ОБЪЕДИНЁННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

На правах рукописи УДК 539.1.074

ДАВКОВ Красимир Илиев

Разработка и исследование гранулированных координатных детекторов на основе тонкостенных дрейфовых трубок

Специальность: 01.04.01 – приборы и методы экспериментальной физики

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата физико-математических наук

Дубна 2011

Работа выполнена в Лаборатории физики высоких энергий им. В.И. Векслера и А.М. Балдина Объединенного института ядерных исследований.

Научные руководители:	
доктор физико-математических наук	ПЕШЕХОНОВ
	Владимир Дмитриевич
кандидат физико-математических наук	ЧОЛАКОВ
	Ваню Джанков

Официальные оппоненты:

доктор физико-математических наук

ТЯПКИН Игорь Алексеевич

кандидат технических наук

КАНЦЕРОВ Вадим Абдурахманович

Ведущая организация:

Научно-исследовательский институт ядерной физики Московского государственного университета.

Защита диссертации состоится "__" __2011 г. в ___ часов на заседании диссертационного совета Д 720.001.02 при Лаборатории физики высоких энергий Объединенного института ядерных исследований по адресу: 141980, г. Дубна, Московская область, ул. Жолио-Кюри 6.

С диссертацией можно ознакомиться в библиотеке Лаборатории физики высоких энергий.

Автореферат разослан "___" ____ 2011 г.

Ученый секретарь диссертационного совета, кандидат физико-математических наук

Арефьев Валентин Александрович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы.

В последние десятилетия быстрое развитие ускорительной техники привело к значительному повышению как энергии ускоряемых частиц, так и их интенсивности. Созданый в ЦЕРНе Большой Адронный Коллайдер (LHC – Large Hadron Collider) предназначен для расширения понимания природы частиц и их взаимодействий при энергии столкновения протонов до 14 ТэВ в системе центра масс сталкивающихся пучков при светимости до 10^{34} см² · c⁻¹, со скважностью сгустков протонных пучков в 25 нс. При столкновении ускоренных тяжелых ионов образуется ядерная материя с высокой плотностью, при исследовании которой необходима регистрация вторичных частиц с высокой множественностью. Соответствено с этим растут и требования к применяемым в физических экспериментах детекторам частиц, в том числе к их загрузочной способности, временному разрешению и координатной точности.

наиболее часто Одними ИЗ применяемых детекторов частиц В современной физике высоких энергий являются координатные газонаполненные детекторы – пропорциональные и дрейфовые камеры, детекторы на основе металлических или тонкостенных пленочных дрейфовых трубок (в дальнейшем – строу (straw)), микроструктурные газовые детекторы (MICROMEGAS, GEM). Несмотря на то, что некоторые из этих камер прекрасно зарекомендовали себя во многих физических экспериментах и стали фактически классикой при создании трекеров, их характеристики все чаще оказываются недостаточными для удовлетворения возникших потребностей современных ускорительных экспериментов. Новые требования привели к поиску новых решений при создании детекторов. Например, необходимость загрузочной способности увеличения строу-камер при регистрации многочастичных процессов привела К попыткам повышения ИХ гранулированности (уменьшения чувствительной площади индивидуальных каналов считывания) за счет разделения анодов на несколько гальванически независимых частей. Так, в барельной части детектора переходного излучения (TRT) – трекера внутреннего детектора установки АТЛАС (LHC), для увеличения загрузочной способности строу последние содержали анодные проволоки, состоящие из двух или трех электрически разделенных частей.

С увеличением загрузки трековых детекторов ухудшаются параметры восстанавливаемых треков регистрируемых частиц. Гранулированность индивидуальных детектирующих каналов должна уменьшаться до нескольких см² или менее. В случае использования детекторов на основе тонкостенных дрейфовых трубок их чувствительные области могут быть заполнены небольшими модулями с короткими строу, но при этом будет не только плохое отношение чувствительной площади детектора к его полной площади, но и увеличена его радиационная толщина за счет внешних рам отдельных модулей.

В диссертационной работе рассмотрена методика создания высокогранулированных строу с N-числом электрически изолированных частей анодной проволоки. Считывание информации осуществляется с двух концов

1

строу для крайних ее участков, а для промежуточных участков анода – через стенку строу с помощью специальных передаточных линий.

Целью диссертационной работы являлось исследование возможности создания многосегментных анодов и на их основе гранулированных строудетекторов для работы в условиях высоких загрузок с минимальным увеличением количества вещества.

Научная новизна и значимость работы.

Впервые разработана и проверена методика создания гранулированных строу-детекторов, что позволяет увеличить их загрузочную способность. Изготовлен и исследован многоканальнй прототип детектора на базе строу с сегментированным анодом.

Научно-практическая ценность работы.

Создание строу большой длины с многосегментным анодом и независимое считывание информации с электрически независимых сегментов позволяет обеспечить необходимую гранулированность по всей площади создаваемого детектора и тем самым значительно уменьшить загрузку индивидуальных каналов считывания.

Автор защищает:

- технологию изготовления многосегментных анодов и внутренних элементов для тонкостенных дрейфовых трубок (строу);
- методику установки многосегментных анодов в строу с последующим выводом сигнала с промежуточных анодных сегментов через стенки строу и их подключение к высоковольтному питанию/электронике считывания с помощью специализированных передаточных линий;
- результаты стендовых и пучковых исследований прототипа гранулированного детектора на основе многосегментных строу.

Апробация работы и публикации.

Основные результаты диссертации докладывались и обсуждались на рабочих совещаниях коллаборации CBM (Compressed Baryonic Matter), TRT (Transition Radiation Tracker) ATLAS, на семинарах Лаборатории физики высоких энергий ОИЯИ и опубликованы в 6 печатных работах, список которых приведен в конце автореферата, 3 из которых опубликованы в реферируемых научных журналах.

Структура и объем диссертации.

Диссертация состоит из введения, трех глав и заключения, содержит 53 рисунка и список цитируемой литературы из 73 ссылок.

Во введении обоснована актуальность разработки (исследований), сформулирована цель диссертационной работы, показана научная новизна работы и ее практическая значимость.

<u>В первой главе</u> описаны самые популярные в настоящее время газовые детекторы частиц, работающие на принципе газового усиления, применяемые в физике высоких энергий и элементарных частиц: дрейфовые камеры, тонкостенные дрейфовые трубки и микроструктурные газовые детекторы. Показаны их преимущества, недостатки и возможные применения в ускорительных экспериментах.

Вторая глава посвящена описанию разработки сегментированных строу. Приведена технология сборки многосегментных анодов, схема считывания промежуточных сигналов с анодных сегментов И подача на них высоковольтного напряжения через стенку строу. Рассмотрена хронология развития методики создаваемых на базе сегментных анодов строу-прототипов [1, 2], в том числе рассматривается конструкция и технология сборки прототипа многоканального детектора, обладающего гранулированностью 4 см² [3 – 5]. Также описана методика разработки специальных передаточных линий в виде кабеля считывания с малым количеством вещества для подключении промежуточных анодных сегментов к регистрирующей электронике [6].

Как одно из основных преимуществ строу-детекторов можно отметить их минимальную радиационную толщину, а основным их недостатком является невысокая гранулированность, ограничивающая эффективность регистрации треков при большой множественности проходящих заряженных частиц. Для уменьшения загрузки строу каждая анодная проволока строу в барельном детекторе (Barrel-TRT) установки ATLAS электрически разделена в центре, а считывание сигналов осуществляется независимо с ее концов. Таким простым способом впервые В реальном эксперименте была применена идея гранулированной строу.

Для повышения гранулированности строу в еще большей степени, в ОИЯИ была разработана методика создания сегментированных анодов строу с независимым считыванием информации с каждого сегмента [1, 2]. Одним из основных требований к разрабатываемым детекторам является минимизация допольнительно внесенного количества вещества и минимизация величины нечувствительной области детектора. Создание сегментированного анода осуществляется с помощью специально созданного для этого стенда. Операция происходит следующим образом: в капиллярную трубку из боросиликатного стекла путем ее расплавления, впаиваются две анодные проволоки из позолоченого вольфрама, разделяемые одна ОТ другой изоляционной перемычкой. Схема многосегментного анода и общий вид соединительной трубки показаны на рис. 1. В случае, когда сегментированный анод содержит ряд промежуточных проволок, т.е. количество анодных сегментов N>2, вместе с промежуточными анодными проволоками в капилляр ную трубку впаиваются

3

Рис. 1. а) и в) Схема многосегментного анода: капиллярная трубка – (1), изоляционная перемычка – (2), (3) – место впаивания проволок, анодные проволоки – (4) и контактная проволока промежуточного анодного сегмента – (5); б) общий вид соединительной трубки; г) общий вид соединительной трубки с двумя контактными проволоками.

и контактные проволоки, которые позже выводятся наружу через стенку строу. Основные требования к объединению проволок в многосегментный анод следующие: сохранение их прямолинейности, сила вытягивания проволоки из капилляра – не менее 90г, обеспечение гальванического контакта между контактными и анодными проволоками и минимальный ток стекания между двумя соседными анодными сегментами.

Вывод контактных проволок через стенку строу осуществляется с помощью устанавливаемого на капиллярную трубку спейсера, изображенного на рис. 2 (слева), который не мешает свободному прохождению рабочего газа вдоль строу. Спейсер, вместе с объединяющей стеклянной трубкой, образует спейсерный узел (СУ), с помощью которого по приведеной на рис. 2 (справа) схеме наружу выводятся контактные проволоки от промежуточных анодных сегментов через вырезанное заранее отверстие в стенке строу. Затем отверстие герметизируется эпоксидным клеем.

Чтобы отработать технологию изготовления строу с многосегментным анодом в максимально сложном варианте, на всех этапах работы применялись строу с наименьшим диаметром – $4_{+0,00:-0,02}$ мм, намотанные двумя каптоновыми

Рис. 2. Слева – общий вид спейсера и спейсер с вставленной проволокой. Справа – схематическое изображение спейсерного узла.

Рис. 3. Принципиальная схема строу с тремя анодными сегментами.

стрипами. Каптоновая пленка толщиной 25 мкм с одной стороны покрыта алюминием толщиной ~ 0,2 мкм и слоем полиуретана толщиной ~ 6 мкм, являющимся термоклеем. На другой поверхности пленки нанесен проводящий графитосодержащий слой толщиной (6 ± 2) мкм.

В начале работы была изготовлена и проверена строу с трехсегментным анодом (рис. 3), с длиной сегментов ~ 185, 100 и 180 мм. Считывание информации с крайних анодных сегментов осуществлялось с концов строу (выводы 1 и 4). Информация с центрального сегмента считывается по контактной проволоке 2. Правый анодный сегмент снабжен двумя выводами (3 и 4), по одному из которых подается высоковольтное питание, а с другого снимается сигнал. Исследуемая строу продувалась газовой смесью Ar/CO₂ (70/30)% и облучалась γ -квантами от источника ⁵⁵Fe через щелевой коллиматор, расположенный перпендикулярно аноду строу. Ширина пучка γ -квантов в медианной плоскости строу составляла величину ~ 1 мм. Высоковольтное напряжение подавалось на соответствующий сегмент анода. Токовый усилитель с входным сопротивлением 300 Ом подключался непосредственно к сегменту через проходную емкость величиной 200 пФ.

Сканирование щелевым коллимированным источником области спейсерного узла (СУ) показало, что при использовании капиллярной трубки длиной 7 мм и спейсера диаметром 3,95 мм и длиной 4,15 мм неэффективная область строу составляет величину ~ 7,2 мм.

После проверки строу с трехсегментным анодом была рассмотрена возможность создания и изготовления строу с 10-ю анодными сегментами (рис. 4). Длина отдельных сегментов находилась в пределах (50 ÷ 250) мм. В тоже время было уменьшено количество спейсерных узлов с 7 до 4: через один объединяющий элемент выводились две контактные проволоки (рис. 4). Так как считывающая электроника детектора должна располагаться вне его чувстви-

Рис. 4. Принципиальная схема строу с 10-ю анодными сегментами.

тельной области, то для подключения к ней промежуточных анодных сегментов были созданы и применены на этом же прототипе специальные гибкие передаточные линии (ПЛ), служающие одновременно для подачи высокого напряжения и передачи сигналов [2, 4]. Считывание с крайних сегментов строу проводились с ее концов.

Для снижения влияния внешних помех линии были заэкранированы алюминиевой фольгой толщиной ~10 мкм. Основные требования к разработанному методу подключения промежуточных анодных сегментов к считывающей электронике с помощью передаточных линий были следующие: передача токовых сигналов величиной порядка микроампера с временем нарастания 3÷5 нс на расстояние до 2-х метров без искажений и потерь, подача по этим же линиям анодного напряжения величиной до 2,0 кВ (при токах стекания ≤0,1нА/шина при нулевом потенциале на соседних двух шинах), а также сохранение минимальной радиационной толщины детектора.

На базе разработаной методики независимого считывания сигналов с анодных сегментов строу с помощью передаточных линий был изготовлен двухслойный прототип детектора размером 400×200 мм², имеющий 360 каналов регистрации (считывания) с гранулированностью 4 см² (Ø 4×100 мм²) [3-5]. Схема прототипа представлена на рис. 5. Прототип представляет собой двухслойную планарную камеру, каждый слой которой содержит 48 строу диаметром 4 мм и длиной 42 см. Слои сдвинуты между собой на величину радиуса строу. Аноды строу разделены на 4 одинаковые сегмента (Рис. 6), на каждый из которых по индивидуальной шине передаточных линий подается анодное напряжение и по ней же передаются информационные токовые сигналы на расположенные вблизи концов строу аналоговые усилители и формирователи.

Рис. 5. Схематическое изображение прототипа детектора на основе многосегментных строу: 1 – плоскость строу; 2 – субрама прототипа; 3 – газовый объем; 4 – линии передачи сигналов; 5 – место расположения электроники считывания; 6 – выводы анодных сегментов.

Рис. 6. Схема 4-х сегментной строу, примененной на прототипе гранулированного детектора.

Радиационная толщина изготовленных для прототипа передаточных линий ~0,15% X_0 . Полная радиационная толщина в области установки спейсерного узла размером 8×4 мм² составила величину ~ 1,0% X_0 . После сборки прототипа были разработаны более тонкие линии с радиационной толщиной ~ 0,06% X_0 и с другим методом соединения контактных проволок сегментов с шинами передаточных линий, при этом полная радиационная толщина в области установки спейсерных узлов уменьшилась до 0,3 ÷ 0,4% X_0 [6].

Аналоговая электроника считывания располагалась около одного из концов строу и имела плотность расположения 1 канал/мм.

<u>В третьей главе</u> представлены результаты исследования параметров многоканального прототипа гранулированного детектора на основе многосегментных строу, полученные на исследовательском стенде в ЛФВЭ ОИЯИ и на адронном пучке канала H6 SPS в ЦЕРНе [4, 5].

В стендовых условиях была проверена работоспособность и однородность каналов регистрации (рис. 7), а также величина токов стекания и уровень шумов. Прототип продувался газовой смесью Ar/CO₂ (80/20), для исследований использовался источник γ-квантов ⁵⁵Fe.

Типовая зависимость величины регистрируемого сигнала от анодного напряжения на сегментах строу и типовая счетная характеристика при регистрации излучения источника ⁵⁵Fe приведены на рис. 8. Зависимости указывают на работоспособность сегментов прототипа до газового усиления

Рис. 7. Результаты измерений величин сигналов с сегментов прототипа реперным тестовым усилителем при фиксированном анодном напряжении: а) первая плоскость строу; б) вторая плоскость строу. Номерами обозначены, соответственно, ряды сегментов в плоскостях.

Рис. 8. Типовая зависимость средней величины сигналов от анодного напряжения (а) и типовая счетная храктеристика для сегмента строу (б). Регистрировались гамма-кванты от источника ⁵⁵Fe.

~10⁵ при отсутствии собственных шумовых сигналов детектора. Величина формирователя составляла ~50 мВ. Измерения порога выполнены С усилителями И формирователями, подготовленными для исследования прототипа на пучке ускорителя.

Результаты проверки всех 360 каналов прототипа показали высокую их однородность. Слева на рис. 9 приведено типичное энергетическое разрешение сегмента, а справа – распределение сегментов по величине амплитуды сигнала (для ⁵⁵Fe). Количество неработающих каналов составило 3% от общего их числа, около 2% каналов отличалось пониженной амплитудой регистрируемых сигналов. Основной причиной этих дефектов являются ошибки, влияющие на трассировку сигналов от сегментов до регистрирующей электроники, что указывает на необходимость улучшения соединений шин передаточных линий с контактными проволоками сегментов и с шинами плат считывания.

Рис. 9. Слева – типовое энергетическое разрешение для сегмента прототипа. Анодное напряжение – 1,4 кВ, газовое усиление около 4×10^4 , газовая смесь ArCO₂ (80/20). Справа – распределение каналов прототипа по величине регистрируемых с них сигналов от γ -квантов с энергией 5,9 кэВ при фиксированных условиях детектирования.

Рис. 10. Слева – экспериментальная установка на пучке канала H6 SPS, показывающая расположение детекторов и область, где треки частиц могут регистрироваться. Справа – схема размещения детекторов. Прототип на основе сегментных строу (ПСС) расположен между Si-детекторами. Телескоп содержит 6 плоскостей пиксельных кремниевых детекторов (Si-плоскости) и 4 сцинтилляционных счетчика (S₁÷S₄).

Тестирование прототипа на пучке было выполнено на канале H6 SPS в ЦЕРНе. В качестве трекового детектора использовался пиксельный пучковый телескоп, содержащий 6 плоскостей полупроводниковых (Si) детекторов, с 30×30 MKM² И сцинцилляционных размерами пикселей 4 счетчика, чувствительные размеры которых были 6×6 мм². Прототип на основе (ΠCC), установленный центру телескопа, сегментных строу ПО МОГ прецизионно перемещаться в направлениях Х и Ү. На рис. 10 показана схема расположения детекторов на установке.

Основными задачами тестирования прототипа на пучке были: определение эффективности регистрации и пространственного разрешения сегментов, а также измерение нечувствительной длины строу в местах установки в них спейсерных узлов. Прототип продувался газовой смесью ArCO₂ (80/20)%. Газовое усиление было ~ 6×10⁴.

На рис. 11 (слева) показана RT-зависимость для двух соседных строу одного слоя прототипа, расположенных в чувствительной области телескопа. В правой части рисунка приведена зависимость эффективности этих строу от их радиуса. Средняя толщина газового слоя в строу диаметром 4 мм для ~ 70% ее диаметра составляет ~ 3,6 мм и далее уменьшается, поэтому при недостаточно

Рис. 11. Слева – RT-зависимость для двух соседних строу одного слоя прототипа. Справа – эффективности этих строу.. Анодное напряжение – 1,55 кВ.

высоких коэффициентах газового усиления или/и при не достаточно низких порогах дискриминации аналоговой электроники возможно некоторое понижение эффективности из-за больших флуктуаций ионизационных потерь для релятивистских частиц. Порог дискриминации (Tr 2) аналоговой электроники строу был ~ 4,5 фКл.

Нечувствительный зазор между соседними трубками каждого слоя составляет (160 ± 5) мкм и определяется толщинами стенок трубок и 20 мкм зазором между их внешними поверхностями. Видимая на рис. 11 неэффективность определяется этой областью и некоторым снижением эффективности вблизи стенки строу (катода). Изменение эффективности вдоль радиуса трубок (для Tr 2 и при анодном напряжении 1,55 кВ) составляет 50%, 20% и 10% для расстояний от катода ~ 50, ~ 100 и ~ 300 мкм соответственно.

Чувствительная площадь Si небольшая и отбираются только треки с площади 6×6 мм². Хиты расположенных слева и справа по пучку Si- детекторов используются для реконструкции треков. Разница между измеренным и реконструированным значениями содержит информацию о пространственном разрешении исследуемого детектора.

На рис. 12 приведено типичное распределение отклонений измеренных координат частиц от треков, восстановленных по данным Si-детекторов телескопа. Ширина распределения (σ) составляет величину 164 мкм.

Следует отметить различие в геометрических размерах детекторов. Так, площадь сегмента прототипа составляет 4 см², что в 11 раз превышает площадь детекторов телескопа. При высокой загрузке детекторов возрастает вероятность восстановления ложных треков, что приводит к появлению пьедестала у распределения. Измеренные значения демонстрируют, что прототип на основе многосегментных строу имеет типичную величину пространственного разрешения.

При измерениях нечувствительной длины строу возле спейсерного узла [5] прототип перемещался относительно телескопа с шагом 5,6 мм (точность перемещений была не хуже 0,1 мм). Рис. 13 - a) показывает, что нечувствительная длина вдоль оси строу (Y-координата) в области спейсерного узла составляет величину около 7 мм. Рис. 13 - 6) показывает, что разрешение практически сохраняется на всей чувствительной длине строу.

Рис. 12. Пространственное разрешение строу, полученное на пучке.

Рис. 13. а) Распределение эффективности вдоль анода строу. Неэффективная длина (на уровне ~ 0,9 от средней эффективности вне спейсерного узла) составляет величину ~ 7 мм; б) Область ухудшения пространственного разрешения вблизи спейсерного узла составляет величину ~ 1 мм.

<u>В заключении</u> сформулированы основные результаты работы и выводы диссертации:

1. Впервые разработана технология изготовления многосегментных анодов и внутренных элементов строу.

2. Проверена установка многосегментных анодов в строу с последующим выводом контактных проволок промежуточных анодных сегментов через стенку строу и их подключение к высоковольтному питанию/электронике считывания по специально разработанным для этого передаточным линиям.

3. Проведены стендовые исследования прототипов многосегментных строу. Показана возможность создания на их основе гранулированного детектора.

4. Предложен и исследован метод уменьшения радиационной толщины плоских передаточных линий в местах соединения их выводов с сегментами анодов. Показано, что толщина линий в этих зонах может быть уменьшена в 5 раз – до величины ~ 0,18%X₀.

5. Стендовые и пучковые исследования характеристик прототипа на основе многосегментных строу показали, что временные и пространственные параметры детектора не отличаются от характеристик обычных трековых детекторов на основе строу. Нечувствительная длина строу в области расположения внутренних элементов составляет величину менее 5% от ее полной чувствительной длины. Гранулированность таких строу может варьироваться от 1 см² и более, а их длина может быть до 4 метров.

Основные результаты диссертации опубликованы в работах:

- 1. K. Davkov, V. Davkov, J. Marzec et al., "Development of straw tubes for high rate capability application" // CBM Progress Report 2006. P. 38, 2007.
- K. Davkov, V. Davkov, R. Geyer et al., "Development of segmented straws for very high-rate capability coordinate detector" // Nucl. Instr. Meth. in Phys. Res. A 584 (2008) 285-290.
- 3. V. Peshekhonov, S. Bazylev, K. Davkov et al., "Segmented straw tubes for CBM-MuCH" // CBM Progress Report 2008. P. 35, 2009.
- 4. Ю.В. Гусаков, В.И. Давков, К.И. Давков и др., "Многоканальный прототип на основе сегментных строу" // Письма в ЭЧАЯ, 2010, Т.7, № 2(158), с. 223-231 (Yu.V. Gusakov et al. "Multichannel Prototype Detector Based on Segmented Straws" // Part. Nucl. Lett. V. 7, № 2, 132-137).
- 5. S.N. Bazylev, K.I. Davkov, I. Gregor et al., "A prototype coordinate detector based on granulated thin-walled drift tubes" // Nucl. Instr. Meth. in Phys. Res. A 632 (2011) 75–80.
- К.И. Давков, В.В. Мялковский, В.Д. Пешехонов и А.А. Савенков, "Разработка кабеля считывания с малым количеством вещества для сегментных дрейфовых трубок" // Сообщение ОИЯИ, Р13-2010-105, Дубна, 2010.