The 10 m^2 muon hodoscope made of drift tubes with length 3.7 m and diameter 52 mm is under development and construction in NRC "Kurchatov institute" – IHEP. Totally 768 drift tubes are grouped into 6 identical multilayers, each consisting of two tube layers with parallelly placed tubes. Tube orientation in the adjacent multilayers is orthogonal, thus the hodoscope has six X and six Y tube layers. Detailed mechanical structure, on-chamber electronics and data acquisition systems are described. Expected technical characteristics and some test results are presented.

Cosmological constant due to quantum corrections to the effective potential

Vladislav Filippov, R. Iakhibbaev, D. Kazakov, and D. Tolkachev

In this work, we show that quantum corrections to some cosmological models[1] can lead to a significant modification of the behaviour of the initial potential and the appearance of a non-zero ground state energy of the Universe which

^[1]D. I. Kazakov, R. M. Iakhibbaev, and D. M. Tolkachev. "Leading all-loop quantum contribution to the effective potential in the inflationary cosmology". In: *JCAP* 09 (2023), p. 049. DOI: 10.1088/1475-7516/2023/09/049. arXiv: 2308.03872 [hep-th].

^[2]Renata Kallosh, Andrei Linde, and Diederik Roest. "Superconformal Inflationary α -Attractors". In: *JHEP* 11 (2013), p. 198. DOI: 10.1007/JHEP11(2013)198. arXiv: 1311.0472 [hep-th].

can be interpreted as a cosmological constant. We apply the formalism of the effective potential to the simplest forms of α -attractors which can be represented by the so-called T-models and E-models[2]. We derived the generalised renormalisation group (RG) equations that sum

renormalisation group (RG) equations that sum up the whole sequence of leading logarithmic contributions to the effective potential. As a result, the accounting of quantum corrections leads to a change of character and a lift of the effective potential[3],[4]. We interpreted this uplift as the appearance of the cosmological constant Λ for the T^2 and E^2 models. Thus, we have found out that the cosmological constant Λ may exist as a consequence of quantum corrections to the effective potential with some value of the scale transmutation parameter μ even in non-renormalizable models of inflation. And the value of the cosmological constant Λ allows one to fix the parameter μ which is a free parameter in the non-renormalizable theory.