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Abstract
The use of non-constructive inƞnities in physical theories can lead to contradictions and non-physical
artifacts. Quantum behavior can be fully described using only ƞnite subgroups of the general unitary
group — speciƞcally, theWeyl–Heisenberg group and its extension, the Cliơord group. By formulating
quantum theory in terms of these groups, we completely eliminate the need for the continuous unitary
group, which leads to important empirical consequences. Crucially, this approach provides a natural
explanation for the observed absence of quantum entanglement and interference between distinct types
of elementary particles. Moving away from continuum-based mathematics also requires redeƞning
the concept of quantum states: the continuous projective Hilbert space should be replaced by some
combinatorial structure. Using computer algebra calculations, we study a potential framework for
building constructive quantum states, governed by a ƞxed set of physically motivated criteria.
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1. Introduction

In standard quantummechanics, the evolution of a closed system is described by a continuous

one-parameter unitary group generated by a Hamiltonian: Ut = e−i
H

h̄
t =

(
e−i

H

h̄

)t

= Et. Any

continuous one-parameter group is isomorphic to the unitary group U(1), usually realized as
the unit circle in the complex plane. Without loss of describing physical reality, we can assume
that time t is an integer parameter, and the operator E is an element of a representation of a
ƞnite cyclic group ZN , whereN is a large natural number. In [1], assuming that time t is given

in Planck units, estimates are providedN ∼

{
Exp(Exp(20)) for 1 cm3 of matter,

Exp(Exp(123)) for the entire Universe.

In applications, the one-parameter group U(1) can be used as a continuum approximation of the
discrete group ZN asN → ∞. However, this approximation fails to capture certain empirically
observed fundamental quantum phenomena that depend on the number-theoretic properties
ofN . Key example: the primary decomposition of ZN (via the Chinese remainder theorem)
implies the decomposition of a N -dimensional quantum system into completely decoupled
subsystems, i.e. there is nether quantum entanglement nor energy interaction between them.
HermannWeyl was the ƞrst to discover [6] that ƞnite groups ZN , ZN × ZN , and a central

extension of the latter are needed to describe quantum behavior in a ƞnite-dimensional Hilbert
spaceHN . Although unitary evolution can be fully described by the cyclic group, the product be-
comes necessary to incorporate the concept of observation into the theoretical framework. The
factors of the product group are associated with mutually unbiased bases – a concept introduced
by Julian Schwinger [4] that provides a mathematical reƞnement of Bohr’s complementarity
principle. Subsequently, the ideas of Weyl and Schwinger have been actively developed in
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various ƞelds, including the foundations of quantum theory, quantum information theory [2],
and signal processing theory [5].

2. Weyl–Schwinger formalism

Noting that the canonical Heisenberg commutation relation [x̂, p̂] = ih̄1, – and hence standard
quantummechanics as a whole – can only be realized in an inƞnite-dimensional Hilbert space,
Weyl proved that in physically more meaningful ƞnite-dimensional case, the commutation
relation in the Hilbert space HN must be of the form ZX = ωXZ, where X is an operator
of cyclic permutation of N basis vectors in HN , Z is the Pontryagin dual of X, ω is a N th
primitive root of unity. Later, Schwinger proved that the eigenbases of operatorsX and Z in
HN constitute a mutually unbiased pair. Following ’t HooƠ’s terminology, we will refer to the
basis vectors cyclically permuted by the operatorX as ontic vectors. The pair of operatorsX
and Z generates a projective representation of the group ZN × ZN inHN — this representation
underlies the description of quantum behavior. In short, the main elements of the formalism
are as follows.
Let Kn denote the group of nth roots of unity. The element τ = − eπi/N generates KN if

N = 2k + 1 andK2N ifN = 2k. TheWeyl–Heisenberg group is deƞned as WH(N) = ⟨τ,X,Z⟩.
The order of WH(N) is N3 or 2N3 depending on the parity of N . Quantum evolutions are

generated by the displacement operators Dp = τp1p2Xp1Zp2, p =

(
p1
p2

)
∈ Z

2, which form the

projective Weyl–Heisenberg group PWH(N) ∼= ZN × ZN of order N2. The composition
DpDq = τ ⟨p,q⟩Dp+q contains the symplectic form ⟨p,q⟩ = p2q1 − p1q2. The symmetry group of
this form, the symplectic group Sp(2,ZN ), is the outer automorphism group of WH(N).
Combining inner and outer automorphisms, we arrive at a semidirect product called the

Cliơord group CL(N) = Aut(WH(N)) ∼= WH(N)⋊ Sp(2,ZN ).
Traditionally, the Cliơord group is deƞned as the normalizer of theWeyl–Heisenberg group

in the unitary group U(N). The need for U(N), which remains a relic of continuous theory,
follows neither from the description of quantum evolution by ƞnite cyclic groups nor from
Weyl’s arguments. We will consider the Cliơord group exclusively as the symmetry group of the
Weyl–Heisenberg group without resorting to a reference to the continuous group U(N).

In terms of generators, the Cliơord group can be presented as CL(N) = ⟨X,F, S⟩, where F is
the Fourier transformmatrix and S = diag

(
τ i(i+N), i = 0, . . . , N − 1

)
.

The projective Cliơord group — the quotient group of CL(N) by its center Z(CL(N)) — is
generated by the same elements, but matrices that diơer only by a phase factor are considered
equivalent: PCL(N) = ⟨X,F, S⟩/Z(CL(N)) .

3. Decomposition of a N-dimensional quantum system in subsystems

LetN =
∏

i ni be a factorization ofN into pairwise coprime integers {ni}. For concreteness,

we assume that all factors take the form ni = pℓii , where
{
pℓii

}
are prime powers with distinct

primes. The cyclic group ZN can be decomposed into a direct product of primary cyclic groups
ZN

∼=
∏

i Zni
. This isomorphism provides a natural way to decompose the N -dimensional

quantum system into subsystems. Speciƞcally, the global Hilbert space admits a decomposition
as a tensor product of local Hilbert spaces HN =

⊗
iHni

. Using the shorthand notation GH

for element-wise group action and the tensor product identity AX ⊗BY = (A⊗B) (X ⊗ Y ),
the equivalence class of this decomposition — accounting for the freedom in choosing Hilbert
space coordinates — can be formally expressed as:

G(N)HN ≃
∏

i

G(ni)
⊗

i

Hni
, (1)
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whereG(d) denotes the symmetry group acting on a d-dimensional Hilbert space. Since the
product of local groups is a subgroup of the global group,

∏
iG(ni) ≤ G(N), description (1)

reduces toG(N)HN ≃
⊗

iHni
, implying that all decompositions related by the action ofG(N)

are equivalent. The equivalence class is uniquely ƞxed by the coprime factorizationN =
∏

i ni.
The assumptionG(N) = U(N) can lead to artifacts, since the continuous group U(N) freely

“mixes” states between diơerent components of the tensor product, which would lead to non-
observable in nature entanglement between fundamental particles of diơerent types.
The assumptionG(N) = CL(N) does not cause such problems, since in the global Cliơord

group does not contain transformations that mix states between local Hilbert spaces of coprime
dimensions. Mathematically, this is expressed by the fact, proved using the Chinese remainder
theorem, that the global Cliơord group decomposes into a direct product of local ones: CL(N) =∏

i CL(ni) . The absence of quantum entanglement between subsystems means that during any
evolutions of the global system, only quantum states that are tensor products of the states of
the subsystems (or their classical combinations, called separable states) are possible.
By applying the Chinese remainder theorem to the eigenvalues of the Hamiltonian for the

cyclic evolution of the global system [3], we derive the additive decomposition of energy levels
between the global quantum system and its local subsystems:

Ek/N =
∑

i

Eki/ni
, (2)

where Eν = hν represents Planck’s energy-frequency relation. Equality (2) demonstrates that:

1. The energy of the global system equals the sum of the energies of its subsystems, and

2. No interaction energies exist between components.

This result implies that subsystems of coprime dimensions are completely decoupled, showing
no quantum entanglement or energy exchange, and thus permit fully independent investigation.
In prime-dimensional quantum systems, quantum interference can occur. However, they

cannot exhibit quantum entanglement due to absence of proper subsystems. Entanglement is
possible only in a system of non-trivial prime power dimension.
Consequently, the most physically signiƞcant systems for study are:

1. Systems of prime dimensions (N = p), only quantum interference is possible, and

2. Systems of prime power dimensions (N = pℓ, ℓ > 1) where quantum entanglement
emerges.

4. Constructive quantum states

In continuous quantummechanics, the set of pure states in aN -dimensional Hilbert space is
the complex projective space P(HN ) = CP

N−1, which is a homogeneous space of the unitary
group U(N), i.e., CPN−1 is the orbit of an arbitrary unit vector, e.g., |0⟩, under the action of the
unitary group: CPN−1 ∼= OrbU(N)(|0⟩) = U(N) |0⟩ .
In our approach, the group of symmetries of quantum systems is the ƞnite Cliơord group,

which acts on the set of quantumstates non-transitively, splitting it into disjoint orbits. Replacing
U(N)with CL(N) as the group of symmetries, we assume that the constructive set of pure quan-
tum states, which we denote as CQS(N), consists of elements of the form |a⟩ =

∑N−1
i=0 ϕiαi |i⟩ ,

where αi ∈ R,
∑N−1

i=0 α2
i = 1, ϕi ∈ Z(CL(N)), i.e., the phase factors belong to the center

of the Cliơord group CL(N). The set CQS(N) must 1) be CL(N)-invariant; 2) contain ontic
vectors; 3) consist only of elements with rational Born probabilities of transitions between
themselves; 4) contain all superpositions of vectors with phase factors from Z(CL(N)) that
satisfy the rationality requirement.
To study the properties of the quantum states corresponding to these requirements, we

implemented a procedure to sequentially construct the orbits that make up the set CQS(N). At
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ƞrst, the orbit O1 = Orb
CL(N)

(|0⟩) is constructed. In dimensions N = pℓ this orbit consists of
N (N + 1) vectors, forming a complete set ofN + 1mutually unbiased bases and, in particular,
contains the ontic basis. Next, we construct other orbits using superpositions of already existing
elements. The results of computer experiments possibly indicate the formation of a dense
subset in CP

N−1.

4.1. Computations in dimensions 2 and 3

Table 1

Generators, centers, and sizes of the CliȂord groups in dimensions 2 and 3, ω = − 1

2
+ i

√

3

2
.

N X F S Z(CL(N)) |CL(N)|

2

(
0 1
1 0

)
1
√

2

(
1 1
1 −1

) (
1 0
0 i

)
K8 192

3

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ 1
√

3

⎛

⎝
1 1 1
1 ω ω2

1 ω2 ω

⎞

⎠

⎛

⎝
1 0 0
0 ω2 0
0 0 ω2

⎞

⎠ K12 2592

For quantum states |a⟩, |b⟩ ∈ CQS(N), we deƞne the distance function Dist(a, b) = 1−P(a, b) ≡
sin2DFS(a, b) , where P(a, b) = |⟨a | b⟩|2 is the Born probability of transition between states, and
DFS(a, b) is the length of the geodesic line in the natural for CPN−1 Fubini–Study metric.
To estimate the density of states for a subset S ⊂ CQS(N) in the complex projective space,

we deƞne the function∆(S) = maxa∈S minb∈S\{a}Dist(a, b) that computes, for each point in S,
the distance to its nearest neighbor and then takes the maximum of these minimal distances.

4.1.1. N = 2

The results permit geometric visualization: pure states reside in the complex projective line
CP

1, which is isomorphic to the Riemann sphere (Bloch sphere). The projective Cliơord group
PCL(2) = CL(2) /K8 has order 24. We calculated — initial steps are shown in Fig. 1 — a subset
of states S ⊂ CQS(2), which is the union of 986 orbits with a total number of elements 23646.
The maximum distances between neighboring states for the initial orbit and for the entire
computed set of states are, respectively,∆(O1) = 1/2 and∆(S) = 1/1515 ≈ 10−3.
The initial orbitO1 = OrbCL(2)(|0⟩) consists of six vectors, orthogonal pairs of which form a

complete set of three mutually unbiased bases:

O1 =

{
|0⟩ , |1⟩ ;

|0⟩+ |1⟩
√
2

,
|0⟩ − |1⟩

√
2

;
|0⟩+ i |1⟩

√
2

,
|0⟩ − i |1⟩

√
2

}
. (3)

4.1.2. N = 3

The order of the projective group PCL(3) = CL(3) /K12 is 216. The initial orbit forms a com-

plete set of four mutually unbiased bases: O1 =

{
|0⟩, |1⟩, |2⟩; 1√

3

⎛

⎝
1
1
1

⎞

⎠, 1√
3

⎛

⎝
1
ω

ω2

⎞

⎠, 1√
3

⎛

⎝
1
ω2

ω

⎞

⎠;

1√
3

⎛

⎝
1
ω2

ω2

⎞

⎠, 1√
3

⎛

⎝
1
1
ω

⎞

⎠, 1√
3

⎛

⎝
1
ω

1

⎞

⎠; 1√
3

⎛

⎝
1
ω

ω

⎞

⎠, 1√
3

⎛

⎝
1
1
ω2

⎞

⎠, 1√
3

⎛

⎝
1
ω2

1

⎞

⎠
}
. The set of states S ⊂ CQS(3)

that we calculated consists of 169 orbits that contain a total of 27237 vectors. The maximum
distances between neighboring states for the initial orbit and for the entire calculated set of
states are, respectively,∆(O1) = 2/3 and∆(S) = 1/99 ≈ 10−2.
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(a) (b) (c)

Figure 1: Initial steps in generating constructive quantum states in dimension 2:

(a) the vectors of orbit (3) form the vertices of an octahedron, whose spatial diagonals represent the three

mutually unbiased bases;

(b) pairwise interferences of the vectors in (a) with rational transition probabilities add one orbit of size 24;
(c) pairwise interferences of the vectors in (b) add 16 orbits of size 24 to the set of constructive quantum states.
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