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Granitic rocks are intensively studied because of their physical properties relevant to 
development of nuclear waste storage [1], geothermal energy technologies [2], rock 
mechanics experiments, and studies of crustal seismic anisotropy. One of the classical 
granitic rocks is Westerly granite from Rhode Island, USA, which is mostly composed by 
quartz and feldspars with small amount of mica and accessories. It is thoroughly investigated 
with respect to its composition, microstructure, elastic, thermal, and mechanical properties, 
etc. (e.g., [3-6]). Westerly granite is often described as an intrinsically elastically isotropic, 
or very weakly anisotropic rock. It was shown that deviatoric stresses, increased pressure 
and temperature, as well as temperature and pressure cycling, may lead to development of 
different crack systems in the granite, which are mostly related to elongated grain 
boundaries, or cleavage planes of feldspars and mica. The latter may have certain preferred 
orientation, and therefore induce shape texture for the microcracks, which may significantly 
enhance the granite elastic anisotropy. 
To study this effect, a combination of optical and electron microscopy, neutron diffraction 
at the SKAT texture diffractometer in FLNP JINR (Dubna) [7], and multidirectional 
ultrasonic sounding at increased confining pressures using a special apparatus in Institute of 
Geology AS CR (Prague) [8] was applied to a set of Westerly granite samples preheated to 
different temperatures up to 600°C. Elastic wave velocities measured at different pressures 
were compared with the results of microstructure-based modelling of the granite properties 
using the Geo-Mix-Self algorithm [9]. 
Our results indicate that Westerly granite consists of 4 main minerals: plagioclase, 
orthoclase, quartz and biotite. Surprisingly, plagioclase has the sharpest preferred 
orientation, which strongly influences the intrinsic elastic anisotropy. Heating of the granite 
leads to formation of different systems of microcracks, depending on the maximum 
preheating temperature. The shape preferred orientation of cracks is linked to the structure 
and texture of feldspars and biotite. Experimental data and numerical modeling show that 
formed oriented cracks may completely invert the elastic anisotropy of Westerly granite, 
practically exchanging minimum and maximum elastic wave velocity directions. As a result, 
Westerly granite exhibits two characteristic types of elastic anisotropy, expressed by 
microcracks at low pressure and by crystal preferred orientations at high pressure where 
microcracks are closed. At intermediate pressures, the granite anisotropy should be lowest. 
Some implications of these results for rocks at crustal conditions are discussed. 
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