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Abstract
An algorithm for solving of the boundary value problem for the discrete spectrum of a two-center
Coulomb system is presented. The energy and separation constant eigenvalues and the corresponding
eigenfunctions are calculated by the secant method on a suitable grid of the parameter, the distance
between two Coulomb charges. The eigensolutions at each step of the secant method are calculated
using KANTBP 5M program, which implements the ƞnite element method in Maple.
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1. Introduction

The boundary value problem (BVP) of two Coulomb centers (discrete spectrum) allows sep-
aration of variables in a prolate spheroidal coordinate system and is characterized by two
eigenvalues, the energyE(R) and the separation constant λ(R), depending on a real parameter,
the distance R between the centers of Coulomb charges Z1 and Z2. Discretization of the prob-
lem is traditionally carried out using expansions of eigenfunctions in functional series with
constant coeƢcients, depending on R. This approach is applied in programs implemented in
FORTRAN, see, e.g., [2] or inWolframMathematica [3]. Of interest is an alternative discretiza-
tion of this problem by the ƞnite element method (FEM), in which polynomials of a lower
degree of the order of 10 are used, in contrast to 100–200 in traditional Galerkin-type expansions.
Using lower-order polynomials ensures greater resistance of the FEM computational scheme
to rounding errors, i.e. it does not require the use high bit depth for arithmetic operations with
Ɵoating point with an increase in the numbers of the sought eigenvalues.
The aim of the work is to develop a method and algorithm for solving the problem of two

Coulomb centers with real eigenvalues of the discrete energy spectrum and the separation
constant on the grid of the values of the real parameter R, the distance between the centers
of Coulomb charges, using the secant method and the ƞnite element method implemented in
Maple by means of the KANTBP 5M program [1].
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Figure 1: Potentials Vξ(ξ, λ) and Vη(η, λ) at 0: λ=0; 1: λ=20; 2: λ=40; 3: λ=60; 4: λ=80; 5: λ=100.

2. Algorithm for solving the boundary value problem by the secant

method and the KANTBP 5M program

In the input data ƞle of KANTBP 5M program for solving BVPs, the ordinary second-order
diơerential equation with variable coeƢcients is speciƞed in the form [1]:

[
−

1

fB(z)

d

dz
fA(z)

d

dz
+V (z)−E

]
Φ(z)=0. (1)

Therefore, we represent the equations of the two-center Coulomb problem in prolate
spheroidal coordinates for the eigenfunctions Fnξm(ξ;R) and Φnηm(η;R) in the required form

[
−

1

ξ2−1

d

dξ
(ξ2−1)

d

dξ
−ϵnξ

(R)+Vξ(ξ, λ(R))

]
Fnξm(ξ;R)=0, (2)

[
−
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1−η2
d

dη
(1−η2)

d

dη
−ϵnη(R)+Vη(η, λ(R))

]
Φnηm(η;R)=0. (3)

Here ϵnξ
(R)=−p2(R) and ϵnη(R)=−p2(R) are the eigenvalues, Vξ(ξ, λnξ

(R)) and Vη(η, λnη(R))
are the potentials with parameters a=(Z1+Z2)R and b=(Z2−Z1)R, Z2 ≥ Z1:

Vξ(ξ, λ(R))=+
λ(R)−aξ

ξ2−1
+

m2

(ξ2−1)2
, Vη(η, λ(R))=−

λ(R)+bη

1−η2
+

m2

(1−η2)2
, (4)

depending on the separation constant λnξ
(R)=λ(R) and λnη(R)=λ(R) as a parameter (see Fig.

1). Note that problem (2) always has both a Coulomb discrete (p2 > 0) and a continuous (p2 < 0)
spectrum, whereas problem (3) has only a discrete spectrum. Here the sign of λ is opposite to
that of λ̄ accepted in the ARSENYprogram [2], i.e., λ(0) ≥ 0 and λ=−λ̄. The asymptotic behavior
of the solution is Fnξm(ξ;R) ∼ (ξ2−1)m/2 and Φnηm(η;R) ∼ (1−η2)m/2. For zero azimuthal
quantum numberm=0, the eigenfunctions obey the Neumann condition:

lim
ξ→1

(ξ2−1)
dFnξm(ξ;R)

dξ
=0, lim

ξ→ξmax

(ξ2−1)
dFnξm(ξ;R)

dξ
=0, lim

η→∓1±0
(1−η2)

dΦnηm(η;R)

dη
=0,

while form ̸= 0 the eigenfunctions obey the following Dirichlet and Neumann conditions:

Fnξm(ξ=1;R)=0, lim
ξ→ξmax

(ξ2−1)
dFnξm(ξ;R)

dξ
=0, lim

η→∓1±0
(1−η2)Φnηm(η;R)=0.
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and the orthogonality and normalization conditions

∫ ξmax

0
Fnξm(ξ;R)Fn′

ξ
m(ξ;R)(ξ2−1)dξ=δnξn

′

ξ
,

∫ 1

−1
Φnηm(η;R)Φnηm(η;R)(1−η2)dη=δnηn′

η
.

Note that the energy eigenvalues corresponding to ϵnξ
(R)=−p2(R) or ϵnη(R)=−p2(R)monoton-

ically increase with increasing separation constant λ(R) for Eq. (2) andmonotonically decrease
for Eq. (3), i.e., the diơerences ϵnξ

(R)−ϵnη(R)monotonically increase with increasing λ(R).
This follows from Eq. (4) and is illustrated in Fig. 1. The BVP potentials have Coulomb asymp-
totic behavior Vξ(ξ→∞, λ)→−1/ξ, Vξ(ξ→1+0, λ) ∼ −1/(ξ−1), Vη(η→1−0, λ) ∼ −1/(1−η),
Vη(η→−1+0, λ) ∼ −1/(1+η). This circumstance allows us to classify the solutions of the
original problem by the number of zeros nξ and nη in the variables ξ and η, respectively.
Note that the discrete spectrum ϵnξ

(R)=−p2(R) of Eq. (2) is countable and lies in the inter-
val ϵnξ

(R) ∈ (ϵmin, 0). This allows solving the problem for a given set of quantum numbers
(nξ, nη,m) or (N=nξ+nη+m+1, l=nη−m,m) for a ƞxedm ≥ 0 using the initial approximation
Enξ,nη ,m(0)=−(Z1+Z2)

2/N2 and λnξ,nη ,m(0)=l(l+1) by means of the following algorithm that
implements the secant method for solving equation f(x)=0:

x(s+1)=[f(x(s))x(s−1)−f(x(s−1))x(s−1)]/[f(x(s))−f(x(s−1))], s=1, 2, ...

with initial values x(1) and x(0) at f(x)=ϵnξ
(λ;R)−ϵnη(λ;R), x=λ.

Algorithm SECANT for calculating eigenvalues and eigenfunctions of two Coulomb centers by
the secant method and the KANTBP 5M program for solving BVP for Eqs. (2) and (3)
Input: Z1, Z2 are the problem parameters
N is the maximum number,
Ωξ and Ωη are the grids for BVPs for Eq. (2) and for Eq. (3)
Output: λ(R),−p2(R), Fnξm(ξ;R), and Φnηm(η;R) are the solutions of BVPs for Eqs. (2) and (3)
Cycle over nξ=0, ..., Nmax and nη=0, ..., Nmax−nξ−m−1
Step 1 Initial approximation of interval boundaries λ ∈ [λ0, λ1] for the ƞrst program run
Step 2 Loop by parameter R={Rmin(δR)Rmax} with step δR

Step 2.1 Reevaluation a=(Z1+Z2)R and b=(Z2−Z1)R

Step 2.2 Calculation of the eigenvalue ϵ
(0)
nξ

≡ ϵnξ
of the BVP for Eq. (2) at λ=λ0

Step 2.3 Calculation of the eigenvalue ϵ
(1)
nξ

≡ ϵnξ
of the BVP for Eq. (2) at λ=λ1

Step 2.4 Calculation of the eigenvalue ϵ
(0)
nη ≡ ϵnη of the BVP for Eq. (3) at λ=λ0

Step 2.5 Calculation of the eigenvalue ϵ
(1)
nη ≡ ϵnη of the BVP for Eq. (3) at λ=λ1

Step 2.6 Calculate the energy diơerences for the ƞrst two approximations

ϵ0 : =ϵ
(0)
nξ

−ϵ
(0)
nη and ϵ1 : =ϵ

(1)
nξ

−ϵ
(1)
nη

Step 2.7 New approximation for λ and energy diơerence using the formula
of the secant method λ=(ϵ1λ0−ϵ0λ1)/(ϵ1−ϵ0) and δϵ=ϵ1−ϵ0

Step 2.8 secant method: loop is executed until |δϵ| > δ

Step 2.8.1 Calculation of the eigenvalue ϵnξ
of the BVP for Eq. (2) at given λ

Step 2.8.2 Calculation of the eigenvalue ϵnη of the BVP for Eq. (3) at given λ

Step 2.8.3 Calculating the energy diơerence ϵ : =ϵnξ
−ϵnη

Step 2.8.4 Selecting the initial approximations (ϵ0, λ0)=(ϵ, λ) or (ϵ1, λ1)=(ϵ, λ)
(they will also be used when moving to the new R)

Step 2.8.5 New approximation for λ and energy diơerence using the formula
of the secant method λ=(ϵ1λ0−ϵ0λ1)/(ϵ1−ϵ0) and δϵ=ϵ1−ϵ0

Step 2.8 End of loop of secant method
Step 2. End of loop by R
Step 3. Write OUTPUT: R, λ, ϵnξ

≈ −p2(R), ϵnη ≈ −p2(R), Fnξm(ξ;R), and Φnηm(η;R)
End of cycle over nξ and nη
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Figure 2: EȂective quantum numberN ≡ Nnξ,nη,m(λnξ,nη,m(R)) versus the parameter λ ≡ λnξ,nη,m(R),

andN ≡ Nnξ,nη,m(R)=(Z1+Z2)/
√

−2Enξ,nη,m(R) versus the parameterR forZ1=1,Z2=2, andm=0.

As an example, we present results of theAlgorithm SECANT calculations of a set of eigenvalues
of energy Enξ,nη ,m(R) and parameter λnξ,nη ,m(R) for Z1=1, Z2=2,m=0, andNmax=10 on grids
Ωξ={ξ0=1, ..., ξi=ξi−1+0.08/ξi−1, ..., ξn−1=187.4197583, ξn=202.4133390} and Ωη={−1(0.1)1}
by means of program KANTBP 5M with 5-th order Hermite interpolation polynomials, which
agree within 6-7 digits with those calculated by means of program ARSENY [2]. Figure 2 plots
the eơective quantum number Nnξ,nη ,m(λnξ,nη ,m(R)) as a function of the parameter λ, and

Nnξ,nη ,m(R)=(Z1+Z2)/
√
−2Enξ,nη ,m(R) as a function of the parameter R for Z1=1, Z2=2, and

m=0. Note that Nnξ,nη ,m(0)=(Z1+Z2)/
√
−2Enξ,nη ,m(0) at R=0, is equal to the value of the

principal quantum numberN(0)=N=nξ+nη+1 of the united atom with the Coulomb charge
Z=Z1+Z2, for the asymptotic energy eigenvalues ENlm(R=0), and the asymptotic separation
constant values λ̄lm(R=0)=l(l+1), l=nη atm=0, which canbe seen in theƞgures. Moreover, due
to the separation of variables, the number of zeros nξ and nη of the eigenfunctions Fm,nξ

(ξ;R)
and Φm,nη(η;R) is preserved for all values of the parameter R.
Note, for solving a continuous spectrum problem at a ƞxed value E > 0, it is suƢcient to

solve eigenvalue problem for Eq. (3) and substitute a calculated eigenvalue λnξm to Eq. (2) and
to solve the corresponding BVP with the mixed Neumann (or Dirichlet) and Robin boundary
conditions. The algorithm SECANT can be also applied to calculate the series of branching
points Rc sought for in the complex plane of distance R and the hidden crossings of complex
energy curves Enξ,nη ,m(R) following the corresponding algorithms of ARSENY program [2].
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