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Spin excitations and mechanisms of superconductivity in cuprates
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A microscopic theory of spin excitations in strongly-correlated electronic systems within the 2D t�J model

is discussed. An exact representation for the the dynamic spin susceptibility is derived. In the normal state,

the excitation spectrum reveals a crossover from spin-wave-like excitations at low doping to overdamped para-

magnon excitations above the optimal doping. In the superconducting state, the resonance mode (RM) at

the antiferromagnetic wave vector Q = π(1, 1) appears which is explained by a strong suppression of the

spin excitation damping at low temperatures caused by a spin gap at Q rather than by opening of a super-

conducting gap. The energy of the RM is temperature independent and is observed even above Tc in the

underdoped region in agreement with experiments on YBCO compounds. A major role of spin excitations in

superconducting pairing in cuprates is stressed in discussing mechanisms of high-Tc superconductivity.

Recent studies of charge- spin-excitation spectra

using angle-resolved photoemission (ARPES) and in-

elastic neutron scattering (INS) have revealed an im-

portant role of antiferromagnetic (AF) spin excita-

tions in the �kink� phenomenon and the d-wave pair-

ing in cuprates. In particular, in Ref. [1] a quantita-

tive analysis of the AF spin-excitation spectrum mea-

sured by INS and of ARPES data for the spin-fermion

coupling on the same YBa2Cu3O6.6 (YBCO6.6) crys-

tal has enabled to solve the Eliashberg equation and

to estimate the superconducting transition tempera-

ture which exceeds Tc = 150 K.

The main argument against the spin-�uctuation

pairing, the weak intensity of spin �uctuations at the

optimal doping seen in the INS experiments [2], was

dismissed in recent resonant inelastic x-ray scattering

(RICS) [3]. In a large family of cuprate superconduc-

tors paramagnon AF excitations with dispersions and

spectral weights similar to those of magnons in un-

doped cuprates were found. A numerical solution of

the Eliashberg equations for the magnetic spectrum

found in YBCO7 results in Tc = 100− 200 K.

In this report we present a microscopic theory of

spin-excitation spectrum in strongly correlated elec-

tronic systems (SCES) [4, 5] to be used in further in-

vestigation of the spin-�uctuation pairing mechanism.

1. Dynamic spin susceptibility. To describe

the low-energy spin excitations in SCES the one-

subband t�J model can be used:

H =
∑
i ̸=j,σ

tij ĉ
†
iσ ĉjσ +

1

2

∑
i̸=j

Jij (SiSj −
ninj

4
), (1)

where tij is the hopping integral and Jij is the ex-

change interaction. Here ĉ†iσ = c†iσ (1−ni,−σ) are the

projected fermion operators acting in the the singly

occupied subband and ni =
∑

σ ni,σ, ni,σ = ĉ†iσ ĉiσ.
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Sα
i = (1/2)

∑
σσ′ ĉ

†
iστ

α
σσ′ ĉiσ′ are the spin-1/2 opera-

tors where τασσ′ are the Pauli matrices, σ = ±1.

Using the Mori projection technique [6], an ex-

act representation for the dynamical spun suscepti-

bility (DSS) determined by the retarded Green func-

tion (GF) of the transverse spin-density operators

S±
q = Sx

q ± iSy
q can be derived [7] (see also [8]):

χ(q, ω) = −⟨⟨S+
q |S−

−q⟩⟩ω =
m(q)

ω2
q + ωΣ(q, ω)− ω2

,

(2)

where m(q) = ⟨[iṠ+
q , S−

−q]⟩ = ⟨[ [S+
q ,H], S−

−q]⟩, and
ωq is the spin-excitation spectrum in the generalized

mean-�eld approximation (GMFA). The self-energy is

given by the Kubo-Mori relaxation function

Σ(q, ω) = [1/m(q)] ((−S̈+
q | − S̈−

−q))
(pp)
ω , (3)

where −S̈±
q = [ [S±

q ,H], H]. The relaxation function

is related to the GF by the equation: ω((A|B))ω =

⟨⟨A|B⟩⟩ω − ⟨⟨A|B⟩⟩ω=0. The �proper part� (pp) of

the relaxation function (3) describes the projected

time evolution as in the original Mori projection tech-

nique. The static susceptibility in (2) is de�ned by

the equation χq = χ(q, 0) = m(q)/ω2
q. The spin-

excitation spectrum ωq was calculated from the equal-

ity m(q) = (−S̈+
q , S−

−q) = ω2
q (S

+
q , S−

−q), where the

correlation function (−S̈+
q , S−

−q) was evaluated in the

GMFA [4].

The self-energy (3) is de�ned in terms of the force

operators −S̈±
i = [[S±

i , (Ht + HJ)], (Ht + HJ )] ≡∑
α Fα

i (α = tt, tJ, Jt, JJ), where Ht and HJ are

the hopping and the exchange parts of the Hamil-

tonian (1). There are 16 contributions of the type

((Fα
q |F γ

−q))ω. At a �nite hole doping δ > 0.05 the

largest contribution to the self-energy (3) is given by
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the term Σt(q, ω) = ((F tt
q |F tt

−q))ω /m(q) caused by

spin-electron scattering [4],

F tt
i =

∑
j,n

tij

{
tjn

[
H−

ijn +H+
nji

]
− (i ⇐⇒ j)

}
, (4)

where H−
ijn = ĉ†iσS

−
j ĉnσ+ĉ†i↓(1−nj,−σ)ĉn↑ . We calcu-

late the self-energy in the the mode-coupling approx-

imation assuming independent propagation of elec-

tronic ( ĉ†iσ ) and bosonic (S
+
j , ni,σ ) excitations at dif-

ferent lattice sites, i ̸= j, j ̸= n, in (4):

⟨ĉ†iσS
−
j ĉnσ|ĉ†n′σ(t)S

+
j′ (t)ĉi′σ(t)⟩

= ⟨ĉ†iσ ĉi′σ(t)⟩ ⟨S
−
j S+

j′ (t)⟩ ⟨ĉnσ ĉ
†
n′σ(t)⟩ . (5)

In the superconducting state anomalous correlation

functions ⟨ĉ†i,−σ ĉ
†
n′σ(t)⟩⟨S

−
j S+

j′ (t)⟩ ⟨ĉnσ ĉi′,−σ(t)⟩ have

to be also taken into account. Using the spectral

representation for the correlation functions in (5) the

imaginary part of the self-energy can be written as [5]:

Σ′′
t (q, ω) = −π(2t)4(eβω − 1)

m(q)ω

∫ ∫ ∫ ∞

−∞
dω1dω2dω3

1

N2

∑
q1,q2

N(ω2)[1− n(ω1)]n(ω3)δ(ω + ω1 − ω2 − ω3)

Bq2(ω2)
[
(Λ2

q1,q2,q3
+ Λ2

q3,q2,q1
)AN

q1
(ω1)A

N
q3
(ω3)

−2Λq1,q2,q3Λq3,q2,q1 A
S
q1σ(ω1)A

S
q3σ(ω3)

]
. (6)

The interaction is de�ned by the nearest-neighbor

hopping integral t and Λq1q2q3 = 4(γq3+q2−γq1) γq3+

γq2 − γq1+q3 , q3 = q − q1 − q2, γq = 1/2(cos qx +

cos qy). Here AN
q (ω) = −(1/π)Im⟨⟨ĉqσ|ĉ†qσ⟩⟩ω and

AS
qσ(ω) = −(1/π)Im⟨⟨ĉqσ|ĉ−q,−σ⟩⟩ω, are the electronic

and Bq(ω) = (1/π)χ′′(q, ω) is the spin-excitation

spectral functions. n(ω) = (eβω + 1)−1 and N(ω) =

(eβω − 1)−1 are the Fermi and Bose functions.

2. Spin dynamics in the normal state. The

spectrum of spin excitations ωq and the damping

Γq = −(1/2)Σ′′(q, ωq) were calculated using the

imaginary part of the self-energy in the normal state

Σ′′
t (q, ω) (6) and a similar expression for the self-

energy Σ′′
J (q, ω) caused by the exchange interaction,

F J
i = [[S+

i ,HJ )],HJ ]. The electronic spectral func-

tion AS
qσ(ω) was calculated in the Hubbard I approx-

imation while for Bq(ω) the GMFA was used. In the

Heisenberg limit at δ = 0 the spectrum of spin excita-

tions and the damping ΓJ,q are shown in Fig. 1. Well-

de�ned quasiparticle excitations with Γq ≪ ωq char-

acteristic to the Heisenberg model are found. How-

ever, for non-zero doping the spin-electron scattering

contribution Σ′′
t (q, ω) (6) increases rapidly with dop-

ing and temperature and already at moderate hole

concentration far exceeds the spin-spin scattering con-

tribution Σ′′
J(q, ω) as demonstrated in Fig. 2. We
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Fig. 1. Spectrum ωq (solid line) and damping ΓJ,q

(dashed line) in the Heisenberg limit, δ = 0, at

T = 0.35J .
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Fig. 2. Spectrum ωq (solid line), damping ΓJ,q (dot-

ted line) and Γt,q (dashed line) at T = 0.15t and

δ = 0.1 .

conclude, that at low enough doping and low temper-

atures well-de�ned spin-wave-like excitations propa-

gating in the AF short-range order background are

observed, while for higher doping and temperatures

a crossover to AF paramsgnon-like spin excitations

occurs as found in INS experiments [2, 9].

3. Magnetic resonance mode. In the super-

conducting state the spin-excitation spectrum of high-

Tc cuprates is dominated by a sharp magnetic peak at

the AF wave vector Q which is called the resonance

mode (RM) [2]. The RM energy Er decreases with

underdoping scaling with Tc: Er ≃ 5.3kBTc, but only

weakly depends on temperature (see, e.g. [10, 11]).

The RM was often studied within the spin-fermion

models using the random phase approximation (RPA)

for the DSS. In this approach, the opening of the en-

ergy gap 2∆q in the particle-hole continuum of excita-

tions below Tc results in the appearance of the RM as

a bound state (spin-exciton) at the energy Er < 2∆q.

However, in this scenario a strong temperature depen-

dence of the RM driven by 2∆(T ) should be observed

which has not been found in experiments.

In our theory the self-energy (6) is determined by

the decay of a spin excitation with the energy ω and
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Fig. 3. Spectral function for doping δ = 0.2 com-

pared to experimental data [2], at T = 5K (squares)

and T = 100K (circles).
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Fig. 4. Spectral function for doping δ = 0.09 com-

pared to experimental data [10] at T = 8K (squares)

and T = 85K (circles).

the wave vector q into three excitations: a particle-

hole pair and a spin excitation. This process is con-

trolled by the energy and momentum conservation

laws, ω = (ω3−ω1)+ω2 and q = q1+q2+q3, which

is quite di�erent from the RPA calculations where in

the decay process only the particle-hole pair is taken

into account. In several studies of the self-energy in

the t-J model the contribution of the additional spin

excitation was neglected or approximated by static or

mean-�eld-type expressions (see, e.g., [8]). This ap-

proximation results in the RPA-type DSS and in a

similar temperature dependence of the RM.

We have calculated the spectral function χ′′(Q, ω)

using the self-energy (6) and assuming the d-wave gap

function ∆q = (∆/2)(cos qx− cos qy) in the supercon-

ducting state. The DSS reveals a pronounced RM

at low temperatures and a weak temperature depen-

dence at T . Tc due to a strong suppression of damp-

ing of spin excitations. This is explained by an in-

volvement of a spin excitation in the decay process as

explained above. Due to the spin gap in the spin-

excitation spectrum at Q (see Figs. 1, 2) the spin

excitation with the energy ω2 ≃ ωQ in this process

plays a dominant role in limiting the decay of the RM

in comparison with the superconducting gap in the

particle-hole excitation. Since ωQ shows a weak tem-

perature dependence at T . Tc the RM does not re-

veal an appreciable temperature dependence and can

be observed even above Tc in the underdoped region.

Figure 3 shows the temperature dependence of the

spectral functions in the overdoped case at δ = 0.2

and experimental data (symbols) for YBCO6.92 [2].

The RM having a high intensity at low tempera-

tures strongly decreases with temperature and be-

comes very broad at T ∼ Tc. The spectral function

for the underdoped case δ = 0.09 is plotted Fig. 3.

The RM shows a weak temperature dependence and

is still visible even at T = 85 K= 1.4Tc as found in the

INS experiment on YBCO6.5 [10] shown by symbols.

Thus, as compared with the spin-exciton scenario

based on the bubble-type approximation, we propose

an alternative explanation of the RM which is driven

by the spin gap at Q rather than by opening of the

superconducting gap.

4. Remarks on mechanisms of superconduc-

tivity in cuprates. Despite of intensive search for

the mechanism of high-temperature superconductiv-

ity in cuprates, there is still no commonly accepted

theory (for a review see [12]). Below we brie�y discuss

two most widely studied mechanisms of superconduc-

tivity in cuprates caused by spin �uctuations and by

electron-phonon interaction.

At �rst we consider the microscopic theory of pair-

ing induced by kinematic interaction within the t�

J [13] and the Hubbard [14] models. In the models,

strong electron correlations are rigorously taken into

account by applying the Hubbard operator technique.

It was shown that there are two channels of pairing.

The �rst one is mediated by inter-subband hopping

determined by the non-retarded AF exchange inter-

action J(k− k′). The AF pairing occurs for all elec-

trons in the conducting subband of the width W ∼
2 eV that results in T ex

c ≃ [µ(W −µ)]1/2 exp(−1/Vex)

proportional to the Fermi energy µ ∼ 0.5 eV mea-

sured from the bottom of the band. Therefore,

T ex
c can be large even for a weak coupling Vex =

J N(0) ∼ 0.2. The second spin-�uctuation (sf) pair-

ing channel is induced by the intra-subband hop-

ping. The sf-pairing is restricted to a range of en-

ergies ωs ∼ J near the FS, as in the BCS theory,

with T sf
c ≃ ωs exp(−1/Vsf ), Vsf = λsf N(0). The ef-

fective spin-�uctuation coupling constant is given by

the hopping parameter t(k) averaged over the Fermi

surface: λsf ≃ ⟨t2(k))⟩FS/ωs ∼ t2/J ∼ 1 eV. The

interaction appears to be quite large and is com-

parable with the value found in ARPES [1]. Tak-

ing into account both contributions, an estimate for
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Tc can be written as Tc = ωs exp(−1/Ṽsf ) where

Ṽsf = Vsf +Vex/[1−Vex ln(µ/ωs)]. Here the coupling

constant Ṽsf is strongly enhanced by the second term

that results in high-temperature superconductivity.

The electron-phonon (e-ph) pairing mechanism

advocated in a number of publications (see the re-

views [15, 16]) demands a strong e-ph coupling inter-

action, 1 < λep < 3.5, for phonon modes of a particu-

lar symmetry to provide the d-wave pairing. How-

ever, the ��rst-principle� (LDA) calculations show

rather small coupling λep < 0.3 for these modes (see,

e.g., [17]). It would be di�cult to prove that allow-

ing for strong electron correlations in LDA an order

of magnitude increase of λep could be achieved.

Strong electron-phonon interaction observed in

polaronic e�ects may be irrelevant for the d-wave pair-

ing. In particular, polaronic e�ects found in the mag-

netic penetration depth (see, e.g., [18]) give no con-

tribution to the d-wave pairing contrary to claim in

Ref. [19]. To demonstrate this, let us consider the

oxygen-isotope e�ect (OIE) on Tc by taking into ac-

count polaronic e�ect on the magnetic penetration

depth. The latter is ascribed to the e�ective po-

laron mass renormalization, m∗/m = exp(γEp/ω) =

exp 2β (see, [20]). The exponent β weakly depends

on hole concentrations, e.g., β = 1 − 0.6 for x =

0.06− 0.15 in La2−xSrxCuO4 [19]. For a qualitative

discussion, we consider the conventional BCS formula

for Tc ≈ ω exp (−1/λ) where the polaronic band nar-

rowing e�ect results in increase of the coupling con-

stant, λ = λ0(m
∗/m). Then for the isotope exponent

on Tc we obtain α = −(d ln Tc/d ln M) = 1/2−β/λ.

From this expression follows that contrary to exper-

iments, for underdoped compounds with large β and

small λ (low Tc) the isotope exponent α would be

smaller than for optimally doped compounds with

lower values of β and larger coupling λ. In partic-

ular, for λ ≤ 1 the isotope exponent α ∼ − 0.5 that

contradicts to all experiments [18]. (For the McMillan

formula for Tc we obtain even larger reduction of α).

Thus, the large polaronic e�ect in the e�ective mass

cannot explain doping dependence of the OIE on Tc

and therefore is irrelevant to the superconducting d-

wave pairing in cuprates.

A large e-ph coupling constant inferred from tun-

neling experiments [16] where the spectral function

α2F (ω) averaged over the Fermi surface was extracted

in terms of s-wave pairing may be unreliable. A gener-

alization of the McMillan-Rowell procedure to d-wave

superconductors should be used for extracting the

spectral function α2(k,k′)F (k,k′, ω) from tunneling

experiments. A proper consideration of the atomic-

scale disorder should be also taken into account [21].

The spectral function in the normal sate de-

duced from high-resolution laser ARPES [22] revealed

the intrinsic upper cuto� energy of about 400 meV,

far beyond phonon energies. Similar high-resolution

ARPES studies of the anomalous self-energy (the gap

function) are required to �nd out the pairing “l = 2′′

component of the spectral function responsible for d-

wave superconductivity (see [23]).

In summary, whereas the microscopic theory

within the Hubbard and the t�J models can provide

the AF exchange and spin-�uctuation pairing mech-

anism in cuprates which is supported by recent INS

and RICS experiments, the e-ph pairing mechanism

still needs to be proved. It is most likely that both

contributions, with a proper account of strong elec-

tron correlations, are important for developing a con-

sistent theory of superconductivity in cuprates.
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