ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

На правах рукописи УДК 539.12.123

Фоменко Кирилл Александрович

ПОИСК АКСИОНОВ, РОЖДАЕМЫХ В РЕАКЦИИ $p(d,{}^{3}\mathrm{He})A$ на солнце, и запрещенных принципом паули переходов в ядрах ${}^{12}\mathrm{C}$ на детекторе борексино

01.04.16 – «Физика атомного ядра и элементарных частиц»

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Дубна – 2014

Работа выполнена в Лаборатории ядерных проблем им. В. П. Джелепова Объединенного института ядерных исследований

Научные руководители:	доктор физико-математических наук Дербин Александр Владимирович, кандидат физико-математических наук Смирнов Олег Юрьевич.
Официальные оппоненты:	доктор физико-математических наук, нач. лаб. ФГБУ ГНЦ РФ ИТЭФ Барабаш Александр Степанович, кандидат физико-математических наук, зав. группой ИЯИ РАН Копылов Анатолий Васильевич.
Ведущая организация:	НИЦ «Курчатовский Институт»

Защита состоится «___»____ 2014 г. в ___ часов на заседании диссертационного совета Д 720.001.03 при ОИЯИ по адресу: 141980, Дубна, ОИЯИ, Лаборатория ядерных проблем им. В. П. Джелепова, корп.1, конференц-зал.

С диссертацией можно ознакомиться в библиотеке ОИЯИ и на сайте http://www.info.jinr.ru/dissertation/DC_dlnp.htm

Автореферат разослан «___»____2014 г.

Ученый секретарь диссертационного совета

Г. А. Карамышева

Общая характеристика работы

Актуальность темы.

Стандартная модель элементарных частиц и их взаимодействий (СМ), основанная на группах симметрии, хорошо описывает большинство экспериментальных результатов. Однако, к настоящему моменту в модели остается ряд нерешенных вопросов: наличие большого количества свободных параметров, преобладание вещества над антивеществом, неясная ситуация с происхождением холодной темной материи, наконец, природа осцилляций нейтрино. Эти и ряд других вопросов заставляет экспериментаторов обращать внимание на поиски физических явлений, лежащих за рамками СМ, которые могли бы дать ключ к ее дальнейшему расширению. Поиск *редких* процессов, происходящих при низких («не ускорительных») энергиях, представляет собой один из методов изучения процессов, являющихся *доминирующими* при энергиях великого объединения; таким образом, осуществляется проникновение в область энергий, заведомо невозможную для ускорительных экспериментов обозримого будущего, и чрезвычайно интересную с точки зрения расширения современных знаний о физической картине мира.

Одна из загадок СМ, не поддающаяся разрешению на протяжении долгого времени, связана с нарушением СР-симметрии в сильных взаимодействиях. Дело в том, что в лагранжиан КХД входит член, отвечающий за взаимодействие глюонных полей; он называется, в соответствии с коэффициентом, Θ -членом и является СР-нечетным. Однако, экспериментально СР-нарушение в сильных взаимодействиях до сих пор не обнаружено. В частности, верхний предел на электрический дипольный момент нейтрона приводит к ограничению $\Theta \leq 10^{-9}$, что является крайне малой величиной по сравнению с другими коэффициентами в лагранжиане КХД.

Наиболее естественное решение СР-проблемы было предложено в модели с новой глобальной киральной симметрией, спонтанное нарушение которой позволяет точно скомпенсировать СР-несохраняющий член в лагранжиане КХД. При этом спонтанное нарушение такой симметрии должно приводить к возникновению новой нейтральной псевдоскалярной частицы — аксиона. Аксион, описываемый первоначально предложенной схемой, имел достаточно жесткие предсказания на массу и константы связи, и его существование было надежно закрыто серией экспериментов. Однако, вскоре были предложены новые теоретические модели, в которых аксион имеет очень маленькую массу, слабые константы связи с веществом и большое время жизни. Такие модели служат основанием для продолжения экспериментального поиска псевдоскалярной частицы, слабо взаимодействующей с веществом. Другая причина интенсивных поисков аксионов обусловлена тем, что аксионы, вместе с классом слабо взаимодействующих массивных частиц (т.н. WIMPs weakly interacting massive particles), являются наиболее популярными кандидатами на роль частиц, из которых состоит «темная материя» во Вселенной.

Таким образом, в настоящее время проблема экспериментального обнаружения аксиона является актуальной задачей как физики частиц, так и астрофизики.

Принцип запрета Паули (ПП), сформулированный В.Паули в 1925 г. для объяснения закономерностей периодической системы элементов и особенностей атомных спектров, является одним из наиболее фундаментальных законов природы. Однако, на основе современных теоретических представлений до сих пор нет ответа на вопрос: «с какой точностью справедлив принцип Паули?» Связано это, прежде всего, с отсутствием каких-либо «настоящих» (самосогласованных и непротиворечивых) моделей, допускающих слабое нарушение принципа Паули; такие модели, по-видимому, должны выходить за рамки квантовой теории поля. Поиск процессов с нарушением ПП является одной из принципиальных проверок границ применимости квантовополевого подхода, лежащего в основе современных физических представлений о структуре мира.

Цель диссертационной работы.

Данная диссертация посвящена экспериментальному поиску аксионов, рождающихся в реакции $p+d \rightarrow ^{3}\!\mathrm{He}\!+\!A$ (5.5 МэВ) на Солнце, и запрещенных ПП переходов в ядрах $^{12}\mathrm{C}$ на сверхнизкофоновом детекторе Борексино.

Научная новизна.

В ходе выполнения диссертационной работы в составе экспериментальной группы Борексино проведены серии измерений общей продолжительностью 737.8 суток, выполнены калибровки энергетической шкалы и пространственного разрешения детектора, создано и модернизировано программное обеспечение для управления сбором данных и мониторинга состояния компонент детектора. Выработаны оптимальные критерии отбора данных детектора Борексино для поиска редких процессов.

Получены энергетические спектры от взаимодействия аксиона в детекторе для процессов комптоновской конверсии, аксиоэлектрического эффекта, конверсии аксиона в фотон в поле ядра и распада на 2 γ -кванта в области масс аксиона $m_A \leq 1$ МэВ, вычислены энергии связи для непаулевских ядер с тремя протонами или тремя нейтронами на *S*-оболочке. Проведено моделирование методом Монте-Карло функций отклика детектора для всех четырех каналов взаимодействия аксиона и событий непаулевских переходов в ядре ¹²С с излучением γ , p, n и β^{\pm} .

В результате, получены новые модельно-независимые ограничения на константы связи аксиона с электроном, фотоном и нуклоном для масс аксиона $m_A < 1$ МэВ и новые ограничения на величины аксион-электронной и аксион-фотонной констант связи как функций массы аксиона. Получены новые, наиболее сильные на настоящий момент пределы на вероятности непаулевских переходов нуклонов с $1P_{3/2}$ -оболочки на $1S_{1/2}$ -оболочку в ядрах 12 С с испусканием γ -квантов, n-, p- и β^{\pm} -частиц, позволяющие установить новые верхние пределы на относительные интенсивности непаулевских и нормаль-

ных ядерных, электромагнитных и слабых переходов.

Практическая ценность.

Предложенные в работе новые подходы к анализу результатов, полученных с жидкосцинтилляционным детектором большого объема, могут использоваться при проведении фундаментальных исследований, связанных с регистрацией редких реакций и распадов на существующих и планирующихся нейтринных детекторах.

Разработанные в диссертации пакеты программ могут использоваться для различных целей. В частности, реализованные подходы кросс-платформенного программирования и методика быстрого переноса приложений с систем реального времени (Linux) на пользовательские терминалы под управлением MS Windows могут быть полезны для широкого круга экспериментов, использующих различные типы рабочих станций.

Положения, выносимые на защиту.

- 1. Рассчитан поток аксионов с энергией 5.5 МэВ, рождающихся в реакции $p + d \rightarrow {}^{3}\text{He} + A$ на Солнце. Получены энергетические спектры для процессов комптоновской конверсии, аксиоэлектрического эффекта, конверсии аксиона в фотон в поле ядра и распада на 2 γ -кванта в детекторе Борексино. Проведено моделирование функций отклика детектора для всех четырех каналов методом Монте-Карло.
- 2. Вычислены энергии связи для непаулевских состояний ядер с тремя протонами или тремя нейтронами на *S*-оболочке, выделены реакции, регистрация которых возможна на детекторе Борексино: ${}^{12}C \rightarrow {}^{12}\widetilde{C} + \gamma$, ${}^{12}C \rightarrow {}^{11}\widetilde{B} + p$, ${}^{12}C \rightarrow {}^{11}\widetilde{C} + n$, ${}^{12}C \rightarrow {}^{12}\widetilde{N} + e^- + \overline{\nu}$ и ${}^{12}C \rightarrow {}^{12}\widetilde{B} + e^+ + \nu$. Получены функции отклика детектора для вышеперечисленных непаулевских переходов (с излучением γ -квантов и *p*-, *n* и β^{\pm} -частиц) путем моделирования в пакете Geant4.
- 3. В составе экспериментальной группы Борексино проведены серии измерений общей продолжительностью 737.8 суток, выполнены калибровки энергетической шкалы и пространственного разрешения детектора. Создано и модернизировано программное обеспечение для автоматизированного управления сбором данных и мониторинга состояния компонент детектора Борексино. Разработаны и запущены система выявления неисправностей каналов ФЭУ и модуль вывода информации для системы управления электроники.
- 4. Установлены оптимальные критерии отбора данных при поиске сигналов, вызванных взаимодействием аксионов. Проведена математическая обработка полученных спектров, заключавшаяся в поиске пика с энергией 5.5 МэВ от реакции $p + d \rightarrow {}^{3}\text{He} + A$ на Солнце. Получены новые модельно-независимые ограничения на константы связи аксиона с электроном g_{Ae} , фотоном $g_{A\gamma}$ и нуклонами g_{AN} : $|g_{Ae} \times g_{3AN}| \leq 5.5 \times 10^{-13}$

и $|g_{A\gamma} \times g_{3AN}| \leq 4.6 \times 10^{-11}$ ГэВ⁻¹ для массы аксиона $m_A < 1$ МэВ (90% у.д.). Получены новые ограничения на константы связи g_{Ae} и $g_{A\gamma}$ как функций массы аксиона в модели адронного аксиона: $|g_{Ae} \times m_A| \leq 2.0 \times 10^{-5}$ эВ и $|g_{A\gamma} \times m_A| \leq 1.7 \times 10^{-12}$ (90% у.д.). Данные результаты исключают большую область возможных значений констант связи $g_{Ae} \in (10^{-11}...10^{-9})$ и $g_{A\gamma} \in (2 \times 10^{-14}...10^{-7})$ ГэВ⁻¹ и масс аксиона $m_A \in (0.01...1)$ МэВ.

5. Выполнен анализ экспериментальных данных с целью поиска сигнала от непаулевских переходов в ядрах ¹²С. Получены новые, наиболее строгие на настоящий момент, пределы на вероятности непаулевских переходов нуклонов с $1P_{3/2}$ -оболочки на $1S_{1/2}$ -оболочку в ядрах ¹²С с испусканием γ , n, p и β^{\pm} -частиц: $\tau(^{12}C \rightarrow ^{12}\tilde{C} + \gamma) \ge 5.0 \times 10^{31}$ лет, $\tau(^{12}C \rightarrow ^{11}\tilde{B} + p) \ge 8.9 \times 10^{29}$ лет, $\tau(^{12}C \rightarrow ^{11}\tilde{C} + n) \ge 3.4 \times 10^{30}$ лет, $\tau(^{12}C \rightarrow ^{12}\tilde{N} + e^- + \bar{\nu}) \ge 3.1 \times 10^{30}$ лет и $\tau(^{12}C \rightarrow ^{12}\tilde{B} + e^+ + \nu) \ge 2.1 \times 10^{30}$ лет (все для 90% у.д.). На основании полученных пределов на время жизни непаулевских переходов установлены новые верхние ограничения на относительные интенсивности непаулевских и нормальных переходов: $\delta_{\gamma}^2 \le 2.2 \cdot 10^{-57}, \delta_N^2 \le 4.1 \cdot 10^{-60}$ и $\delta_{\beta}^2 \le 2.1 \cdot 10^{-35}$ (90% у.д.).

Личный вклад автора.

Все приведенные результаты получены либо самим автором, либо при его непосредственном участии.

Апробация.

Основные положения диссертационной работы докладывались автором на международных конференциях «BUE-CTP Conference on Neutrino Physics in the LHC Era» (Luxor, Египет, 2009), «15 Ломоносовская Конференции по физике элементарных частиц» (Москва, 2011), «СТР: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests» (Trento, Италия, 2011), на сессии отделения физических наук РАН (Москва, 2009), на научных семинарах Национальной лаборатории Гран-Сассо (LNGS, Италия, 2009-2012) и Лаборатории ядерных проблем им. В. П. Джелепова Объединенного института ядерных исследований (Дубна, 2009-2013).

Публикации. По теме диссертации опубликовано 4 печатные работы, из них 4 в соавторстве, 3 в изданиях по перечню ВАК.

Объем и структура работы. Диссертация состоит из введения, пяти глав и заключения. Список использованной литературы содержит 181 наименование. Текст диссертации содержит 144 страницы машинописного текста, включая 43 рисунка и 8 таблиц.

Содержание работы

Во введении дано краткое описание основных причин введения в теорию и последующего экспериментального поиска нейтральной псевдоскалярной частицы — аксиона, современного положения Принципа запрета Паули в физике и роли возможного экспериментального открытия его нарушения. Сформулированы цели работы, изложена структура диссертации.

Глава 1 представляет собой обзор свойств аксиона в современных моделях и основных экспериментальных результатов по его поиску.

В первом разделе рассмотрены основные теоретические положения — от появления аксиона в теории до современных моделей, перечислены возможные каналы регистрации аксиона.

Во втором разделе подробно рассматривается взаимодействие аксиона через константу связи с фотоном $g_{A\gamma}$: распад аксиона на два фотона $A \to 2\gamma$ и конверсия аксиона в фотон в поле ядра $A + N(A,Z) \to \gamma + N(A,Z)$ (конверсия Примакова). Приведены явные выражения для константы связи $g_{A\gamma}$ как функции параметра нарушения симметрии Пиччеи-Квина f_A , времени жизни аксиона относительно распада на два фотона, интегрального сечения конверсии аксиона в фотон в поле ядра, а также оценки значений этих величин при некоторых значениях параметров.

В третьем разделе рассмотрено взаимодействие аксиона через константу связи с с электроном g_{Ae} : конверсия аксиона в фотон $A + e \rightarrow \gamma + e$ (комптоновская конверсия) и аксио-электрический эффект $A + e + Z \rightarrow$ e + Z. Приведены выражения для константы связи g_{Ae} как функции массы аксиона в DFSZ и KSVZ моделях, дифференциального и интегрального сечений аксион-комптоновской конверсии, интегрального сечения аксиоэлектрического эффекта. Сделаны оценки значений данных выражений для ряда значений входящих в них параметров.

В четвертом разделе рассматривается взаимодействие аксиона с нуклонами, определяющееся константой связи g_{AN} . Приведены оценки значений изоскалярной g_{0AN} и изовекторной g_{3AN} частей константы g_{AN} , достаточно хорошо согласующиеся в DFSZ и KSVZ моделях, дано выражение для относительной вероятности ядерного перехода с излучением аксиона (w_A) к вероятности магнитного перехода (w_{γ}) .

Раздел пятый посвящен обзору экспериментальных ограничений на параметры аксионных моделей. Представлены первоначальные эксперименты по поиску «стандартного» аксиона, надежно закрывшие его существование, и более поздние эксперименты различных типов по поиску аксиона со слабым взаимодействием с веществом («невидимого»): эксперименты по поиску конверсии аксиона в фотон (и обратно) в магнитном поле с использованием резонаторов, «гелиоскопов», твердотельных детекторов, интенсивных лазерных пучков в качестве источника фотонов, и эксперименты по поиску пропавшего γ -кванта в ядерных магнитных переходах (с излучением аксиона вместо фотона).

Также обсуждаются астрофизические ограничения, возникающие из параметров зарегистрированной вспышки Сверхновой (SN1987A), времени зажигания гелия звезд шаровых звездных скоплений — красных гигантов и звезд горизонтальной ветви, теории горячей темной материи (предел ГТМ), из данных по поглощению α-линий Лаймана межгалактическими газовыми облаками и сценариев инфляционного и струйного образования аксионов как части холодной темной материи.

В заключительном разделе первой главы подробно обсуждаются механизмы возможного возникновения аксионов на Солнце, а также результаты по поиску аксионов от реакций «*pp*»-цепочки и цикла CNO, полученные с помощью HPGe-детектора и на прототипе детектора Борексино — CTF.

Вторая глава посвящена обзору попыток построения теорий с возможностью малого нарушения Принципа Паули (ПП) и экспериментальных подходов для поиска этого нарушения.

В первом разделе описывается эволюция теоретических представлений о месте и роли ПП в физике, начиная с работ самого Паули, Дирака и Ферми, и заканчивая моделями Игнатьева-Кузьмина, Окуня и Гринберга-Мохапатры. Показано, что непротиворечивой теории, позволяющей ответить вопросы:

- возможно ли описать нарушение ПП как малый эффект,
- каковы параметры, количественно характеризующие степень нарушения ПП,
- каковы наблюдаемые экспериментальные проявления малого нарушения ПП, следующие из теории

на настоящий момент не существует, а результаты экспериментов по поиску нарушения ПП представляются как пределы на время жизни атомов или ядер относительно запрещенных переходов, или как пределы на отношение скоростей нормальных и непаулевских переходов.

Во втором разделе представлены экспериментальные исследования, нацеленные на две основные возможности для проверки ПП: поиск атомов и ядер, уже находящихся в непаулевских состояниях и поиск излучения, сопровождающего непаулевские переходы в атомах и ядрах. Перечислены эксперименты и их результаты, начиная от пионерских работ Голдхабера и Шарф-Голдхабер по распаду электрона, Логана и Любичича по поиску непаулевских переходов в нуклонах и ядрах, Новикова и Поманского по поиску аномальных атомов, вплоть до современных данных.

Глава третья посвящена описанию детектора Борексино.

В первом разделе дано общее описание детектора, особенностей его конструкции, основанной на концепции последовательной защиты, основных компонент и детектирующих объемов, окружающих фоновых условий, а также класса решаемых задач.

Во втором разделе подробно рассматривается методика регистрации событий в жидкосцинтилляционном детекторе. Перечислены виды излучений и методы их регистрации, особенности нелинейного отклика детектора в области низких энергий, обусловленные ионизационным гашением. Приведена таблица значений и пределов на содержание примесей радиоактивных изотопов в сцинтилляторе Борексино, характеризующая уникальную особенность эксперимента — высочайшую степень очистки элементов детектора от примесей элементов, дающих вклад в фон естественной радиоактивности.

Рассмотрены частотные спектры излучения компонент сцинтиллятора — псевдокумола и сместителя спектра, временные спектры сцинтиллятора, полученные на тестовой установке, а также параметры переноса сцинтилляционного света в объеме детектора. Описываются методы идентификации частиц по форме временного импульса, активно используемые в анализе данных: метод «tail-to-total» и фильтр Гатти.

Третий раздел посвящен методам изучения пространственного и энергетического разрешений детектора. Описывается серия калибровочных измерений, выполненных с помощью конструктивно предусмотренных приспособлений для размещения внутри и вне активного сцинтилляционного объема детектора радиоактивных источников малой интенсивности. Приводятся результаты: координатных измерений для 182 размещений источника ²²²Rn и полученная зависимость разрешения координаты события от энергии; измерений для определения энергетического разрешения детектора с источником ²⁴¹Am⁹Be и полученное соответствие зарядовой и энергетической шкал в области энергий выше 2 МэВ, разрешение по энергии как функция энергии, найденное по ширинам калибровочных пиков и параметры аппроксимирующей линейной зависимости; измерений вклада внешнего фона с γ источником ²²⁸Th, размещавшимся во внешней части сцинтилляционного объема детектора и параметры аппроксимирующей эмпирической кривой.

В заключительном разделе описываются электронный и программный интерфейсы сбора и обработки данных, в частности, назначение и реализованная функциональность программы мониторинга работы каналов электроники и фотоумножителей (dbMon).

В четвертой главе представлен анализ данных по поиску аксионов, рождающихся в реакции $p(d, {}^{3}\text{He})A$ на Солнце.

В первом разделе проводится вычисление ожидаемого потока солнечных аксионов на основании данных о величине потока pp-нейтрино. Коэффициент пропорциональности между двумя этими потоками определяется изовекторной частью g_{3AN} константы связи g_{AN} , входящей в выражение для отношения w_A/w_{γ} между вероятностями ядерного М1-перехода с испусканием аксиона (w_A) и с испусканием γ -кванта:

$$\frac{w_A}{w_\gamma} = \frac{\chi}{2\pi\alpha} \left[\frac{g_{3AN}}{\mu_3}\right]^2 \left(\frac{p_A}{p_\gamma}\right)^3 = 0.54(g_{3AN})^2 \left(\frac{p_A}{p_\gamma}\right)^3$$

где p_{γ} и p_A — импульсы фотона и аксиона, $\alpha \approx 1/137$ — постоянная тонкой структуры, $\mu_3 \approx 4.73$ — изовекторный ядерный магнитный момент, χ — параметр, зависящий от матричного элемента перехода. Таким образом, ожидаемый поток аксионов (на поверхности Земли) равен:

$$\Phi_{A0} = \Phi_{\nu pp} \left(\frac{w_A}{w_{\gamma}}\right) = 3.23 \times 10^{10} (g_{3AN})^2 (p_A/p_{\gamma})^3,$$

где $\Phi_{\nu pp} = 6.0 \cdot 10^{10} \text{ см}^{-2} \text{c}^{-1}$ — поток *pp*-нейтрино.

Также обсуждается влияние прохождения аксионного потока через вещество Солнца и удаленности источника и детектора. Оцениваются ограничения, возникающие из этих двух факторов, на величины констант связи: требование выхода аксионного потока за пределы солнечной короны ограничивает возможные для измерения в земных экспериментах значения констант взаимодействия на уровне $g_{AN} < 10^{-3}, g_{A\gamma} < 10^{-4}$ ГэВ⁻¹, $g_{Ae} < 10^{-6}$ при $m_A < 2m_e$ и $g_{Ae} < (10^{-12} - 10^{-11})$ при $2m_e < m_A < 5.5$ МэВ.

Во втором разделе описывается процедура нахождения функций отклика детектора для каналов комптоновской конверсии, аксиоэлектрического эффекта, конверсии аксиона в фотон в поле ядра и распада на 2 γ-кванта, полученных при помощи Монте-Карло моделирования. Программный комплекс g4bx моделирования детектора Борексино основан на пакете GEANT4 и учитывет эффекты ионизационного гашения в сцинтилляторе, а также нелинейную зависимость светосбора от координаты события. Особое внимание уделено процессам возбуждения и распространения (поглощения, переизлучения и рассеяния) сцинтилляционного света. Полученные энергетические спектры для всего активного объема и для центральной области детектора после отборов, аналогичных примененным для данных, показаны на рис. 1. Признаком аксионного взаимодействия в детекторе для все четырех рассматриваемых каналов является пик вблизи ~ 2600 фотоэлектронов.

Ответные функции подгонялись гауссовыми распределениями со свободными средним и разрешением. Результаты подгонки, переведенные в электронвольты, а также эффективности регистрации во внутреннем объеме детектора, приведены в таблице 1.

Канал	Позиция пика,	Разрешение пика,	Эффективность
	E_{MC} , МэВ	σ, MэB	регистрации, ϵ
Аксиоэл. эф.	5.595	0.140	0.315
Компт. конв.	5.467	0.140	0.358
Примак. конв.	5.446	0.144	0.368
Распад на 2γ	5.290	0.141	0.350

Таблица 1: Положение и разрешение пиков Монте-Карло, а также эффективность регистрации в доверительном объеме для каналов аксионного взаимодествия.

В третьем разделе детально описан анализ данных, в частности, методы идентификации фоновых событий от основных источников: космических мюонов, нейтронов, радиоактивных изотопов с временами распада от десятых

Рис. 1: Функции отклика детектора на каналы взаимодействия аксиона во всем ВО (слева) и в ДО (справа): (1) – аксиоэлектрический эффект; (2) – комптоновская конверсия; (3) – примаковская конверсия; (4) – распад на 2 γ -кванта.

долей секунды до десятков секунд, а также α -подобных событий в сцинтилляторе.

Эффективность комбинированного мюонного триггера Борексино, состоящего из внешнего черенковского вето-детектора и программно определяемого (на основе разделения сигналов по форме импульса) триггера во внутреннем активном объеме, лучше или равна 99.992%. Абсолютная величина мюонного потока, не идентифицируемого комплексным мюонным вето, составляет (4.5 ± 0.9) × 10^{-4} мюона/(100 t-д).

Захват нейтрона водородом ($\sigma = 0.33$ барн) или ядром ¹²С ($\sigma = 0.003$ барн) в сцинтилляторе сопровождается характерным монохроматическим γ -квантом с энергией 2.2 МэВ или 4.9 МэВ, соответственно. Исключение событий во временном окне 2 мс ($\sim 8\tau_n$) после каждого мюона, пересекшего детектор, позволяет подавить фоновые события от рассеяния, термализации и поглощения космогенных нейтронов, в том числе, образованных за пределами активного объема.

Фоновые события от короткоживущих ($\tau < 2$ с) изотопов — ¹²B, ⁸He, ⁹C, ⁹Li, ⁸B, ⁶He и ⁸Li — могут быть подавлены введением мертвого времени величиной 6.5 с после каждого мюона во внутреннем объеме, что соответствует более чем 5 временам жизни ⁸Li ($\tau = 1.21$ с). Остаточный фоновый счет, обусловленный короткоживущими космогенными элементами, составляет (1.7 ± 0.2) × 10⁻³ события/(100 т·д) в интервале энергий больше 3 МэВ. Граничная энергия β -спектра ¹⁰С равна 3.6 МэВ, что, согласно полученным функциям отклика, значительно ниже интервала для поиска пика от

Рис. 2: Энергетический спектр событий и эффекты отбора. Сверху вниз: (1) исходный спектр, вычтены коррелированные во временном интервале 1.25 мс группы событий; (2) исключены мюонные события и события в интервале 2 мс после каждого мюона; (3) исключены события в интервале 6.5 с после каждого мюона, прошедшего внутри активного объема; (4) события внутри доверительного объема с отрицательным значением переменной Гатти.

каналов взаимодействия аксиона в детекторе. Единственным из долгоживущих космогенных изотопов, дающим вклад в фоновый счет в интересующей энергетической области, является ¹¹Ве (Q = 11.5 МэВ). Вклад от распадов данного изотопа был учтен в подгоночной функции.

Экспериментальные энергетические спектры событий Борексино в диапазоне энергий 1 – 15 МэВ за период в 737.8 дней набора данных показаны на рис. 2. Кривая (1) соответствует исходному спектру, из которого вычтены группы коррелированных событий во временном интервале 1.25 мс, что убирает, в основном, 214 Bi- 214 Po совпадения из цепочки 238 U. Спектр (2) получен после вычитания всех мюонных событий, а также событий в интервале 2 мс после каждого мюона для подавления фона от событий захвата космогенных нейтронов. Спектр (3) получен из (2) дополнительным вычитанием событий во временном окне 6.5 с после каждого мюона, прошедшего в активный объем детектора, что позволяет подавить фон от распадов короткоживущих космогенных изотопов. Вычитание вводит 202.2 дня общего мертвого времени, уменьшая время экспозиции до 535.6 дней. Кривая (4) соответствует со-

Канал,	Компт. к.	Акс. эфф.	$A \rightarrow 2\gamma$	Примак. к.
аббреватура	CC	AE	DC	\mathbf{PC}
$S^{lim}, 68(90)\%$ у.д.	3.8(6.9)	3.4(6.5)	4.8(8.4)	3.8(6.9)

Таблица 2: Верхние пределы на количество зарегистрированных детектором Борексино за 536 дней набора данных аксионов, на 68(90)% уровне достоверности.

бытиям в центральной, программно выделяемой области детектора радиуса 3.021 м, максимально защищенной от внешнего радиационного фона. Дополнительно, применен отбор на основе разделения событий по форме импульса — фильтру Гатти.

Четвертый раздел описывает процедуру подгонки экспериментального спектра. Финальный энергетический спектр событий Борексино (кривая (4), рис. 2) в области энергий от 3 до 8.5 МэВ описывался модельной функцией, состоящей из суммы экспоненты, отвечающей за вклад от непрерывного фона, и гауссиана, отвечающего за вклад от искомого пика:

$$N^{th}(E) = a + b \times e^{-cE} + S/(\sqrt{2\pi}\sigma) \times e^{\left(-(E_{MC} - E)^2/(2\sigma^2)\right)},$$

где E_{MC} и σ — Монте-Карло значения энергии центра и разрешения для искомого пика (таблица 1), a, b и c — подгоночные параметры, описывающие фон, и S – интенсивность искомого пика.

Число событий в аксионном пике S находилось подгонкой по методу максимального правдоподобия, с функцией правдоподобия, образованной в предположении Пуассоновского распределения числа событий в каждом бине экспериментального распределения:

$$L = \prod_i \frac{e^{N_i^{th}} (N_i^{th})^{N_i^{exp}}}{N_i^{exp}!},$$

где $N_i^{th}(E)$ и $N_i^{exp}(E)$ — теоретическое (модельное) и экспериментальное количество событий в *i* бине, соответственно. При подгонке разрешение пика σ было зафиксировано на значении из Монте-Карло, параметры *a*, *b* и *c* были свободными параметрами, параметр E_0 центра пика варьировался вблизи $E_{MC} \pm 30$ кэВ с гауссовой весовой функцией для учета неопределенности в калибровке энергетической шкалы. Число степеней свободы в диапазоне интервала подгонки 3.2 - 8.4 МэВ ранялось 46.

Верхний предел на число событий в аксионном пике S^{lim} для каждого канала находился путем построения профиля функции правдоподобия $L^{max}(S)$, где $L^{max}(S)$ отвечает максимуму L при подгонке спектра с фиксированным значением S, фиксированным σ , свободными параметрами a, bи c и значением E, варьируемым около $E_{MC} \pm 30$ кэВ. Для нахождения вероятности P_S , соответствующей значению $\chi^2_{P_S}$ для каждого S из профайла, проводилось Монте-Карло моделирование с многократным (100000) розыгрышем событий числом $N = N^{exp}$ по подгоночной функции с фиксированными значениями параметров, полученных из результатов подгонки. Значения S^{lim} при $P_S = 0.68$ и $P_S = 0.9$ для каждого канала приведены в таблице 2.

Результаты по полученным ограничениям на величины аксионного потока и константы связи g_{AN} , g_{Ae} , $g_{A\gamma}$ приведены в пятом разделе. Ограничения на число событий с энергией 5.5 МэВ дают прямые модельно-независимые верхние пределы на значения произведений аксионного потока от Солнца на сечения взаимодействия аксиона с электронами, протонами и атомами углерода:

$$S = \Phi_A \sigma_{A-e,p,C} N_{e,p,C} T \epsilon \leqslant S^{lim},$$

где $N_{e,p,C}$ — число электронов, протонов или атомов углерода в мишени, T — время измерения и ϵ — эффективность регистрации детектора. Пределы на интенсивности взаимодействия для каждого канала равны:

$$\begin{split} \Phi_A \sigma_{A-e} &\leqslant 4.5^{-39} \text{c}^{-1}, \\ \Phi_A \sigma_{A-p} &\leqslant 2.5^{-38} \text{c}^{-1}, \\ \Phi_A \sigma_{A-C} &\leqslant 3.3^{-38} \text{c}^{-1}. \end{split}$$

Экспериментальный предел на S_{CC}^{lim} может быть использован для установления верхнего ограничения на произведение констант $|g_{Ae} \times g_{3AN}|$ как функции массы аксиона m_A : при $p_A/p_{\gamma} \simeq 1$ и $m_A \leq 1$ МэВ

$$|g_{Ae} \times g_{3AN}| \leq 5.5 \times 10^{13} \ (90\% \text{ y.g.}).$$

Зависимость произведения $|g_{Ae} \times g_{3AN}|$ от m_A чисто кинематическая; таким образом, полученное ограничение модельно-независимо и верно для любой псевдоскалярной частицы. Необходимо подчеркнуть, однако, что полученный результат ограничен условиями, накладываемыми требованием возможности выхода аксионов из Солнца: $g_{Ae} < 10^{-6}, g_{A\gamma} < 10^{-4}$ ГэВ⁻¹ и $g_{AN} < 10^{-3}$. На рис. 3 приведены полученные результаты (кривая 1) в сравнении с другими экспериментами. В рамках модели адронного (KSVZ) аксиона константа g_{3AN} может быть связана с массой аксиона, что позволяет получить ограничения на величину константы g_{Ae} как функции аксионной массы: при условии $p_A/p_{\gamma} \simeq 1$

$$|g_{Ae} \times m_A| \leqslant 2.0 \times 10^{-5} \text{ sB} (90\% \text{ y.g.}),$$
 (1)

где m_A выражена в эВ. Для $m_A = 1$ М
эВ данное ограничение соответствует $g_{Ae} \leq 2.0 \times 10^{-11}$.

Ограничение на произведение констант $|g_{A\gamma} \times g_{3AN}|$, получаемые из значения S^{lim} для канала аксионного распада:

$$|g_{A\gamma} \times g_{3AN}| \times m_A^2 \leq 3.3 \times 10^{-11} \text{ sB (90\% y.g.)}.$$

12

Рис. 3: Полученные экспериментальные ограничения на костанту связи g_{Ae} как функцию массы (кривая 1) в сравнении с другими экспериментами: 2 – реакторные и солнечные эксперименты, 3 – эксперименты по сбросу пучка, 4 – распад ортопозитрония, 5 – CoGeNT, 6 – CDMS, 7 – эксперименты по светимости солнечных аксионов, 8 –резонансное поглощение, 9 – астрофиз. ограничения (красные гиганты).

Отсюда в рамках модели адронного аксиона для $m_A < 1$ МэВ можно получить явное ограничение на константу $g_{A\gamma}$ как функцию аксионной массы:

$$|g_{A\gamma}| \times m_A^3 \leq 1.2 \times 10^{-3} \, \mathrm{sB}^2$$

Область исключенных значений $g_{A\gamma}$, полученная по каналу распада аксиона на 2 γ -кванта, показана на рис. 4 (кривая 1a, исключена область выше кривой).

Экспериментальный предел на S_{PC}^{lim} для канала конверсии Примакова может быть использован для установления верхнего ограничения на произведение констант $|g_{A\gamma} \times g_{3AN}|$:

$$|g_{A\gamma} \times g_{3AN}| \leq 4.6 \times 10^{-11} \, \Gamma \Im B^{-1} \, (90\% \text{ y.g.}),$$

где константа $g_{A\gamma}$ выражена в ГэВ⁻¹. В модели адронного аксиона константа связи g_{3AN} явно выражается через массу аксиона, и для $m_A < 1$ МэВ возможно получить ограничение на константу $g_{A\gamma}$ как функцию массы:

$$|g_{A\gamma} \times m_A| \leq 1.7 \times 10^{-12} \text{ (90\% y.g.)},$$

13

Рис. 4: Полученные экспериментальные ограничения на константу связи $g_{A\gamma}$ как функцию массы (1,а – распад на 2γ , 1,b – конверсия Примакова) в сравнении с другими экспериментами: 2 – CTF, 3 – реакторные эксперименты, 4 – эксперименты по сбросу пучка, 5 – резонансное поглощение, 6 – конверсия солнечных аксионов в кристаллах, 7 – CAST и TOKYO гелиоскопы, 8 – телескопы, 9 – астрофиз. ограничения (красные гиганты), 10 – ожидаемые области для моделей с тяжелыми аксионами.

где $g_{A\gamma}$, выражается в ГэВ⁻¹, а масса аксиона m_A — в эВ. Область исключенных значений $g_{A\gamma}$, полученная по каналу примаковской конверсии, показана на рис. 4 (кривая 1b, исключена область выше кривой). С учетом условий, накладываемых требованием регистрации аксионного распада в земных экспериментах и порогом чувствительности Борексино, данное ограничение соответствует диапазону аксионных масс $m_A = (1.5 - 73)$ кэВ.

Глава 5 посвящена методике и результатам экспериментального поиска паули-запрещенных переходов в ядрах $^{12}{\rm C}.$

В первом разделе вычисляются энергии реакций для непаулевских состояний ядра ¹²С с тремя протонами или тремя нейтронами на S-орбитали, выделены реакции, регистрация которых возможна на детекторе Борексино. Каналы, регистрация которых возможна на детекторе Борексино, вместе со значениями выделяемой в переходе энергии, приведены в таблице 3. Для остальных реакций, таких как ¹²С \rightarrow ¹⁰ \tilde{B} + d, ¹²C \rightarrow ⁹ \tilde{B} + t, ¹²C \rightarrow ⁹ \tilde{B} = + ³He, ¹²C \rightarrow ⁶ \tilde{L} i + ⁶Li и ¹²C \rightarrow ⁶ \tilde{L} i + ⁴He + d, за исключением ¹²C \rightarrow ⁹ \tilde{B} _{3p} + t, зна-

Канал	$Q_3p,$	Q_3n
	(МэВ)	(МэВ)
$^{12}\mathrm{C} \rightarrow ^{12}\widetilde{\mathrm{C}} + \gamma$	17.9 ± 0.9	17.7 ± 0.6
${}^{12}\mathrm{C} \to {}^{11}\widetilde{\mathrm{B}} + \mathrm{p}$	6.3 ± 0.9	7.8 ± 1.0
$^{12}\mathrm{C} \rightarrow {}^{11}\mathrm{\widetilde{C}} + \mathrm{n}$	6.5 ± 0.9	4.5 ± 0.6
$^{12}\mathrm{C} \rightarrow ^{12}\widetilde{\mathrm{N}} + \mathrm{e}^- + \overline{\nu_\mathrm{e}}$	18.9 ± 0.9	-
${}^{12}\mathrm{C} \rightarrow {}^{12}\widetilde{\mathrm{B}} + \mathrm{e}^+ + \nu_\mathrm{e}$	-	17.8 ± 0.9

Таблица 3: Значения Q при непаулевских переходах (3 нейтрона или 3 протона на 1S-оболочке).

чения Q отрицательны. Эти реакции не могут быть вызваны непаулевскими переходами.

Методика и результаты моделирования функций отклика детектора в пакете GEANT4 для непаулевских переходов, перечисленных в таблице 3, описываются во втором разделе. Функции отклика детектора для каналов с излучением γ , p, n и β^{\pm} представлены на рис. 5.

Рис. 5: Функции отклика Борексино: 1) $^{12}\mathrm{C} \rightarrow {}^{12}\tilde{\mathrm{C}} + \gamma$ (16.4 МэВ), внутренний объем и 1 м прилегающего буфера; 2) $^{12}\mathrm{C} \rightarrow {}^{12}\tilde{\mathrm{N}} + \mathrm{e}^- + \overline{\nu}$ (18.9 МэВ); 3) $^{12}\mathrm{C} \rightarrow {}^{11}\tilde{\mathrm{B}} + \mathrm{p}$ (4.6 и 8.3 МэВ); 4) $^{12}\mathrm{C} \rightarrow {}^{11}\tilde{\mathrm{C}} + \mathrm{n}$ (3.0 и 6.0 МэВ).

Рис. 6: Энергетические спектры детектора Борексино: 1 — спектр всех зарегистрированных событий; 2 — с вычитанием событий в интервале 2 мс после каждого мюона; 3 — с вычитанием событий в интервале 0.7 с после мюонов, пересекших внутренний объем.

Третий раздел посвящен методике отбора данных. Экспериментальный спектр событий Борексино в диапазоне энергий $(1.0 \div 14)$ МэВ за 485 дней набора данных показан на рис. 6. Спектр 1 соответствует всем зарегистрированным событиям. Спектр 2 получен после вычитания событий, которые зарегистрированы во временном окне 2 мс после сигнала мюонного вето и следующих дополнительных требованиях: среднее время прихода сигналов ФЭУ по отношению ко времени срабатывания первого в событии ФЭУ ≤ 100 нс и время, соответствующее максимальной плотности сигналов ФЭУ в событии ≤ 30 нс. Данные ограничения удаляют события от мюонов, прошедших через внутренний объем и не обнаруженных внешним черенковским детектором. Для уменьшения фона от короткоживущих изотопов, производимых мюонами, пропускаются события в интервале 0.7 с после каждого мюона, пересекшего внутренний объем (спектр 3). Данный критерий уменьшает живое время до 467.8 дней.

Энергетический спектр в интервале $(0.5 \div 8.0)$ МэВ исследовался для поиска паули-запрещенных переходов с испусканием нуклонов. Для уменьшения внешнего фона были отобраны события, зарегистрированные в центральной части сцинтиллятора массой 100 т ($R \le 3.02$ м). Удалялись коррелированные события, зарегистрированные в интервале 2 мс. При этом устраняются главным образом последовательные $^{214}\mathrm{Bi}\text{-}^{214}\mathrm{Po}$ распады из семейства $^{238}\mathrm{U}$. Наконец, для разделения сигналов от электронов, протонов и α -частиц, был применен критерий отбора по форме сигнала, основанный на фильтре Гатти.

Предел на вероятность запрещенных переходов ${}^{12}C \rightarrow {}^{12}\widetilde{C} + \gamma$, основывающийся на экспериментальном факте отсутствия событий с энергией выше 12.5 МэВ, получен в четвертом разделе:

$$\tau_{\gamma}({}^{12}C \to {}^{12}C + \gamma) \ge 5.0 \cdot 10^{31} \text{ лет } (90\% \text{ y.д.})$$

Приводится сравнение с результатами экспериментов NEMO-2, Kamiokande и CTF.

Предел на вероятность непаулевских переходов в ядрах 12 C с испусканием протона установлен в пятом разделе:

$$\tau_p(^{12}C \to ^{11}B + p) \ge 2.1 \cdot 10^{30} \text{ лет } (90\% \text{ y.g.})$$

Результат сравнивается с данными детекторов NaI (DAMA/LIBRA, Ejiri).

Отбор парных коррелированных событий — быстрого сигнала от протонов отдачи, возникающих при термализации нейтрона, и задержанного сигнала от 2.2 МэВ γ -квантов от захвата нейтрона, позволил установить предел на вероятность непаулевских переходов в ядрах ¹²С с испусканием нейтрона, полученный в пятом разделе:

$$\tau_n(^{12}C \to {}^{11}\widetilde{C} + n) \ge 3.4 \cdot 10^{30}$$
лет (90% у.д.)

Данный результат на 8 порядков превосходит предел, полученный при поиске нейтронного излучения от природного свинца.

Пределы на вероятности непаулевских β^{\pm} -переходов установлены в шестом разделе из факта отсутствия событий с энергией выше 12.5 МэВ:

$$au_{\beta^{-}}(^{12}C \to ^{12}\widetilde{N} + e^{-} + \overline{\nu}) \ge 3.1 \cdot 10^{30} \text{ лет } (90\% \text{ y.д.})$$

 $au_{\beta^{+}}(^{12}C \to ^{12}\widetilde{B} + e^{+} + \nu) \ge 2.1 \cdot 10^{30} \text{ лет } (90\% \text{ y.д.})$

Результаты сравниваются с данными детекторов LSD и NEMO-2.

В заключительном разделе вычисляются пределы на относительные интенсивности непаулевских переходов по отношению к нормальным для исследованных каналов, приводится сравнение результатов с данными других экспериментов (таблица 4).

В заключении сформулированы основные результаты диссертационной работы.

Распад	$\widetilde{\lambda}(^{12}\mathrm{C}),$	$\lambda(^{12}C)$	$\delta^2 = \widetilde{\lambda}/\lambda$	Предыдущие
	(c^{-1})	(c^{-1})		пределы
γ	$5.0 \cdot 10^{-39}$	$2.3 \cdot 10^{18}$	$2.2 \cdot 10^{-57}$	$2.3 \cdot 10^{-57}$
N(n,p)	$7.4 \cdot 10^{-38}$	$1.8 \cdot 10^{22}$	$4.1 \cdot 10^{-60}$	$3.5 \cdot 10^{-55}$
(e, ν)	$4.1 \cdot 10^{-38}$	$2.0 \cdot 10^{-3}$	$2.1 \cdot 10^{-35}$	$6.5 \cdot 10^{-34}$

Таблица 4: Верхние пределы на относительные интенсивности непаулевских и нормальных переходов, $\delta^2 = \tilde{\lambda}/\lambda$ (90% у.д.), и результаты предыдущих экспериментов.

Заключение

Впервые предложен и проведен анализ данных сверхнизкофонового детектора Борексино с целью поиска солнечных аксионов и нарушения принципа Паули. В результате проведенного анализа получены новые модельнонезависимые ограничения на константы связи аксиона с электроном g_{Ae} , фотоном $g_{A\gamma}$ и нуклонами g_{AN} : $|g_{Ae} \times g_{3AN}| \leq 5.5 \times 10^{-13}$ и $|g_{A\gamma} \times g_{3AN}| \leq 4.6 \times 10^{-11}$ ГэВ⁻¹ для массы аксиона $m_A < 1$ МэВ (90% у.д.). Получены новые ограничения на константы связи g_{Ae} и $g_{A\gamma}$ как функций массы аксиона в модели адронного аксиона: $|g_{Ae} \times m_A| \leq 2.0 \times 10^{-5}$ эВ и $|g_{A\gamma} \times m_A| \leq 1.7 \times 10^{-12}$ (90% у.д.). Данные результаты исключают большую область возможных значений констант связи $g_{Ae} \in (10^{-11}...10^{-9})$ и $g_{A\gamma} \in (2 \times 10^{-14}...10^{-7})$ ГэВ⁻¹ и масс аксиона $m_A \in (0.01...1)$ МэВ.

Получены новые, наиболее строгие на настоящий момент пределы на вероятности непаулевских переходов нуклонов с $1P_{3/2}$ -оболочки на $1S_{1/2}$ -оболочку в ядрах ¹²С с испусканием γ , n, p и β^{\pm} -частиц: $\tau(^{12}C \rightarrow ^{12}\widetilde{C} + \gamma) \geq 5.0 \times 10^{31}$ лет, $\tau(^{12}C \rightarrow ^{11}\widetilde{B} + p) \geq 8.9 \times 10^{29}$ лет, $\tau(^{12}C \rightarrow ^{11}\widetilde{C} + n) \geq 3.4 \times 10^{30}$ лет, $\tau(^{12}C \rightarrow ^{12}\widetilde{N} + e^- + \overline{\nu}) \geq 3.1 \times 10^{30}$ лет и $\tau(^{12}C \rightarrow ^{12}\widetilde{B} + e^+ + \nu) \geq 2.1 \times 10^{30}$ лет (все для 90% у.д.). На основании полученных пределов на время жизни непаулевских переходов установлены новые верхние ограничения на относительные интенсивности непаулевских и нормальных переходов: $\delta_{\gamma}^2 \leq 2.2 \cdot 10^{-57}, \, \delta_N^2 \leq 4.1 \cdot 10^{-60}$ и $\delta_{\beta}^2 \leq 2.1 \cdot 10^{-35}$ (90% у.д.).

Работы автора по теме диссертации

- Дербин А. В., Фоменко К. А. Новые экспериментальные ограничения на вероятности непаулевских переходов в ядре ¹²C, полученные на детекторе BOREXINO // Ядерная Физика, 2010, том 73, №12, С. 2110.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) New experimental limits on the Pauli forbidden transitions in ¹²C nuclei obtained with 485 days Borexino data // Phys. Rev., 2010, Vol. C81, P. 034317.

- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Search for solar axions produced in the p(d,³He)A reaction with Borexino detector // Phys. Rev., 2012, Vol. D85, P. 092003.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Study of the rare processes with the Borexino detector // World Scientific, Proceedings of the Fifteenth Lomonosov Conference on Elementary Particle Physics, 2011, P. 173, doi: 10.1142/9789814436830 0037.
- Derbin A., Fomenko K. on behalf of Borexino Coll. Study of rare processes with the Borexino detector // Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests, arXiv:1112. 1273, 2011.

Работы автора в составе коллаборации Борексино

- Bellini G., ... Fomenko K. ... et. al. (Borexino Coll.) Search for solar axions emitted in the M1-transition of ⁷Li* with Borexino CTF // Eur. Phys. J. 2008, Vol. C54, P. 61-72.
- Arpesella C., ... Fomenko K., ... et. al. (Borexino Coll.) First real time detection of ⁷Be solar neutrinos by Borexino // Phys. Lett., 2008, Vol. B658, Iss. 4, P. 101-108.
- Arpesella C., ... Fomenko K., ... et. al. (Borexino Coll.) Direct Measurement of the ⁷Be Solar Neutrino Flux with 192 Days of Borexino Data // Phys. Rev. Lett., 2008, Vol. 101, Iss. 9, P. 091302.
- Alimonti G., ... Fomenko K., ... et. al. (Borexino Coll.) The Borexino detector at the Laboratori Nazionali del Gran Sasso // Nucl. Instrum. Methods, 2009, Vol. A600, P. 568.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Observation of Geo-Neutrinos // Phys. Lett., 2010, Vol. B687, Iss. 4-5, P. 299-304.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Measurement of the solar ⁸B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector // Phys. Rev., 2010, Vol. D82, P. 033006.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS // Phys. Lett., 2011, Vol. B696, Iss. 3, P. 191-196.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Muon and cosmogenic neutron detection in Borexino // JINST, 2011, Vol. 6, P. 05005.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Precision Measurement of the ⁷Be Solar Neutrino Interaction Rate in Borexino // Phys. Rev. Lett., 2011, Vol. 107, P. 141302.

- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Absence of a day–night asymmetry in the ⁷Be solar neutrino rate in Borexino // Phys. Lett., 2012, Vol. B707, Iss. 1, P. 22-26.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) First Evidence of pep Solar Neutrinos by Direct Detection in Borexino // Phys. Rev. Lett., 2012, Vol. 108, P. 051302.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth // JCAP, 2012, Vol. 12, P. 15.
- Back H., ... Fomenko K., ... et. al. (Borexino Coll.) Borexino calibrations: hardware, methods, and results // JINST, 2012, Vol. 7, P. 10018.
- Alvarez-Sanchez P., ... Fomenko K., ... et. al. (Borexino Coll.) Measurement of CNGS muon neutrino speed with Borexino // Phys. Lett., 2012, Vol. B716, Iss. 3-5, P. 401-405.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Measurement of geoneutrinos from 1353 days of Borexino // Phys. Lett., 2013, Vol. B722, Iss. 4-5, P. 295.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth // JCAP, 2013, Vol. 8, P. 48.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Lifetime measurements of ²¹⁴Po and ²¹²Po with the CTF liquid scintillator detector at LNGS // Eur. Phys. J. A, 2013, 49:92.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) SOX: Short distance neutrino Oscillations with BoreXino // JHEP, 2013, Vol. 8, P. 38.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) Final results of Borexino Phase-I on low energy solar neutrino spectroscopy // arXiv:1308.0443, 2013.
- Bellini G., ... Fomenko K., ... et. al. (Borexino Coll.) New limits on heavy sterile neutrino mixing in ⁸B decay obtained with the Borexino detector // Phys. Rev., 2013, Vol. D88, P. 072010.