symmetry was already used implicitly in the early works of

Heisenberg [3] and Wigner [4] and more explicitly exploited by Elliott [5] in his SU(3) shell model

of nuclear rotations and in the seniority scheme for coupling nucleons in pairs [6, 7, 8]. However,

the most useful and extensive application of the concept of dynamical symmetry was within the

framework of the popular Interacting Boson Model (IBM) [9]. It turns out that a wide range of

dynamical models are solvable by virtue of underlying dynamical symmetries. Indeed, almost all

models of nuclear structure have an algebraic structure. In the fully algebraic approach, in which

the interaction and physical operators can be expressed solely in terms of the invariant operators

of a single group-subgroup chain, according to which the basis states are classified, one obtains

analytical solutions for the eigenvalues and eigenfunctions. Such limiting cases are referred to as

dynamical symmetry limits or simply dynamical symmetries.

It is worth noting that the construction of the first successful models of nuclear structure

was due to the observation of patterns in nuclear data and the emergence of simplicity in their

interpretation. Patterns are signatures of underlying symmetries and their recognition can be of

enormous help in understanding the properties of atomic nuclei. Several symmetries of the nucleus

as a system of nonrelativistic interacting nucleons that give rise to the total angular momentum,

parity, third projection of the isospin quantum number, and permutational symmetry of nuclear

states are in common use in nuclear structure physics. These are the exact integrals of motion

which the nuclear wave function must satisfy. This make it possible to construct models of nuclear

structure that preserve the exact integrals of motion. Such models are called kinematically correct

models [10].
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Besides in its simplest, phenomenological form, the algebraic approach exists also in a micro-

scopic version. A model is called fully microscopic (or simply microscopic) if the antisymmetriza-

tion is completely involved in the construction of the many-fermion Hilbert space of nucleus. The

Lie algebra of observables of the model is then expressible in terms of many-particle coordinates

(position, momentum and spin). Moreover, in the microscopic models, the collective effects are

derived from all the single-particle degrees of freedom. As will see further, this can be done in

a very elegant way, using the group theory, by restricting the model many-body Hamiltonian to

the Hilbert state space with a definite O(A − 1) symmetry, or which is the same, by projecting

its O(A − 1)-scalar part [11, 12]. In particular, the restricted collective spaces H(Λω) that are

considered throughout the dissertation are characterized by a definite O(A− 1) (or equivalent to

it symplectic bandhead) symmetry (ω), which appears as an additional integral of motion. We

will demonstrate that for the phenomenological collective models their Hamiltonians act on the

non-physical Hilbert spaces H(Λω) with (ω) = (0), obtaining in this way a very simplified collec-

tive dynamics. For the microscopic collective models, the collective irreducible spaces in which

the model Hamiltonians act are characterized by a definite O(A − 1) symmetry (ω) ̸= (0), thus

providing the state spaces to be Pauli allowed subspaces of the many-particle nuclear Hilbert

space.

The many roles [13, 14, 15] that the symmetry plays at each stage in the process of under-

standing the nuclear phenomena in terms of interacting protons and neutrons are considered in

more details. In the present work, we use the following operational sequence in understanding the

nuclear structure [15]:

1) Observe the phenomena by recognizing patterns in the experimental data;

2) Construct phenomenological models to describe the patterns;

3) Define the limitations and the domain of validity (refine the models);

4) Understand a given phenomenological model in microscopic terms by embedding it in the

microscopic nuclear theory (shell model) which can also be refined;

5) Use the symmetry of obtained microscopic model to define an appropriate shell-model

coupling scheme and relevant model spaces, as well as to identify the kinds of shell-model config-

urations needed to describe the collective excitations in nuclei.

From the above sequence, it follows that one can give a collective model a microscopic

interpretation by embedding it in the shell model; i.e., by expressing it as a submodel of the shell

model. The embedding problem becomes straightforward once it is recognized that both the shell

model and the collective models are algebraic models with dynamical groups. Thus, a collective

model becomes a submodel of the shell model if its dynamical group is expressed as a subgroup

of a dynamical group for the shell model. An example of a complete algebraic model that is a

submodel of the shell model is provided by the Elliott’s SU(3) model [5].

The present work explores the properties of atomic nuclei that are indicators of the emergence

of simple dynamics associated with the symmetries that are available to a nucleus as a many-

body system. In particular, it focuses on the dynamical symmetries associated with the nuclear

collective motions. Symmetries that provide good quantum numbers, or even approximately

good quantum numbers, are obviously useful. However, symmetry can be used to decompose
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the nuclear Hilbert state space into a sequence of invariant subspaces with respect to a given

dynamical algebra, ordered such that their contributions to the observed states of nuclei are

of decreasing importance. A standard example of this is given by the symmetry of the three-

dimensional spherical harmonic oscillator shell model which proves to be particularly relevant

for many states of near closed-shell and singly-closed shell nuclei. An alternative, based on the

dynamical symmetry of the six-dimensional harmonic oscillator which proves to be much more

appropriate for the rotational states of heavy deformed nuclei, is presented in this work on both

phenomenological and microscopic shell-model levels.

1.2 The aim and tasks

The ultimate aim of the present dissertation is the development of a microscopic theory of nuclear

collective motions aimed at understanding the nuclear collective dynamics in terms of interacting

protons and neutrons. In realizing this aim we use the following powerful algebraic strategy of

constructing such a microscopic theory. It starts with a phenomenological model in terms of a Lie

algebra of observables, which is able to capture many of the collective properties of atomic nuclei.

Further we seek a microscopic, many-particle realization of this algebra in terms of the position

and momentum coordinates of the particles of the system. It then remains to identify the relevant

shell-model irreducible representations of this algebra (known as a spectrum generating algebra

or simply dynamical algebra) to obtain a microscopic version of the model.

Following the above strategy in Part I we first develop and apply the symplectic and or-

thosymplectic extensions of the phenomenological Interacting Vector Boson Model (IVBM) [16]

for the description of various nuclear phenomena in heavy strongly deformed nuclei. In IVBM,

it is assumed that the low-lying collective dynamics can be described by means of two types of

vector bosons (phonons, elementary excitations). Various applications of the IVBM in this part

can be considered as an application of the symplectic-based effective theory of nuclear collective

motions in the two-component nuclear systems by using effective interactions and effective transi-

tion operators in appropriately chosen truncated collective spaces. Further, in Part II, we propose

and develop a fully microscopic Proton-Neutron Symplectic Model (PNSM) of collective excita-

tions that aims the microscopic shell-model description of collective properties of heavy nuclei,

consisting of protons and neutrons.

In pursuing our strategy, the following tasks are formulated in achieving the aim of present

dissertation:

• Clarifying the role of the symplectic Sp(12, R) dynamical group in the IVBM by applying

the new dynamical symmetries, which arise as a result of the symplectic extension of the model.

• Study of the first few positive- and negative-parity collective rotational bands, for which

new experimental data are obtained up to very high angular momenta, in the heavy even-even

nuclei from the rare-earth and actinide mass regions, including some of the fine structure energy

level effects.

• Study of the possible shapes in the IVBM. Construction of the phase diagram of IVBM.

• Examining the possibility of obtaining triaxial shapes in the phase structure of the IVBM.

• Study of the triaxiality in atomic nuclei within the framework of the IVBM within its

irreducible symplectic collective space.
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• Introduction and application of the orthosymplectic extension of the IVBM, which incorpo-

rate the fermion degrees of freedom, for studying the collective properties of heavy odd-mass and

odd-odd nuclei. Simultaneous description of the low-energy collective spectra in the even-even,

odd-A and doubly odd nuclei within the supersymmetric (orthosymplectic) extension.

• Study of the chiral rotation in doubly odd nuclei within the orthosymplectic extension of

the IVBM.

• Developing of an algebraic microscopic theory of nuclear collective motions in the two-

component many-particle proton-neutron nuclear systems.

• Examining the type and number of collective and intrinsic degrees of freedom in the many-

particle two-component proton-neutron nuclear systems.

• Examining the possible collective flows in the PNSM and revealing of its dynamical content.

Construction of the simplest kinematically correct nuclear wave functions.

• Understanding the collective dynamics within the proton-neutron symplectic model in

microscopic and macroscopic terms.

• Constructing of the shell-model representations of the PNSM in the many-particle Hilbert

space.

• Study of the macroscopic, hydrodynamical limits of the PNSM.

• Development of the computational techniques of PNSM, including the explicit calculation

of the required isoscalar factors and matrix elements of physically interesting operators.

• Application of the newly proposed PNSM for obtaining the microscopic shell-model struc-

ture of the low-lying positive-parity states in the strongly deformed heavy even-even nuclei.

• Obtaining of the microscopic shell-model structure of the low-lying negative-parity states

in strongly deformed heavy even-even nuclei within the framework of the PNSM.

• Study of the low-lying collective E1 dipole strengths in the extended PNSM.

• Study of adiabatic decoupling of the rotational dynamics from other degrees of freedom.

Examining the role of emerging quasi-dynamical symmetries.

1.3 Scientific novelty

In the dissertation new results are obtained for the first time, the main of which are:

• The symplectic extension of the IVBM is developed. The new dynamical symmetries which

appear as a result of this extension are studied and applied for description of different nuclear

phenomena in heavy even-even nuclei.

• The phase structure of the IVBM is obtained for the first time. The possibility of obtaining

triaxial shapes is considered.

• The supersymmetric (orthosymplectic) extension of the IVBM is developed, which allow

the collective properties of heavy odd-mass and doubly odd nuclei to be described.

• The orthosymplectic extension is applied for the first time for the description of chiral

doublet bands in doubly odd nuclei.

• A fully microscopic PNSM of nuclear collective motions is formulated for the first time by

considering the possible collective flows and symplectic geometry of the two-component nuclear

system.
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• The macroscopic limits of the PNSM, which appear for large dimensional representations,

are further obtained. As a result, two simplified models of nuclear collective motion, expressed in

simple geometrical terms, arise as macroscopic limiting cases of the PNSM.

• Computational techniques for the practical application of the PNSM at U(6) level are

developed, including the explicit calculation of the required isoscalar factors and matrix elements

of physically interesting operators.

• The PNSM is applied for the first time in obtaining the microscopic shell-model structure

of the positive-parity states in well deformed heavy even-even nuclei, namely 166Er, 154Sm and
238U .

• Revealing of the dynamical and quasi-dynamical symmetries of the underlying proton-

neutron collective dynamics in the microscopic structure of positive-parity states in well deformed

heavy even-even nuclei.

• The first application of the symplectic-based shell-model approach to the structure of

negative-parity states in heavy nuclei, in particular to 154Sm and 238U .

• The central extension of the proton-neutron symplectic model with the semi-direct structure

WSp(12, R) ≡ [HW (6)]Sp(12, R) is proposed, which allows to include explicitly in the theory

various many-particle correlations which lie outside the enveloping algebra of Sp(12, R).

• Study of the low-lying electric dipole strengths in heavy even-even nuclei in the extended

PNSM.

1.4 Scientific and practical significance of the obtained results

By applying different dynamical symmetry limits of the IVBM in Part I, we are able to clarify the

role of Sp(12, R) as a dynamical group of the possible collective excitations in the two-component

nuclear systems. The latter, in turn, allows us to be more precise in the constructing of relevant

model Hamiltonians, adequate for the description of a more complete proton-neutron collective

dynamics.

The obtained results in Part II are an important step towards the development of a practical,

computationally tractable microscopic theory of nuclear collective motion in the heavy nuclei.

From the conceptional point of view, the proposed symplectic-based approach provides a general

shell-model framework for studying microscopically the observed collective excitations in the two-

component many-particle nuclear systems and represents a further step towards the development

of a more general and comprehensive microscopic theory of collective motion in atomic nuclei

consisting of protons and neutrons.

The practical significance of the obtained results consists of the fact that the algebraic micro-

scopic theory of proton-neutron collective excitations, which is formulated in the present disser-

tation, opens the path for studying the microscopic structure of strongly deformed heavy nuclei,

for which the conventional shell-shell model techniques are very formidable even for the modern

computing facilities. It allows to identify effectively the kinds of shell-model configurations needed

to describe the rotational states of strongly deformed heavy nuclei and provides a practical way

to involve different many-particle correlations (e.g., dipole, quadrupole, octupole, etc.) of interest

in the theory.
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1.5 Method

In the present work, we use the elegant part of mathematics known as a representation theory

of Lie algebras and Lie groups or simply a group theory. The group theory is the precise way of

expressing mathematically different symmetry patterns, but for the present purposes it can just

be thought as a multi-dimensional extension of the familiar three-dimensional angular momentum

techniques.

The group representation approach allows the construction of a Hamiltonian of a system

which is, or nearly so, invariant under a certain group of symmetry transformations. It then

allows one to construct basis of states realizing the symmetry and to calculate explicitly the matrix

elements of different physically interesting operators, themselves classified by the symmetry. This

further allows many properties of atomic nuclei to be investigated using algebraic models, in which

one obtains bands of collective states which span irreducible representations of the corresponding

dynamical group.

1.6 Main results of the dissertation

The main results of the present dissertation which are raised to the defence are:

• The symplectic extension of the IVBM is developed. The new dynamical symmetries which

appear as a result of this extension are studied and applied for description of different nuclear

phenomena in heavy even-even nuclei.

• The phase structure of the IVBM is obtained for the first time. The possibility of obtaining

triaxial shapes is considered.

• The supersymmetric (orthosymplectic) extension of the IVBM is developed, which allow

the collective properties of heavy odd-mass and doubly odd nuclei to be described.

• The orthosymplectic extension is applied for the first time for the description of chiral

doublet bands in doubly odd nuclei.

• A fully microscopic PNSM of nuclear collective motions is formulated for the first time by

considering the possible collective flows and symplectic geometry of the two-component nuclear

system.

• The macroscopic limits of the PNSM, which appear for large dimensional representations,

are further obtained. As a result, two simplified models of nuclear collective motion, expressed in

simple geometrical terms, arise as macroscopic limiting cases of the PNSM.

• Computational techniques for the practical application of the PNSM at U(6) level are

developed, including the explicit calculation of the required isoscalar factors and matrix elements

of physically interesting operators.

• The PNSM is applied for the first time in obtaining the microscopic shell-model structure

of the positive-parity states in well deformed heavy even-even nuclei, namely 166Er, 154Sm and
238U .

• The first application of the symplectic-based shell-model approach to the structure of

negative-parity states in heavy nuclei, in particular to 154Sm and 238U .

• Study of the dynamical and quasi-dynamical symmetries of the underlying proton-neutron

collective dynamics in the microscopic structure of positive- and negative-parity states in strongly

deformed heavy even-even nuclei.
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• The central extension of the proton-neutron symplectic model with the semi-direct structure

WSp(12, R) ≡ [HW (6)]Sp(12, R) is proposed, which allows to include explicitly in the theory

various many-particle correlations which lie outside the enveloping algebra of Sp(12, R).

• Study of the low-lying collective E1 dipole strengths in strongly deformed heavy even-even

nuclei within the extended PNSM shell-model framework.

1.7 Approbation

The results obtained in the present work were reported on many international conferences (see

the list below) and were also discussed at different seminars, given at the Laboratory of Theoret-

ical Physics (Dubna, Russia) and the Institute of Nuclear Research and Nuclear Energy (Sofia,

Bulgaria). Concrete titles, places and time of some of these conference papers can be found below

in the list of references [B1-B11].

1.8 Publications

The main results of dissertation are published in the referred journal articles [A1-A19] and in the

full text conference proceedings [B1-B11] (see the List of publications on which the dissertation

is based on). These papers are published as follows: Phys. Rev. C - 11, Eur. Phys. J. A - 3, J.

Phys. G: Nucl. Part. Phys. - 1, Nucl. Phys. A - 1, Int. J. Mod. Phys. E - 3, J. Phys.: Conf.

Ser. - 3, EPJ Web of Conferences - 2, AIP Conf. Proc. - 1, conference book’s proceedings - 5.

1.9 List of scientific publications on which the dissertation is based
Publications in refereed journals

[A1] H. Ganev, V. P. Garistov, and A. I. Georgieva, Description of the ground and octupole bands

in the symplectic extension of the interacting vector boson model, Phys. Rev. C 69, 014305 (2004).

[A2] H. G. Ganev and A. I. Georgieva, Transition probabilities in the U(6) limit of the Symplectic

Interacting Vector Boson Model, Phys. Rev. C 76, 054322 (2007).

[A3] H. G. Ganev, Collective states of the odd-mass nuclei within the framework of the interacting

vector boson model, J. Phys. G: Nucl. Part. Phys. 35, 125101 (2008).

[A4] H. G. Ganev, A. I. Georgieva, S. Brant, and A. Ventura, New description of the doublet bands

in doubly odd nuclei, Phys. Rev. C 79, 044322 (2009).

[A5] H. G. Ganev and S. Brant, Structure of the doublet bands in doubly odd nuclei: The case of
128Cs, Phys. Rev. C 82, 034328 (2010).

[A6] H. G. Ganev, Phase Structure of the Interacting Vector Boson Model, Phys. Rev. C 83,

034307 (2011).

[A7] H. G. Ganev, Triaxial shapes in the interacting vector boson model, Phys. Rev. C 84, 054318

(2011).

[A8] H. G. Ganev, Transition probabilities in the U(3,3) limit of the symplectic IVBM, Phys. Rev.

C 86, 054311 (2012).

[A9] H. G. Ganev, Axial asymmetry in the IVBM, Eur. Phys. J. A 49, 55 (2013).

[A10] H. G. Ganev, Simultaneous description of low-lying positive and negative parity bands in

heavy even-even nuclei, Phys. Rev. C 89, 054311 (2014).

[A11] H. G. Ganev, Collective degrees of freedom of the two-component nuclear system, Eur. Phys.

J. A 50, 183 (2014).
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[A12] H. G. Ganev, U(6)-phonon model of nuclear collective motion, Int. J. Mod. Phys. E 24,

1550039 (2015).

[A13] H. G. Ganev, Shell-model representations of the proton-neutron symplectic model, Eur. Phys.

J. A 51, 84 (2015).

[A14] H. G. Ganev, Some U(n1 + n2) ⊃ U(n1) ⊗ U(n2) isoscalar factors, Int. J. Mod. Phys. E

26, 1750057 (2017).

[A15] H. G. Ganev, Matrix elements of the proton-neutro symplectic model, Int. J. Mod. Phys. E

27, 1850021 (2018).

[A16] H. G. Ganev, Structure of the low-lying positive-parity states in 154Sm, Phys. Rev. C 98,

034314 (2018).

[A17] H. G. Ganev, U(6) quasi-dynamical symmetry in 238U, Nucl. Phys. A 987,112 (2019).

[A18] H. G. Ganev, Microscopic structure of the low-lying negative-parity states in 154Sm, Phys.

Rev. C 99, 054305 (2019).

[A19] H. G. Ganev, E1 transitions in the extended proton-neutron symplectic model, Phys. Rev.

C 99, 054304 (2019).

Full-texts in conference proceedings

[B1] H. G. Ganev, A. I. Georgieva, S. Brant, and A. Ventura, Structure of the doublet bands in

doubly odd nuclei with mass around 130, Proceedings of the XXVIII International Workshop on

Nuclear Theory (June 22-27, 2009, Rila Mountains, Bulgaria), ed. S. Dimitrova, Printed by BM

Trade Ltd., Sofia, Bulgaria 2010, pp. 177.

[B2] H. G. Ganev and A. I. Georgieva, Simultaneous Description of Even-Even, Odd-Mass and

Odd-Odd Nuclear Spectra, AIP Conf. Proc. 1203, 17 (2010).

[B3] H. G. Ganev, Phase Structure of the Interacting Vector Boson Model, Proceedings of the

XXIX International Workshop on Nuclear Theory (June 20-26, 2010, Rila Mountains, Bulgaria),

ed. A. Georgieva and N. Minkov, (Published by Heron Press, Sofia, 2010), pp. 119.

[B4] H. G. Ganev, Triaxiality in the IVBM, Proceedings of the XXXI International Workshop on

Nuclear Theory (June 24-30, 2012, Rila Mountains, Bulgaria), ed. A. Georgieva and N. Minkov,

(Published by Heron Press, Sofia, 2012), pp. 204.

[B5] H. G. Ganev, On the structure of triaxial nuclei, Proceedings of the 4-th International Confer-

ence on Current Problems in Nuclear Physics and Atomic Energy (Institute for Nuclear Research,

Kyiv, 2013), pp. 390.

[B6] H. G. Ganev, Nuclear shapes in the Interacting Vector Boson Model, Proceedings of the

XXXII International Workshop on Nuclear Theory (June 23-29, 2013, Rila Mountains, Bulgaria),

ed. A. Georgieva and N. Minkov, (Published by Heron Press, Sofia, 2013), pp. 141-150.

[B7] H. G. Ganev, Negative parity states in the IVBM, J. Phys. Conf. Ser. 533, 012015 (2014).

[B8] H. G. Ganev, Contraction limits of the proton-neutron symplectic model, EPJ Web of Con-

ferences 107, 03012 (2016).

[B9] H. G. Ganev, The proton-neutron symplectic model of nuclear collective motions, J. Phys.

Conf. Ser. 724, 012016 (2016).

[B10] H. G. Ganev, Structure of the low-lying positive parity states in the proton-neutron symplectic

model, J. Phys. Conf. Ser. 1023, 012013 (2018).

[B11] H. G. Ganev, U(6) dynamical and quasi-dynamical symmetry in strongly deformed heavy

nuclei, EPJ Web of Conferences 194, 05002 (2018).
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1.10 Structure of the dissertation
The dissertation consists of an Introduction, 12 Chapters, and a Conclusion with a list of the main

results obtained by the author, references and a list of the publications on which the dissertation

is based. The volume consists of two parts and is presented on 282 pages, contains 96 figures, 21

tables and a list of cited references consisting of 414 items.

The Part I represents the phenomenological approach to nuclear structure within the framework

of the phenomenological algebraic Interacting Vector Boson Model [16] in its symplectic and

orthosymplectic extensions. It contains 7 Chapters in which the new extensions of the IVBM are

developed and exploited in a full account. Symplectic and orthosymplectic dynamical symmetries

allow the change of the number of excitation quanta or phonons building the collective states

providing for larger representation spaces and richer subalgebraic structures to incorporate more

complex nuclear spectra.

The Part II represents the microscopic approach to nuclear collective motion. In this part it

is shown how the phenomenological IVBM can be generalized in a way to be compatible with the

proton-neutron composite structure of the nucleus. Along this line, by considering the possible

collective flows and the symplectic geometry of the two-component nuclear systems, a fully micro-

scopic Proton-Neutron Symplectic Model is formulated as a generalization of both the IVBM and

the one-component Sp(6, R) symplectic model. The latter is often referred to as a microscopic

collective model of nucleus. In Part II it is proved that the IVBM is a very particular case of

the PNSM and corresponds to the two-fluid irrotational-flow collective model of Bohr-Mottelson

type, which contains only two irreducible Sp(12, R) subspaces − the even (scalar) and the odd

(one-particle) nuclear Hilbert spaces that correspond to the case of even and odd-mass nuclei,

respectively.

Part I: The phenomenological approach
2 The Interacting Vector Boson Model
In Chapter 2, the IVBM is presented: its building blocks, the general rotationally invariant Hamil-

tonian and the role of Sp(12, R) as a dynamical group of the model. The algebraic structure of

the IVBM is given by a lattice of Sp(12, R) subgroups and the consideration of four dynamical

symmetry limits, when the Hamiltonian can be written as a linear combination of the Casimir

operators of a single reduction chain only.

3 The unitary dynamical symmetry limit
In Chapter 3, the unitary dynamical symmetry (DS), defined by the reduction

Sp(12, R) ⊃ U(6) ⊃ SU(3) ⊗ U(2) ⊃ SO(3)⊗ U(1),

[N ]6 (λ, µ) ⇐⇒ (N, T ) K L T0 (3)

is considered aiming the description of the first positive- and negative-parity bands up to high

angular momenta for many strongly deformed even-even nuclei from the rare-earth and actinide

mass regions [A1,A10,B7]. For this purpose, the following Hamiltonian is used [A1,A10,B7]:

H = aN + bN2 + α3T
2 + β3L

2 + α1T
2
0 , (4)
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which is diagonal in the basis labeled by the quantum numbers of the subgroups of group-subgroup

chain (3). As an example, in Fig. 1 we compare our theoretical predictions [A10,B7] for the

energies of the first excited positive and negative parity bands observed in 226Ra and 230Th with

experiment [18] and the results of some other collective models incorporating octupole or/and

dipole degrees of freedom.
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Figure 1: Comparison of the theoretical energies for the low-lying positive and negative parity bands in
226Ra and 230Th with experiment and some other collective models incorporating octupole or/and dipole
degrees of freedom.

For the practical application of this DS the symplectic basis in the Sp(12, R) irreducible space

is constructed and the role of symplectic generators as transition operators between different

basis states is clarified [A2]. Further, the tensorial properties of the Sp(12, R) generators are

considered with respect to the the unitary DS chain, which allow the matrix elements of Sp(12, R)

operators and any function of them to be calculated [A2] in a purely algebraic way by exploiting

the generalized Wigner-Eckart theorem. With the help of the obtained matrix elements, the

reduced B(E2) and B(E1) transition probabilities between the collective states of the ground and

first Kπ = 0−1 negative-parity band are compared with experiment, as given for example in Fig. 2

for 226Ra.
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Figure 2: Comparison of theoretical and experimental values for the matrix elements of the intraband E2
transitions in the ground state band and Kπ = 0− band, as well as the interband E1 transitions between
the states of the GSB and Kπ = 0− band, in 226Ra. For comparison, the theoretical predictions of some
other collective models incorporating octupole or/and dipole degrees of freedom are also shown.

In the practical calculations, the algebraic notion of the ”yrast” states is introduced as states

with a given L, built up of minimal number of vector excitations N − the eigenvalue of the total

number of bosons. The correspondence between the observed collective states and the symplectic

basis states, based on this notion, leads to the appearance of a vibrational term in the eigenvalues

of the Hamiltonian, which affects the ”yrast” energies. This term plays the role of an interaction

between the different bands under consideration, and in particular is responsible for the correct

reproduction of the odd-even staggering of the lowest positive- and negative-parity band energies,
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as shown in Fig. 3 for 226Ra and 230Th. Another examples of the staggering patterns are given in

[A1,A10].
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Figure 3: Theoretical and experimental staggering function Stg(L) = [6∆E(L)−4∆E(L−1)−4∆E(L+
1) + ∆E(L+ 2) + ∆E(L− 2)]/16 in 226Ra and 230Th.

4 Geometrical structure of the IVBM
In Chapter 4, the geometrical structure [A6,B3,B6] of the IVBM which corresponds to a specific

ground state configuration is obtained by means of the IVBM coherent states [B3,B6]:

| N ; r1, r2, θ ⟩ = 1√
N !

(B†)N | 0 ⟩ (5)

with

B† =
1√

r21 + r22

[
r1p

†
z + r2(n

†
xsinθ + n†

zcosθ)
]
, (6)

where | 0 ⟩ is the boson vacuum. The geometric properties of the ground states of nuclei within

the framework of the IVBM can then be studied by considering the energy functional

E(N ; r1, r2, θ) =
⟨N ; r1, r2, θ|H|N ; r1, r2, θ⟩
⟨N ; r1, r2, θ|N ; r1, r2, θ⟩

. (7)

By minimizing E(N ; r1, r2, θ) (7) with respect to r1, r2, and θ , ∂E/∂r1 = ∂E/∂r2 = ∂E/∂θ = 0,

one obtains the equilibrium ”shape” corresponding to any boson Hamiltonian, H. It is convenient

to introduce a new dynamical variable ρ = r2/r1 which together with the parameter θ determine

the corresponding ”shape”.

SU(3) x UT(2) 

g
'

''

g=1

 g=0 
O(6) 

Up(3) x Un(3) 

deformed
phase

spherical
phase

Figure 4: Phase diagram of IVBM. The corners of the triangle correspond to dynamical symmetries.

The basis nuclear shapes − namely, the spherical, axially deformed prolate and γ-unstable −
are obtained in the Up(3)⊗Un(3), SU(3)⊗UT (2) and O(6) DS limits of the IVBM, correspondingly.

The phase diagram of the generalized IVBM Hamiltonian

H = (1− η)Nn +
η

N − 1

[
−gQ̃ · Q̃+ (1− g)P †P

]
. (8)
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is constructed and studied [A6,B3]. The three terms in (8) correspond to the three dynamical

symmetries: Up(3)⊗ Un(3), SU(3)⊗ UT (2) and O(6). We have two control parameters: η and g;

hence the resulting phase diagram is two dimensional one. The phase shape diagram corresponding

to the IVBM Hamiltonian (8) can be depicted as a triangle as shown in Fig. 4 with each corner

denoting a dynamical symmetry. For η = 0 one obtains the Up(3) ⊗ Un(3) or the vibrational

limit; for η = 1 one encounters the two limiting cases of deformed shapes discussed above: g = 0

(O(6)− γ-unstable rotor) and g = 1 (SU(3)−axial rotor).

In some cases, the quantum phase transitions can take place between different ground state

configurations or ”shapes” of the system, occurring at zero temperature as a function of the

corresponding control parameter. The order of the phase transitions may be determined with the

standard approach (see, for instance, Ref. [9]). The shape-phase transitions that take place in the

IVBM are studied in detail in the end of Chapter 4.

5 Triaxial shapes in the IVBM
In Chapter 5, it is shown how the triaxial shapes can be obtained in the IVBM by different

perturbations of the SU∗(3) phase structure [A7,B4]. In particular, the two types of perturbation

terms on the SU∗(3) energy surface, namely the inclusion of a Majorana interaction and an O(6)

term, are considered. For example, the scaled energy surface of the SU∗(3) DS Hamiltonian, to

which a Majorana term is added, i.e.

HI = k
1

N − 1
C2[SU

∗(3)] + a
1

N − 1
M3, (9)

is given in Fig. 5 in the form of a three-dimensional plot and a contour plot, respectively. This

corresponds to a stable triaxial minimum which becomes deeper and deeper with the increasing of

the absolute value of the parameter a. It is further shown that a more accurate angular momentum

projection procedure [B6] also changes the topology of the pure SU(3) and SU∗(3) energy surfaces,

leading to oblate and maximum triaxial shapes, respectively.

Figure 5: The scaled energy surface ε(ρ, θ) in the SU∗(3) limit when a Majorana term is added. The
values of the model parameters used are k = −1, a = −3. For the contour plot only the region ρ > 0 is
depicted.

6 The U(3, 3) dynamical symmetry limit
In Chapter 6, the U(3, 3) dynamical symmetry [A8,A9,B5] of the IVBM which is defined by the

reduction

Sp(12, R) ⊃ U(3, 3) ⊃ Up(3)⊗ Un(3) ⊃ U∗(3) ⊃ SO(3)
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is introduced for studying the axial asymmetry in heavy even-even nuclei. This DS is appropriate

for nuclei in which the one type of particles is particle-like and the other is hole-like, as for example,

in the Os-Pt region. The symplectic basis is constructed along this DS chain [A8]. The effect of

a Majorana interaction on the energy of the non-perturbed U(3, 3) DS Hamiltonian is examined

[A7,B4,B5]. The inclusion of a Majorana term to the model Hamiltonian allows the range from

a γ-rigid to γ-unstable structures of the γ-band to be covered by the considered perturbation of

the U(3, 3) DS Hamiltonian. Thus, the following Hamiltonian

H = HU(3,3) + aM3, (10)

where

HU(3,3) = a1M
2 + b(N2

n −N2
p ) + a3C2[SU

∗(3)] + b3C2[SO(3)], (11)

is used to study the axially-asymmetric properties of heavy even-even nuclei. The Hamiltonian

(10) is applied for the calculation of the excitation energies of the ground and γ bands in 192Os,
190Os, and 112Ru [A9,B4,B5], which are assumed in the literature to possess triaxial shapes. For

example, the theoretical predictions [A9,B4,B5] for 192Os and 190Os, compared with experiment,

are presented in Fig. 6.
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Figure 6: Excitation energies for GSB and γ band in 190Os and 192Os.

Figure 7: A contour plot of the scaled energy surfaces ε(ρ, θ) corresponding to the Hamiltonian (10) for
190Os and 192Os isotopes, respectively. Only the region ρ > 0 is depicted.

There is a long-standing debate about the nature of the spectra of Os isotopes. Some authors

consider these nuclei as being O(6)-like with γ-unstable energy surfaces with a prolate minimum

[19], while other as asymmetric rotor [20, 21], which assumes rigidity in the γ degrees of freedom.

The Os isotopes considered here have been treated in terms of the IBM in the transition region

from the rotor to the γ-unstable limit [22]. In Ref.[23], these isotopes are considered as a textbook
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example of this transition. In Ref.[24] it was shown that the empirical deviations from the O(6)

limit of the IBM, in the Os-Pt region, can be interpreted by introducing explicitly triaxial degrees

of freedom, suggesting a more complex and possibly intermediate situation between γ-rigid and

γ-unstable properties. Indeed, as it can be seen from the presented examples, the experimentally

observed level spacings in the γ band are more regular. In terms of the potentials, this means

that the true potentials are γ-dependent. The ground state energy surfaces for the two axially

asymmetric nuclei 190Os and 192Os, given in Fig. 7, show a nearly γ-flat potential with very

shallow triaxial minimum for the ground state in 192Os, while for 190Os a typical for the O(6)

limit θ-unstable (or in IBM terms a γ-unstable) potential is observed. In other words, the potential

obtained in the present approach for 192Os is indeed a slightly γ-dependent, representing the case

of mixing of γ-flat and γ-rigid structures. Geometrical picture of these two nuclei, obtained within

the perturbed U(3, 3) DS, is also supported by the odd-even energy staggering patterns that are

shown in Fig. 8.
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Figure 8: Calculated and experimental staggering of the γ band in 190Os and 192Os isotopes.

Further, the tensor properties of the symplectic generators with respect to the U(3, 3) DS are

considered, which allow to calculate the matrix elements [A8] of the basic Sp(12, R) operators.

With the help of the latter, the B(E2) and B(M1) transition probabilities [A8,A9] between the

states of the ground and γ bands are calculated and compared with experiment for 190Os and
192Os.

7 The orthosymplectic extension of the IVBM
In order to incorporate the intrinsic spin degrees of freedom into the symplectic IVBM, we extend

the dynamical algebra of Sp(12, R) to the orthosymplectic algebra of OSp(2Ω/12, R) [A3]. For this

purpose we introduce a particle (quasiparticle) with spin j and consider a simple core plus particle

picture. Thus, in addition to the boson collective degrees of freedom (described by dynamical

symmetry group Sp(12, R)) we introduce creation and annihilation operators a†m and am (m =

−j, . . . , j), which satisfy the anticommutation relations

{am, a†m′} = δmm′ , {a†m, a
†
m′} = {am, am′} = 0. (12)

All bilinear combinations of a+m and am′ generate the fermion pair Lie algebra of SOF (2Ω)

[27]. Further, the fermion, Bose-Fermi and supersymmetry dynamical symmetries are shortly

considered, which still lead to exact analytical solutions for the odd-A and doubly odd nuclei.

The orthosymplectic (supersymmetric) extension of the IVBM is thus defined through the chain
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[A3]:

OSp(2Ω/12, R) ⊃ SOF (2Ω) ⊗ SpB(12, R)

⇓
⇓ ⊗ UB(6)

N

⇓
SUF (2) ⊗ SUB(3)⊗ UB

T (2)

I (λ, µ) ⇐⇒ (N,T )

↘ ⇓
⊗ SOB(3)⊗ U(1)

L T0

⇓
SpinBF (3) ⊃ SpinBF (2).

J MJ

(13)

We use the following Hamiltonian of the combined boson-fermion system

H = aN + bN2 + α3T
2 + β′

3L
2 + α1T

2
0 + ηI2 + γ′J2 + ζM2

J , (14)

which is diagonal in the basis that is classified according to Eq.(13). By considering the simplest

particle-core coupled-type physical picture, e.g., the states of the odd-A nuclei are obtained as a

result of the coupling of a particle with intrinsic spin taking a single j-value to a boson core whose

excitation states belong to an Sp(12, R) irrep. By using an algebraic notion of yrast states (i.e.

the states with given J , which minimize the energy with respect to the number of bosons N) the

experimentally observed collective states of odd mass nuclei are mapped onto the SU(3) stretched

states of the symplectic basis, which allows the energy levels of the ground and first excited bands

to be reproduced very well up to very high angular momenta. As an illustration, the excitation

energies of the ground and first few excited bands in 157Gd and 163Dy are shown in Fig. 9.
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Figure 9: Comparison of the theoretical and experimental energies for the ground and first excited bands
in 157Gd and 163Dy, respectively.

The important role of the symplectic structure of the model for the proper reproduction of

the intraband B(E2) behavior for odd-A nuclei is revealed [A3]. The theoretical predictions [A3]

for the two nuclei 157Gd and 163Dy are compared with the experimental data in Fig. 10. The
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Figure 10: Comparison of the theoretical and experimental values for the ground band B(E2) transition
probabilities in the 157Gd and 163Dy, respectively.

orthosymplectic extension of the IVBM is further exploited for the simultaneous description of the

collective states in even-even, odd-mass and doubly odd nuclei for two sets of neighboring nuclei

with various collective properties [B2].

8 Chiral doublet bands
In Chapter 8, the chiral rotation in some doubly odd nuclei from the A ∼ 130 region is studied in

the supersymmetric extension of the IVBM [A4,A5,B1], which still leads to exactly solvable limit

that yields a simple and straightforward application to real nuclear systems. In the calculations,

a consistent procedure that includes the analysis of the even-even and odd-even neighbors is

employed, which leads to a purely collective interpretation of the chiral doublet bands. It is

shown that the good agreement between theoretical and experimental band structures is a result

of the mixing of the basic rotational and vibrational collective modes which is traced back to the

level of the even-even cores. This allows for the correct reproduction of the high-spin states of

the collective bands and the correct placement of the different bandheads. As an example, the

excitation energies of the yrast and side bands in 132La and 134Pr are shown in Fig. 11.
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Figure 11: Comparison of the theoretical and experimental energies for the yrast and side bands in 132La
and 134Pr, respectively. The theoretical predictions of CPHCM/IBFFM are shown as well for comparison.

The important role of the symplectic terms entering in the corresponding transition operators

is revealed for the correct reproduction of the behavior of both B(E2) and B(M1) strengths,

which are crucial for establishing the nature of the twin bands. The theoretical predictions for

the intraband B(E2) and B(M1) values between the collective states of the yrast band in 134Pr

nucleus are compared with the experimental data [28] in Fig. 12. Additionally, for the case of
128Cs, it is demonstrated that the observed odd-even staggering of both B(E2) and B(M1) values

could be reproduced by the introduction of an appropriate interaction term of quadrupole type
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Figure 12: Comparison of the theoretical and experimental values for the B(E2) and B(M1) transition
probabilities between the states of yrast band in 134Pr. The theoretical predictions of the IBFFM and
TQPTR are shown as well.

[A5], which produces such a staggering effect in the transition strengths.

Part II: The microscopic shell-model approach
9 The Proton-Neutron Symplectic Model
In Chapter 9, a fully microscopic proton-neutron symplectic model [A11,B9] of collective motions

is formulated by considering the symplectic geometry and possible collective flows in the two-

component many-particle nuclear systems. To sketch this, we start with the translationally-

invariant relative Jacobi vectors in the two-component many-particle nuclear system. The position

xis(α) and momentum pis(α) operators of these m = A − 1 Jacobi vectors, together with the

identity operator, close the Heisenberg-Weyl Lie algebra hw(6m) = {xis(α), pjt(α), I} with s, t =

1, 2....,m, i, j = 1, 2, 3, and α, β = p, n. The many-particle nuclear configuration space is R6(A−1)

and can be decomposed into a product of collective and intrinsic submanifolds which could be

represented as an orbit of the direct product group GL(6, R)⊗O(A− 1). Then the many-particle

nuclear phase space could be represented as an orbit of the direct product group Sp(12, R) ⊗
O(A− 1) which is a subgroup of the full dynamical group of the whole system Sp(12(A− 1), R),

formed by all Hermitian bilinear combinations of position and momentum operators of the Jacobi

quasiparticles. The nuclear Hilbert space of spatial wave functions of the corresponding quantum

system then decomposes into a direct sum of irreducible Sp(12, R)⊗O(A−1) subspaces. It follows

that the group Sp(12, R) is the group of pure collective excitations in the proton-neutron system

and the collective observables of the PNSM can be represented by the following O(A−1) invariant

one-body operators [A11]:

Qij(α, β) =
m∑
s=1

xis(α)xjs(β), (15)

Sij(α, β) =
m∑
s=1

(
xis(α)pjs(β) + pis(α)xjs(β)

)
, (16)

Lij(α, β) =
m∑
s=1

(
xis(α)pjs(β)− xjs(β)pis(α)

)
, (17)

Tij(α, β) =
m∑
s=1

pis(α)pjs(β). (18)
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The possible collective flows are obtained by considering different motion groups that can be

formed by certain subsets of the symplectic generators (15)−(18). In particular, the operators (17)

that constitute the motion group SO(6) represent the infinitesimal generators of rigid rotations

in the 6-dimensional space. From another side, the shear operators (16) are the infinitesimal

generators of irrotational-flow rotations and vibrations. The operators Sij(α, β) together with

the angular momenta Lij(α, β) close under commutation and span the Lie algebra gl(6, R) ≡
{Sij(α, β), Lij(α, β)} of the GL(6, R) motion group. The latter allows for the separate treatment of

the collective dynamics of proton and neutron subsystems, as well as the combined proton-neutron

collective excitations. By enlarging the set ofGL(6, R) momentum operators with other symplectic

generators one obtains some other dynamical subalgebras of Sp(12, R). Among the subalgebras

of the latter are, for example, the general collective motion in six dimensions GCM(6) and the

coupled two-rigid rotor model ROTp(3)⊗ROTn(3) ⊃ ROT (3) Lie algebras. The CCM(6) algebra

introduces the SO(6) intrinsic vortex degrees of freedom which coupled to the giant resonances

allows for the continuous range of rotational dynamics from rigid to irrotational flow. It is also

shown [A11] that the GCM(6) and Sp(12, R) models appear as hydrodynamic irrotational-flow

collective models of the two-component nuclear system that include 21 collective irrotational-flow

degrees of freedom, augmented by a SO(6) and U(6) intrinsic structure, respectively, associated

with the vortex degrees of freedom.

The full dynamical group Sp(12(A − 1), R) of the whole many-particle system allows the

separation of the nuclear variables into kinematical (internal) and dynamical (collective) ones,

which in turn allows to determine the number and type of collective degrees of freedom in the

two-component many-particle nuclear systems purely by a group-theoretical consideration of the

relevant coordinate transformation of the microscopic many-particle configuration space. The sim-

plest kinematically-correct nuclear wave functions (i.e., microscopically translationally-invariant,

which preserve the observed integrals of motion) are constructed [A11,B9] in terms of collective

and their complementary intrinsic coordinates and are represented correspondingly as a product

of collective and intrinsic components.

Further, the representation theory of the PNSM in the many-particle shell-model Hilbert space

is considered [A13]. This can be naturally obtained by introducing the standard creation and

annihilation operators of harmonic oscillator quanta

b†iα,s =

√
mαω

2~

(
xis(α)−

i

mαω
pis(α)

)
, biα,s =

√
mαω

2~

(
xis(α) +

i

mαω
pis(α)

)
. (19)

Then the symplectic generators take an alternative form in terms of all bilinear combinations of

the harmonic oscillator raising and lowering operators that are O(m) invariant [A13]:

Fij(α, β) =
m∑
s=1

b†iα,sb
†
jβ,s, Gij(α, β) =

m∑
s=1

biα,sbjβ,s, (20)

Aij(α, β) =
1

2

m∑
s=1

(b†iα,sbjβ,s + bjβ,sb
†
iα,s). (21)

The relation of Sp(12, R) irreducible representations of the PNSM to the shell-model classifi-
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cation of the basis states is considered by extending of the state space to the direct product space

of SUp(3) ⊗ SUn(3) irreps, generalizing in this way the Elliott’s SU(3) model [5] for the case of

two-component system. Thus, the following reduction chain [A13]:

Sp(12, R) ⊃ U(6) ⊃ SUp(3)⊗ SUn(3) ⊃ SU(3) ⊃ SO(3) ⊃ SO(2) (22)

σ nρ E γ (λp, µp) (λn, µn) ϱ (λ, µ) K L M

is used to completely specify the basis of an Sp(12, R) irrep. The PNSM then appears as a natural

multi-major-shell extension of the generalized proton-neutron SU(3) scheme which takes into ac-

count the core collective excitations of monopole and quadrupole, as well as dipole type associated

with the giant resonance vibrational degrees of freedom. It is shown that each Sp(12, R) irreducible

representation is determined by a symplectic bandhead or an intrinsic U(6) space which can be

fixed by the underlying proton-neutron shell-model structure, so the theory becomes completely

compatible with the Pauli principle. It is demonstrated that this intrinsic U(6) structure is of

vital importance for the appearance of the low-lying collective bands without involving a mixing

of different symplectic irreps [A13,B9]. Thus, within the PNSM shell-model framework, the full

many-body Hilbert space is organized vertically into different symplectic slices or cones. Each

symplectic slice represents an irreducible collective space of the microscopic collective model and

is a small fraction of the full nuclear state space. Further, such organization of the model space

allows to build up the required quadrupole collectivity without the use of an effective charge.

Then, the full many-body Hilbert space decompose into a direct sum of different symplectic ir-

reducible representations. The structure of the Sp(12, R) irreducible collective subspaces is that

of the coupled product of 21-dimensional vibrator, corresponding to the giant resonance degrees

of freedom and an intrinsic U(6) structure that is related to the valence proton-neutron degrees

of freedom, respectively. This is schematically shown in Fig. 13. The U(6) intrinsic structure,

in turn, contains many SU(3) multiplets that are appropriate for the description of different ro-

tational bands. Thus, it is demonstrated that the full range of low-lying collective states could,

in principle, be described by a microscopically based intrinsic U(6) structure that is renormalized

due to the coupling to the giant resonance vibrations.

Summarizing, the chain (22) defines a shell-model coupling scheme for detail microscopic cal-

culations of nuclear properties and provides a natural mechanisms for identifying the relevant

shell-model subspaces.

10 Many-particle limits of the PNSM
In Chapter 10 are considered the many-particle (also referred to as macroscopic or hydrodynamic)

limits [A12,B8] of the PNSM which show how a given microscopic discrete system starts to behave

like a continuous fluid and reveal further its physical content. The macroscopic limits, which take

place at large dimentional representations, are obtained by purely algebraic way using the formal

expansion-contraction group-theoretical procedure [29, 30]. The algebraic approach thus allows

to interpret a given microscopic algebra of collective observables at macroscopic level in simple

geometrical terms. Consequently, it is shown that as a result of the contraction, two new simplified

macroscopic models of nuclear collective motion appear. The first one is the U(6)-phonon model
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Figure 13: The structure of Sp(12, R) irreducible collective spaces for the PNSM is that of a coupled
product of a 21-dimensional vibrator, related to the core collective excitations associated with the giant
resonance degrees of freedom, and a microscopically based intrinsic U(6) structure, related to the va-
lence shell proton-neutron degrees of freedom that contains many SU(3) multiplets appropriate for the
description of different low-lying collective bands.

[A12,B8] with the semi-direct product structure [HW (21)]U(6), which is shown to be actually

an alternative formulation of the original proton-neutron symplectic model in the familiar IBM-

terms. It is obtained in the limit 2n << σ0, in which the symplectic raising and lowering generators

behave like boson operators. The full correspondence of the all Sp(12, R) algebra generators and

that of [HW (21)]U(6) is given by [A12,B8]:

F 0(p, p) ↔
√
2σ0s

†
p, F 2

M(p, p) ↔
√
2σ0d

†
M,p,

F 0(n, n) ↔
√
2σ0s

†
n, F 2

M(n, n) ↔
√
2σ0d

†
M,n,

F 0(p, n) ↔
√
2σ0s

†
δ, F 2

M(p, n) ↔
√
2σ0d

†
M,δ,

F 1
M(p, n) ↔

√
2σ0p

†
M , AL

M(α, β) ↔ AL
M(α, β), (23)

and their hermitian conjugate counterparts. σ0 = (σ1+ . . .+σ6)+
6
2
(A−1) is the eigenvalue of the

harmonic oscillator Hamiltonian for the lowest weight state with energy ~ω and n determines the

energy of 2n~ω excited space. Note that beyond the s and d bosons (phonons) which represent

the giant monopole and quadrupole vibrational quanta, respectively, the dipole giant degrees of

freedom appear that are represented by the components of the p-boson which arise from the

contraction of the symplectic proton-neutron raising/lowering operators. The set of operators

{s†τ , d
†
M,τ , p

†
M , sτ , dM,τ , pM , I} (τ = p, n, δ) generates the vibrational hw(21) phonon algebra. The

later consists of the IBM-3 building blocks [9] plus the extra degrees of freedom represented by

the components of the dipole p-boson.

At large SU(3) quantum numbers, the intrinsic substructure SUp(3) ⊗ SUn(3) ⊃ SU(3) of

U(6), associated with the proton-neutron valence shell degrees of freedom, further reduces to

ROTp(3)⊗ROTn(3) ⊃ ROT (3), i.e. to that of two coupled rigid rotors (two-rotor model). Thus,

the second model which appears in double contraction limit of the PNSM is the two-rotor model

with the ROTp(3) ⊗ ROTn(3) ⊃ ROT (3) algebraic structure [B8]. The latter, in contrast to the

original two-rotor model [31], is shown to be not restricted to the case of two coupled axial rotors.

In this way, the second contraction limit of the PNSM is shown to provide the phenomenological

two-rotor model [31] with a simple microscopic foundation. In this way, in double contraction limit,

the sp(12, R) algebra reduces to the coupled two-rotor model algebra rotp(3) ⊕ rotn(3) ⊃ rot(3)
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and a phonon algebra hw(21) of the giant resonance vibrational degrees of freedom. The full range

of low-lying collective states could then be described as two-rotor model states, renormalized by

their coupling to the giant resonance vibrations.

11 The PNSM matrix elements
In Chapter 11, the computational technique [A14,A15] required for practical application of the

PNSM at U(6) level is developed. The aim is to obtain the PNSM matrix elements, which are

obtained by purely algebraic way by using a generalized Wigner-Eckart theorem with respect to

the symmetry-adapted basis of the PNSM. The application of this theorem depends upon the

knowledge of the corresponding isoscalar factors (IFs) which were not available. Thus, as a first

step it is shown what kinds of IFs appear in the diagonalization of the model Hamiltonian of

the two-component many-body systems [A14]. Some of relevant isoscalar factors, needed for the

calculation of PNSM matrix elements, are further obtained using a building-up procedure [A14].

With the help of obtained IFs, the matrix elements [A15] of the Sp(12, R) generators of the

PNSM are next obtained in a U(6)-coupled basis in the space of fully symmetric representations.

This allows further the matrix elements of any physical operator of interest, such as the relevant

transition operators or the collective potential, to be calculated. As an illustration, the matrix

elements of the basic irreducible tensor terms which appear in the U(6) decomposition of the

long-range full major-shell mixing proton-neutron quadrupole-quadrupole interaction Qp ·Qn are

presented [A15].

12 Structure of the low-lying positive-parity states
Using the obtained matrix elements for the collective potential, in Chapter 12 the PNSM is firstly

applied [A16,A17,B10,B11] to the simultaneous description the low-lying states of the lowest

ground, β and γ bands in three strongly deformed heavy nuclei, namely 166Er [B10], 154Sm [A16]

and 238U [A17]. For this purpose, the algebraic model Hamiltonian

HI =N~ω − 1

2
χ
[
Qp ·Qn − (Qp ·Qn)TE

]
− ξC2[SU(3)] + aL2, (24)

is diagonalized in a SUp(3) ⊗ SUn(3) symmetry-adapted basis for 166Er, and a U(6)-coupled

basis, respectively, for 154Sm and 238U which is restricted to the state space spanned by the fully

symmetric U(6) irreps. As an illustration, the excitation energies of the three positive-parity bands

under considerations in 154Sm are shown in Fig. 14. For 238U , since the full major-shell-mixing

Qp · Qn interaction favors the horizontal mixing of different SU(3) multiplets over the vertical

one, a more general Hamiltonian is used to determine the microscopic structure of the low-lying

collective states, in which Qp ·Qn is replaced by its (in-shell) U(6)-restricted part Q̃p · Q̃n, and a

rather general vertical mixing term that lies in the enveloping algebra of Sp(12, R) is introduced

HII =N~ω − 1

2
χQ̃p · Q̃n − ξC2[SU(3)] + aL2

− k
∑
α ̸=β

(
A2(α, α) ·G2(β, β) +G2(α, α) ·G2(β, β) + h.c.

)
. (25)
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Correspondingly, the intraband B(E2) transition probabilities between the states of the ground

band in 154Sm and 238U are given in Fig. 15.
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Figure 14: Comparison of experimental energy levels a) with the theory b) for the low-lying positive-parity
ground, β and γ bands and negative-parity Kπ = 0−1 and Kπ = 1−1 bands in 154Sm.
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Figure 15: Calculated and experimental intraband B(E2) values between the states of the ground band in
154Sm and 238U , respectively. No effective charge is used. For comparison, the theoretical prediction of
some other collective models are also shown in the case of 238U .

It is shown that a good description of the energy levels of these bands for the all three nuclei,

as well as the intraband B(E2) transition strengths between the states of the ground band (and

of γ band for 166Er) is obtained without the use of an effective charge [A16,A17,B10,B11]. As

an illustration, the intraband ground band B(E2) values in 154Sm and 238U are compared with

experiment in Fig. 15. For 166Er, the results for the microscopic structure show the presence of

a good SU(3) dynamical symmetry [B10]. For the other two nuclei 154Sm and 238U , we show the

relevant SU(3) (for 154Sm) and U(6) (for 238U) decompositions of their wave functions in Figs.

16 and 17, respectively. The calculations show that when the collective quadrupole dynamics is

covered already by the symplectic bandhead structure, as in the case of 154Sm, the results show

the presence of a very good U(6) dynamical symmetry [A16,B11]. In the case of 238U , when

we have an observed enhancement of the intraband B(E2) transition strengths, then the results

show small admixtures from the higher major shells and a highly coherent mixing of different

irreps which is manifested by the presence of a good U(6) quasi-dynamical symmetry [A17,B11]

in the microscopic structure of the collective states under consideration. The (parameter-free)

results for B(E2) collectivity, obtained for the three nuclei 166Er, 154Sm and 238U , are shown

to be very close to those of the phenomenological one-parameter rigid rotor model. The close

agreement between the rigid rotor and the PNSM is a strong implication that they effectively

describe the same rotational dynamics, albeit in the sense of quasi-dynamical symmetry. But, the

most important point is that the PNSM calculations allow to identify the kinds of shell-model

configurations needed to describe the rotational states of strongly deformed nuclei.
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Figure 16: Calculated SU(3) probability distributions for the wave functions for the 0+ states of the
ground and β bands, and for the 2+ state of the γ band in 154Sm.
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Figure 17: Calculated U(6) probability distributions for the wave functions of the ground, β, and γ bands
in 238U for three different angular momentum values.

13 Structure of the low-lying negative-parity states
In Chapter 13, the new microscopic theory is further applied for the first time for obtaining

the microscopic structure of the low-lying negative parity states [A18,A19] of the Kπ = 0−1 and

Kπ = 1−1 bands in 154Sm and 238U without the introduction of additional degrees of freedom,

inherent to other approaches to odd-parity nuclear states. For this purpose, the following slightly

modified Hamiltonians

HI =N~ω − 1

2
χ
[
Qp ·Qn − (Qp ·Qn)TE

]
− (ξ + ξsym)C2[SU(3)] + aL2 + ϵ(Nb.h. −N0), (26)

and

HII =N~ω − 1

2
χQ̃p · Q̃n − (ξ + ξsym)C2[SU(3)] + aL2

− k
∑
α ̸=β

(
A2(α, α) ·G2(β, β) +G2(α, α) ·G2(β, β) + h.c.

)
+ ϵ(Nb.h. −N0), (27)

are diagonalized respectively for 154Sm and 238U in a U(6)-coupled basis, restricted to state

space spanned by the fully symmetric U(6) irreps of the lowest odd irreducible representation

of Sp(12, R). It is shown that a good description of the energy levels of the two bands under

consideration, as well as the reproduction of some energy splitting quantities which are usually

introduced in the literature as a measure of the octupole correlations, is obtained for these two

nuclei. The excitation energies of the negative-parity states of the Kπ = 0−1 and Kπ = 1−1 bands,

together with the positive-parity states, were shown in Fig. 14 for 154Sm.

It is further shown that practically there are no admixtures from the higher shells in the

microscopic structure of low-lying collective states with negative-parity in 154Sm and that this

points to the presence of a very good U(6) dynamical symmetry [A18]. Additionally, it is shown

that the structure of the collective states under consideration for this nucleus shows also the
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Figure 18: Calculated SU(3) probability distributions for the wave functions of the Kπ = 0−1 and Kπ = 1−1
bands in 154Sm for three different angular momentum values.

presence of a good SU(3) quasi-dynamical symmetry [A18], as is evident, e.g., from Fig. 18. For
238U , likewise the positive-parity states, the microscopic structure of the low-lying negative-parity

states [A19] show small admixtures from the higher major shells and a highly coherent mixing of

different irreps (a good U(6) quasi-dynamical symmetry).
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Figure 19: Comparison of the calculated B(E1) values in Weisskopf units between the states of the ground
band and Kπ = 0−1 band in 154Sm and 238U , respectively, with experiment. No effective charge is used.

Further, the low-energy E1 transitions are tackled within the framework of PNSM. In order

to study the electric dipole strengths, the explicit matrix elements of dipole operator are obtained

[A19]. To achieve this, we make the central extension [A19] of the proton-neutron symplectic model

that has the semi-direct structure wsp(12,R) ≡ [hw(6)]sp(12,R), which in contrast to the sp(12,R)

algebra among its generators contains the electric dipole operator, which allows to calculate the

reduced E1 transition strengths. It is demonstrated that this extension introduces 1~ω 1p-1h

(one proton or one neutron Jacobi particle raised by one shell) excitations [A19] to the PNSM

2~ω like particle 1p-1h (one proton or neutron Jacobi particle raised by two major shells) and

proton-neutron 2~ω 2p-2h (one proton and one neutron Jacobi particles raised by one shell) core

excitations. In this way, all kinds of np-nh shell-model configurations with any even or odd

number of harmonic-oscillator quanta are incorporated in the theory. It is demonstrated also

that any collective operator of physical interest that can be brought in the form of an arbitrary

function of either even or odd power in the many-particle position and momentum coordinates

will lie in the enveloping wsp(12,R) algebra. Next, the theoretical values of the low-energy B(E1)

transition strengths between the states of the ground band and Kπ = 0−1 band in 154Sm and 238U

are compared with experiment in Fig. 19.

14 Summary and conclusions
In the present dissertation, we have developed an algebraic theory of the collective motions in

atomic nuclei starting from the phenomenological Interacting Vector Boson Model in which the

collective excitations are considered as built up from two vector bosons or elementary excita-

tion quanta (phonons). Development of the IVBM concerned its mathematical structure (new
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dynamical symmetry limits, matrix elements, different extensions) as well as its application to

diverse collective phenomena in the even-even, odd-mass and odd-odd heavy nuclei, including the

simultaneous description of observed collective states in families of neighboring odd and even A

nuclei with varying collective properties. A simple description and a clear collective interpretation

of the obtained results were obtained within the IVBM using mainly the solutions of its exact

dynamical symmetry limits. Further, using the algebraic strategy proposed in the Introduction

we demonstrated how the phenomenological theory, presented in particular by the IVBM, can

be given a microscopic foundation. In this way by using the elegant group-theoretical methods

and the approach initiated by Tomonoga [32] in 1950s, followed by Cusson, Weaver, Bidenharn

[33, 34, 35, 36, 37], Ui [38], Rowe and Rosensteel [13, 39, 40, 41] during the 1960s and 1970s

in obtaining a microscopic version of the Bohr-Mottelson collective model which is expressed in

terms of all single particle coordinates and compatible with the Pauli principe, we extended their

results to the case of two-component proton-neutron nuclear systems. Thus, by considering the

possible collective flows and the symplectic geometry of the proton-neutron system we have for-

mulated a fully microscopic proton-neutron symplectic model of nuclear collective motions with

Sp(12, R) spectrum generating algebra. The latter extends the microscopic collective model known

as (one-component) Sp(6, R) symplectic model to the case of two-component many-particle nu-

clear systems by embedding Sp(6, R) ⊂ Sp(12, R). This allows the separate treatment of the

proton and neutron excitations, as well as the more complete proton-neutron combined dynamics.

Simultaneously, the PNSM extends also the IVBM by augmenting the latter with an intrinsic

structure related to the vortex dynamics. The addition of intrinsic vortex degrees of freedom is

very important to the microscopic theory of nuclear collective motion, because by their coupling

to the irrotational-flow collective dynamics one is able to obtain the observed low-lying states of

atomic nuclei. Moreover, the vortex degrees of freedom related to the intrinsic motion of all pro-

tons and neutrons allow to ensure the proper permutational symmetry of nuclear wave functions

and realize them as vectors in the many-particle Hilbert subspaces of the microscopic shell model.

In other words, by exploiting the algebraic strategy we extend the phenomenological IVBM in

such a way (supplying it with a microscopic intrinsic U(6) structure) that a new model, fulfill-

ing the microscopic translationally-invariant requirements, emerges as a submodel of the nuclear

shell model by embedding its dynamical algebra in the infinite-dimensional spectrum generating

algebra of one-body operators of the shell model.
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