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Abstract
The algebras of dual quaternions and screws are oƠen opposed to geometric algebra. The purpose of
this paper is to describe the algebra of dual quaternions and the algebra of screws, to give a number
of examples of the use of dual quaternions to describe the screw motion of points, lines and planes in
three-dimensional space. This algebra is very poorly covered in the literature, and the actively used
principle of Kotelnikov-Study transfer is apparently forgotten. All calculations were performed using
the Asymptote language. Structures were created that implement dual numbers, quaternions, and dual
dual quaternions, as well as a set of computational tests to verify these structures.
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1. Introduction

In the course of research on the application of analytical projective geometry in the ƞeld of
computational geometry [2], the authors oƠen came across references to motors, propellers,
and dual dual quaternions. All mentions were very brief and basically boiled down to the
fact that the mentioned entities are extremely unintuitive and diƢcult to understand and use.
They were oƠen contrasted with geometric algebra methods, which were presented as more
understandable and logical [4].
The search for a detailed description of the mathematical apparatus of the algebra of screws

and dual quaternions led the authors to works in the ƞeld of mechanics of absolutely rigid
bodies. It turned out that the theory of screws was developed back in the late 19th and early 20th
centuries in the works of R. S. Ball, E. Study [3], A. P. Kotelnikov. Themost complete description
can be found in the monograph [1]. However, at present this theory is little known and there
are practically no soƠware implementations of screw algebras and dual quaternions.
Another methodological problem is the lack of examples of the application of screws and

dual quaternions to computer geometry problems. The sources found are mainly focused on
the problems of applied mechanics. In this paper, we have tried to at least partially eliminate
this shortcoming.

Since all the examples are focused on the application of dual quaternion algebras and screws
to geometric problems, the Asymptote languagewas chosen as the language for implementation.
This language allows you to create custom data structures (data types) and overload all the basic
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algebraic operators. This made it possible to create data types for dual numbers, quaternions,
and dual dual quaternions. You can also create second-order functions that return other
functions that implement screw motion using Roderig’s screw formulas and sandwich products
of dual quaternions.

2. Dual numbers and quaternions

Here we list the basic concepts used in the construction of dual quaternionic algebra.
A dual number is a parabolic complex number z = a + bε, where the imaginary unit is a

parabolic imaginary unit deƞned by the equality ε2 = 0. For these numbers, you can deƞne the
same operations as for the usual (elliptical) complex numbers.
For two numbers z1 = a1 + b1ε and z2 = a2 + b2ε, addition, subtraction, and multiplication

can be deƞned. The formula for multiplication will look like this:

z1z2 = a1a2 + (a1b2 + b1a2)ε,

A dual conjugation is a number z = a+ bε = a− bε. The square of the module of the number
|z|2 = zz = a2, and the module itself as |z| = |a|.

Quaternion is a hypercomplex number of the form q = q0 + q1i+ q2j + q3k = q0 + q, where
the imaginary units i, j, k are determined by the equality i2 = j2 = k2 = ijk = −1. From this
equality, we can obtain a multiplication table of i, j, k among themselves and deƞne quaternion
multiplication, which is most easily expressed in terms of the scalar and vector parts of the
quaternion as follows:

qp = q0p0 − (q,p) + q0p+ p0q+ q× p.

A pure quaternion is a quaternion without a scalar part q0. A pure quaternion is associated with
a vector, an ordinary quaternion with q0 = 1 is associated with an aƢne point, and a quaternion
with q0 ̸= 0.1 is associated with a point mass. The q0 component plays the role of a weight
coordinate in this case.

3. Dual quaternions

A dual quaternion is a dual number with coeƢcients in the form of quaternions (Cayley-Dickson
doubling procedure):

Q = q + qoε,

where the quaternion q is the main part, and qo is the moment part. Q can be written as a
number with eight components

Q = q0 + q1i+ q2j + q3k + qo0ε+ qo1iε+ qo2jε+ qo3kε.

Axiomatically, it is assumed that the parabolic imaginary unit ε commutes with elliptical
imaginary units i, j, k, that is, iε = εi, jε = εj, kε = εk.
Simplifying somewhat, we will call a screw a dual quaternion, both parts of which are pure

quaternions. We will denote the screw in bold: Q = q+ qoε.
Three diơerent conjugation operations are deƞned for a dual quaternion

• Q∗ = (q + qoε) = q∗ + qo∗ε— quaternionic (complex) conjugation;

• Q = q + qoε = q − qoε— dual conjugation;

• Q† = (q + qoε)∗ = q∗ − qo∗ε is a quaternion dual conjugation.

dual quaternion multiplication can be deƞned for dual quaternions, and scalar and screw
(vector) multiplications for screws.
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4. The principle of Kotelnikov–Study transference

The principle of transference in the form in which A. P. Kotelnikov formulated it states. All
formulas of the theory of ƞnite rotations and kinematics of motion of a rigid body with one
ƞxed point, when replacing real quantities in them with dual analogues, turn into formulas for
ƞnite displacements and kinematics of motion of a free rigid body.
For example, consider the Rodrigues formula for rotating a point P with a radius vector p

around an axis passing through the origin with a guide vector a by an angle θ:

p
′ = cos θp+ sin θa× p+ (1− cos θ)(a,p)a.

According to the principle of transfer, the angle θ should be replaced in this formula by the dual
angle Θ = θ + θoε, the radius vector p by the screw L = v+mε, guiding vector a onto screw
A = a+ aoε. The scalar and vector product of the vectors will then be replaced by the scalar
and screw product of the screws.

5. Dual quaternion formulas for screwmotion

If in the unit quaternion λ for the rotation of the vector (pure quaternion) p around the axis

a is given by the formula λ = cos
θ

2
+ sin

θ

2
a, then replacing the angle θ and the vector a

with dual analogues using the principle of transference, then we get a dual quaternion: Λ =

cos
Θ

2
+ sin

Θ

2
A which implements the screw movement of points, straight lines and planes.

The sandwich formula for a straight line represented by a screw L = v + mε looks like
L′ = ΛLΛ∗. An aƢne point is represented using a dual quaternion of the following form:
P = 1 + pε. Planes can also be written as a dual quaternion Π = n+ dε, where n is the normal
vector of the plane, and d is the distance from the plane to the origin. The same formulas work
for the screw motion of a point and a plane: P ′ = ΛPΛ† and Π′ = ΛΠΛ†.

6. Conclusion

The Kotelnikov-Study transference principle is naturally implemented programmatically if the
types of dual numbers, quaternions, and dual quaternions are deƞned, as well as arithmetic
and algebraic operators are overloaded, and scalar and vector multiplications are deƞned. In
this case, the calculation of the screw motion is reduced to a compact program code, since all
the computational complexity is already implemented in the created data types. And since the
implementation of dual quaternions uses ready-made types of dual numbers and quaternions,
part of the complexity is transferred to the implementation of these types, thus distributing the
overall complexity at diơerent levels. The speciƞc details of the implementation are planned to
be outlined in the presentation of the report.
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