ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ ИМ. В. И. ВЕКСЛЕРА И А. М. БАЛДИНА

На правах рукописи

Mone

Кожевникова Марина Евгеньевна

Моделирование рождения легких ядер и гиперядер в столкновениях тяжелых ионов в термодинамическом подходе, реализованном в генераторе THESEUS

Специальность 1.3.15 — «Физика атомных ядер и элементарных частиц, физика высоких энергий»

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в Лаборатории физики высоких энергий им. В.И. Векслера и А.М. Балдина Объединенного института ядерных исследований.

Научный

Иванов Юрий Борисович

руководитель:

доктор физико-математических наук, ведущий научный сотрудник лаборатории теоретической физики Объединенного

института ядерных исследований (ОИЯИ), г. Дубна

Официальные оппоненты: Пшеничнов Игорь Анатольевич

доктор физико-математических наук, ведущий научный сотрудник Института ядерных исследований Российской академии наук (ИЯИ РАН), г. Москва, г. Троицк.

Забродин Евгений Евгеньевич

кандидат физико-математических наук, научный сотрудник лаборатории сильных взаимодействий Научноисследовательского института ядерной физики имени Д. В. Скобельцына Московского государственного университета имени М. В. Ломоносова (НИИЯФ МГУ), г. Москва

С электронной версией диссертации можно ознакомиться на официальном сайте Объединенного института ядерных исследований в информационно-телекоммуни-кационной сети «Интернет» по адресу: https://dissertations.jinr.ru. С печатной версией диссертации можно ознакомиться в Научно-технической библиотеке ОИЯИ (г. Дубна, Московская область, ул. Жолио-Кюри, д. 6).

Ученый секретарь диссертационного совета ОИЯИ.02.01.2024.П, канд. физ.-мат. наук

Holfry ch-

В.А. Арефьев

Общая характеристика диссертации

Актуальность темы исследования

В настоящее время исследование столкновений тяжелых ионов и изучение образующихся в результате легких ядер является актуальной задачей как с теоретической, так с экспериментальной точки зрения. Эта задача тесно связана с поиском кварк-глюонной плазмы (КГП) и критической точки [1; 2] на фазовой диаграмме квантовой хромодинамики (КХД), вблизи которой ожидается увеличенное образование легких ядер, что служит своего рода индикатором фазового перехода, а также области спинодальной неустойчивости [3; 4].

Изучение гиперядер — это также важная и интересная тема ядерной физики. Это такие ядра, в состав которых входят как нуклоны, так и гиперон (или гипероны). Эксперименты с тяжелыми ионами дают нам информацию о времени жизни и энергиях связи легких гиперядер, что дает понимание гиперон-нуклонных вза-имодействий и роли симметрии аромата, важных для изучения структуры ядра и астрофизики, а также для построения адронного уравнения состояния для приложений к столкновениям тяжелых ионов. Кроме того, образование гиперядер напрямую связано с диагностикой образования КГП при столкновениях тяжелых ионов.

В настоящее время есть несколько ускорительных комплексов, на которых изучается или планируется изучать ядро-ядерные столкновения при умеренно релятивистских энергиях, в которых достигаются высокие барионные плотности. Так, уже действуют SPS (Super Proton Synchrotron) в ЦЕРН, программа BES (Beam Energy Scan) на коллайдере RHIC (Relativistic Heavy Ion Collider) в Брукхейвенской национальной лаборатории в США и Нуклотрон в ОИЯИ (Дубна), на этапе постройки находится ускорительный комплекс FAIR (Facility for Antiproton and Ion Research) в г. Дармштадт (Германия) и уже готовится к запуску комплекс NICA (Nuclotron-based Ion Collider fAcility) в г.Дубна.

При умеренно релятивистских этих энергиях значительная часть барионного заряда испускается в составе легких ядер даже в центральных столкновениях. Так эта доля составляет $\sim 30\%$ в центральных столкновениях Au+Au при энергии столкновения $\sqrt{s_{NN}}=3$ ГэВ согласно недавним данным коллаборации STAR [5; 6]. Это требует корректного описания рождения легких ядер наравне с другими адронами. Кроме того, при этих энергиях наступает переход образующейся в результате столкновения материи в фазу КГП, как показывает анализ данных по направленному потоку адронов в различных моделях [7—16; A1; A2; 17—30]. Анализ данных по легким ядрам может дать дополнительную информацию о характере этого перехода такой, как присутствие или отсутствие области спинодальной неустойчивости в этом переходе [3; 4]. Предварительные данные коллаборации STAR [31] по флуктуациям протонной множественности указывают на то, что критическая точка на фазовой диаграмме КХД достигается в области верхней границы диапазона энергий NICA. Как упоминалось выше, эти флуктуации

должны приводить к увеличению образования легких ядер [1; 2]. Поэтому анализ данных по легким ядрам может дать дополнительную информацию о критической точке на фазовой диаграмме КХД.

Существуют различные модели, позволяющие теоретически описывать рождение легких (гипер)ядер в столкновениях тяжелых ионов. По способу моделирования легких (гипер)ядер их можно условно разделить на три класса:

- модели, описывающие рождение легких (гипер)ядер на основе механизма коалесценции, например [32—35]. В простейшем случае коалесценция требует определение параметров [32] из сравнения с экспериментальными данными, следовательно, предсказательная сила такого подхода ограничена. Более продвинутые подходы коалесценции используют функции Вигнера для расчета параметров для легких ядер [33—35]. Усовершенствованные варианты коалесценции успешно воспроизводят данные в широком диапазоне энергий. Для гиперядер также используется коалесценция. Однако, коалесцентный подход не позволяет в полной мере использовать такие модели для предсказаний, так как требует тонкой подстройки под данные.
- транспортные модели, такие как SMASH [36], PHQMD [37] и стохастический кинетический подход [38]. В этих моделях формирование легких ядер происходит динамически за счет взаимодействий, рассматривают легкие ядра микроскопически, наравне с другими адронами. Транспортные модели работают в широком диапазоне энергий, но требуют обширных дополнительных входных данных для описания легких ядер;
- термодинамические модели, например [39—41; А3]. Обнаружено [40], что как коалесцентная, так и термодинамическая модели согласуются в своих предсказаниях относительно выходов легких (гипер)ядер. Однако, термодинамический подход описывает легкие (гипер)ядра наравне с адронами, исходя из рассчитанных температур и химических потенциалов, поэтому нет необходимости в дополнительных параметрах для легких (гипер)ядер. Таким образом, поскольку предсказательная сила этого подхода одинакова для легких (гипер)ядер и адронов, он имеет существенное преимущество. Кроме того, термодинамический подход идеально приспособлен для исследования влияния ядерной среды на свойства легких (гипер)ядер [42—44]. Термодинамический подход был первоначально реализован в рамках феноменологической статистической модели [45], которая одинаково хорошо описывает легкие (гипер)ядра и антиядра при энергиях LHC [46], а также при энергиях BES STAR (от 7.7 до 200 ГэВ) на коллайдере RHIC [39; 47; 48]. Однако, возможности феноменологической статистической модели ограничены. Она может описывать выходы легких (гипер)ядер, но не их коллективные потоки и спектры по поперечному импульсу. В частности, для описания спектров по поперечному импульсу приходится делать дополнительные предположения (модель Blast-Wave [49]) и вводить дополнительные

параметры, а исследование коллективных потоков вообще оказывается недоступным.

Ввиду всего вышеизложенного, актуальной задачей является разработка модели для описания легких (гипер)ядер, основанной на термодинамическом подходе в рамках полномасштабного 3D моделирования ядерных столкновений, в которой как адроны, так и легкие (гипер)ядра рассматриваются единообразно, не требуя каких-либо дополнительных параметров.

Цель и задачи исследования

Цель настоящей диссертационной работы заключается в разработке термодинамического подхода к описанию рождения легких (гипер)ядер, основанного на 3D динамической модели ядро-ядерных столкновений, которая позволит не только объяснять уже имеющиеся данные с помощью параметризации согласно экспериментальным данным температур и барионных химических потенциалов, как это имеет место в феноменологических версиях термодинамического подхода, но и предсказывать результаты (в том числе, спектры и коллективные потоки) будущих экспериментов, в частности, на коллайдере NICA. Такое динамическое моделирование позволит лучше понять область применимости термодинамического подхода, а также выяснить роль возможных эффектов влияния среды, которые активно обсуждаются в настоящее время [42—44].

Для достижения этой цели были поставлены следующие задачи исследования:

- Разработать новую версию генератора THESEUS, с помощью которой можно моделировать легкие (гипер)ядра (и их антиядра).
- применить новую версию генератора THESEUS к анализу имеющихся экспериментальных данных коллабораций NA49 и STAR, чтобы выяснить область и степень применимости этого подхода.

Научная новизна работы

В настоящей работе разработан новый подход к моделированию легких (гипер)ядер в столкновениях тяжелых ионов, основанный на термодинамическом описании в рамках полномасштабного 3D моделирования ядерных столкновений, в котором адроны и легкие (гипер)ядра рассматриваются единообразно. Этот подход реализован в новой версии генератора THESEUS, предназначенного для моделирования столкновений тяжелых ионов при умеренно релятивистских энергиях.

В этом подходе не требуются феноменологические параметры, как в коалесцентных моделях, или обширные входные данные, как это необходимо в динамических моделях. Температуры и химические потенциалы не параметризуются

согласно экспериментальным данным, как в статистической модели или Blast-Wave, а рассчитываются в модели 3FD (Three-Fluid Dynamics), исходя из начальных данных и уравнения состояния. Следовательно, такой подход существенно увеличивает предсказательную силу моделирования.

Разработанный новый подход впервые применен к анализу данных по легким ядрам в столкновениях Au+Au и Pb+Pb при энергиях $\sqrt{s_{NN}}=3-19.6$ ГэВ и при различных центральностях. В диссертации изучены быстротные распределения, p_T , m_T -спектры, направленный v_1 и эллиптический v_2 потоки. Полученные результаты находятся в разумном согласии с имеющимися на данный момент экспериментальными данными коллабораций NA49 и STAR. Найденные расхождения с данными физически объяснены несовершенствами описания динамики столкновений в разработанной модели. Также проведено аналогичное исследование для гиперядер, таких как гипертритий $^3_{\Lambda}$ H и гипергелий $^4_{\Lambda}$ He, в столкновениях Au+Au при энергии $\sqrt{s_{NN}}=3$ ГэВ.

Таким образом, данная диссертационная работа имеет научную новизну как в разработке метода, так и его применения к описанию данных.

Теоретическая и практическая значимость работы

Разработанная новая версия генератора THESEUS и проведенное в данной работе с помощью неё исследование легких ядер дает возможность делать предсказания для будущих экспериментов при умеренно релятивистских энергиях столкновения тяжелых ионов. Это может помочь в планировании таких экспериментов, в частности, на новом ускорительном комплексе NICA в Дубне.

Кроме того, термодинамический подход к образованию легких ядер сам по себе имеет теоретический интерес. Полученные разумные результаты показывают, что термодинамический подход в рамках гидродинамической модели применим к описанию рождения не только различных адронов, но и таких деликатных объектов, как легкие (гипер)ядра, энергии связи которых много меньше энергии возбуждения ядерной среды.

Поскольку в 3FD и THESEUS отсутствуют критическая точка и флуктуации, характерные для неравновесной спинодальной фазы, генератор THESEUS дает некоторый реперный расчет выходов легких ядер, заметное превышение выходов (гипер)ядер над результатами которого в некоторой области энергий столкновения может указывать на присутствие интересных физических явлений.

Основные положения, выносимые на защиту

• Разработанная новая версия генератора THESEUS позволяет моделировать легкие (гипер)ядра на основе термодинамического подхода принципиально новым способом по сравнению с имеющимися на данный момент моделями и имеет преимущество в простоте входных параметров и предсказательной силе.

- Термодинамический подход в сочетании с гидродинамическим описанием динамики ядро-ядерных столкновений Au+Au и Pb+Pb при энергиях $\sqrt{s_{NN}}=3-19.6$ ГэВ дает удовлетворительное описание экспериментальных данных (NA49 и STAR) по рождению легких ядер (дейтроны, тритоны, ядра гелия 3 He и 4 He).
- Термодинамический подход дает удовлетворительное описание экспериментальных данных (STAR) по рождению легких гиперядер (таких как гипертритий $^3_{\Lambda}$ H и гипергелий $^4_{\Lambda}$ He) в столкновениях Au+Au при энергии $\sqrt{s_{NN}}=3$ ГэВ.
- Выходы легких ядер слабо зависят от уравнения состояния ядерной материи в рассмотренной области энергий. В то же время направленный поток протонов и легких ядер оказался очень чувствительным к уравнению состояния при $\sqrt{s_{NN}} \geq 7.7$ ГэВ, что указывает на присутствие фазового перехода в кварк-глюонную плазму при этих энергиях столкновения.
- Вклад от распадов нестабильных состояний ${}^4{\rm He}^*$ сильно влияет на выходы легких ядер при энергии $\sqrt{s_{NN}}=3$ ГэВ и оказывается несущественным при $\sqrt{s_{NN}}\geq 7.7$ ГэВ.
- Для хорошего описания легких ядер с массовым числом A=2 и 3 требуется позднее (по сравнению со стандартным для адронов) замораживание, а для 4 Не предпочтительно стандартное.

Личный вклад

Содержание диссертации и положения, выносимые на защиту, отражают персональный вклад автора. Автор принимала активное участие во всех этапах работы. Её вклад является определяющим в разработке и тестировании программного кода, существенным в проведении численных расчётов и получении физических результатов. Автор неоднократно лично представляла полученые результаты на международных конференциях. Также автор принимала активное участие в подготовке публикаций. Все выносимые на защиту результаты получены при определяющем участии автора.

Публикации

По теме диссертации опубликовано 7 работ [A1—A7], 6 из которых [A1—A3; A5—A7] в изданиях, рекомендованных ВАК, и 3 из которых написаны по материалам докладов на конференциях [A4; A5; A7].

Степень достоверности и апробация результатов

Основные материалы диссертационной работы представлены лично автором на 9 международных конференциях и на 2 методических семинарах:

1. Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collisions, and astrophysics, The European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Тренто, Италия, 2019.

Название доклада: "Production of light clusters in generator THESEUS".

2. 10th International Conference on New Frontiers in Physics (ICNFP 2021), Колимбари, Крит, Греция.

Название доклада: "Light-nuclei production in heavy-ion collisions in Three-fluid Hydrodynamics-based Event Simulator (THESEUS)".

3. 6th International Conference on Particle Physics and Astrophysics (ICPPA 2022), МИФИ, Москва, Россия

Название доклада: "Light-nuclei production in heavy-ion collisions at $\sqrt{s_{NN}}$ = 6.4–19.6 GeV in THESEUS generator based on 3-fluid dynamics".

4. 11th International Conference on New Frontiers in Physics (ICNFP 2022), Колимбари, Крит, Греция

Название доклада: "Light-nuclei production in heavy-ion collisions at $\sqrt{s_{NN}}$ = 6.4–19.6 GeV in 3-fluid dynamics".

5. Workshop on physics performance studies at NICA (NICA-2022), МИФИ (виртуальная через ZOOM), Москва, Россия

Название доклада: "Light-nuclei production in heavy-ion collisions at $\sqrt{s_{NN}}$ = 6.4–19.6 GeV in THESEUS generator based on 3-fluid dynamics".

6. 12th International Conference on New Frontiers in Physics (ICNFP 2023), Колимбари, Крит, Греция

Название доклада: "Light-nuclei production in heavy-ion collisions at the energy range of $\sqrt{s_{NN}}=3$ –19.6 GeV in generator THESEUS based on 3-fluid dynamical model".

7. JINR Association of Young Scientists and Specialists Conference "Alushta-2023", ОИЯИ, Алушта, Россия

Название доклада: "Light-nuclei production in heavy-ion collisions at NICA energies in generator THESEUS based on 3-fluid dynamical model".

8. Workshop on physics performance studies at NICA (NICA-2024), (виртуальная через ZOOM), Москва, Россия

Название доклада: "Proton, Lambda and light (hyper)nuclei production in Au+Au collisions at 3 GeV. Bulk properties and directed flow".

9. 61st meeting of the PAC for Particle Physics (2025), Дубна, Россия, стендовый доклад.

Hазвание: "Modelling of light (hyper)nuclei production in heavy-ion collisions at NICA energies based on generator THESEUS".

10. Методический семинар: EMMI Nuclear and Quark Matter seminar (GSI), онлайн, 2021.

Тема семинара: "Update of the Three-fluid Hydrodynamics-based Event Simulator (THESEUS) and light-nuclei production in heavy-ion collisions".

11. Общелабораторный семинар ЛФВЭ, 2025.

Тема семинара: "Моделирование легких ядер и гиперядер в столкновениях тяжелых ионов в термодинамическом подходе при помощи генератора THESEUS" (по материалам кандидатской диссертации).

Структура и объём диссертации

Диссертация состоит из трёх глав, введения, заключения, и двух приложений. Полный объем диссертации содержит 119 страниц текста с 32 рисунками и 3 таблицами. Список используемой литературы включает 158 библиографических ссылок.

Краткое содержание диссертации

Во Введении дан литературный обзор по теме исследования, включающий классификацию существующих моделей для описания легких (гипер)ядер, обоснование актуальности темы исследования, сформулированы цели и задачи исследования, научная новизна работы, обоснована теоретическая и практическая значимость работы. Выделены основные положения, выносимые на защиту, личный вклад автора, апробация результатов и краткое содержание диссертации.

Первая глава представляет описание генератора THESEUS и 3FD модели, на которой он построен, а также описаны преимущества его новой версии.

Генератор событий THESEUS был впервые представлен в 2016 году [50] и применен для моделирования столкновений тяжелых ионов. В основе генератора лежит модель 3FD [32], которая описывает эволюции системы сталкивающихся тяжелых ионов от начальной стадии вплоть до замораживания материи. Недостатком 3FD является сложность адаптации результатов к реальным экспериментам,

поскольку её выходные данные представляют собой набор элементов гиперповерхностей жидкостей, получаемых на этапе замораживания, и записываются в терминах локальных скоростей гидродинамического потока и термодинамических величин. Эта проблема устраняется в генераторе THESEUS, выходные данные которого содержат набор наблюдаемых частиц, каждая из которых характеризуется массой, энергией, координатами, проекциями импульсов и т.д., что позволяет легко накладывать ограничения, связанные с аксептансом реального детектора, и получать скорректированные таким образом выходы частиц, p_T -спектры и другие наблюдаемые. Стадия дожига (взаимодействия адронов в конечном состоянии) в генераторе описывается с помощью модели UrQMD [51].

В первом разделе дано описание модели 3FD, с помощью которой описывается эволюция системы сталкивающихся ядер в терминах трех жидкостей. Она работает от начальной стадии эволюции системы вплоть до момента замораживания, когда система становится слишком разреженной, гидродинамическое приближение теряет свою применимость и требуется кинетическое описание. Трехжидкостное приближение является простейшим способом для моделирования ранней неравновесной стадии сильно взаимодействующей материи. 3FD предназначена для моделирования столкновений тяжелых ионов при умеренно релятивистских энергиях BES-RHIC, SPS, FAIR и NICA.

Во втором разделе описывается генератор THESEUS, где от описания в терминах жидкостей мы переходим к описанию в терминах частиц ("particlization"). Описаны основные этапы, необходимые для построения выборки с помощью процедуры Монте-Карло.

В третьем разделе дается краткое описание модели UrQMD [51], использующейся на стадии дожига;

В четвертом разделе описываются модификации генератора THESEUS-v2, в котором появилась возможность моделировать легкие (гипер)ядра термодинамически: пересчет барионного химического потенциала с учетом рождения легких (гипер)ядер, поскольку они вносят вклад в общий барионный заряд, согласование таблиц резонансов THESEUS и 3FD, которые изначально были разными, и еще несколько других менее существенных изменений.

Программный код генератора THESEUS-v2 доступен по ссылке https://github.com/marinakozh/3fd_generator/tree/urqmd_recalc_muB.

Вторая глава посвящена результатам моделирования глобальных наблюдаемых таких, как быстротные распределения и спектры по поперечному (по отношению к направлению пучка) импульсу (p_T) , и потоков легких ядер при энергиях столкновения $\sqrt{s_{NN}}=3-19.6$ ГэВ, которые сравниваются с имеющимися экспериментальными данными NA49 и STAR, а также с результатами 3FD коалесценции.

Для анализа азимутальной анизотропии выхода частиц рассматривается одночастичное распределение, разложенное в ряд Фурье по азимутальному углу φ

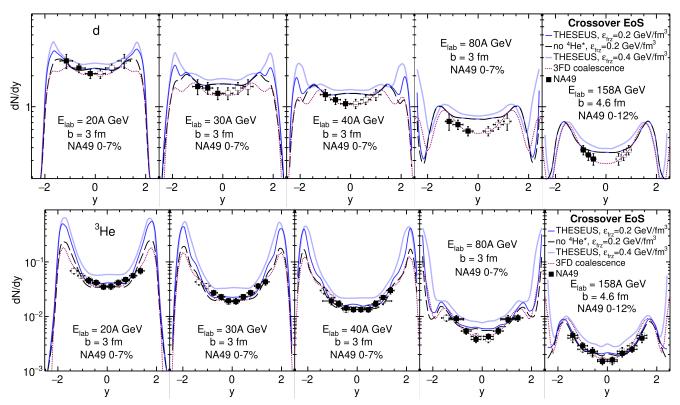


Рис. 1: Быстротные распределения дейтронов (верхний ряд) и 3 Не (нижний ряд) в центральных столкновениях Pb+Pb при различных энергиях столкновения, рассчитанные с уравнением состояния с кроссовером. Приведены результаты со стандартным замораживанием $\varepsilon_{\rm frz}=0.4~ \Gamma$ 9В/фм 3 (бледно-голубые линии) и поздним $\varepsilon_{\rm frz}=0.2~ \Gamma$ 9В/фм 3 (синие линии), без вклада возбужденных низколежащих резонансов 4 Не * (черные линии), результаты 3FD-коалесценции [52] и экспериментальные данные NA49 [53].

импульса частицы p, см. работу [54]:

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \Psi_{RP})) \right],$$

где Ψ_{RP} — азимутальный угол плоскости реакции, а коэффициенты $v_n = \langle \cos[n(\varphi_i - \Psi_{RP})] \rangle$ выражают анизотропию, при этом усреднение происходит по всем рассматриваемым частицам во всех событиях. Первый коэффициент v_1 , называется направленным потоком, а второй v_2 , — эллиптическим.

Проведен анализ результатов и сделаны промежуточные выводы.

B первом разделе дано обоснование выбора позднего замораживания для имитации стадии дожига легких ядер, поскольку используемая модель UrQMD не описывает эволюцию легких ядер. Замораживание характеризуется плотностью энергии замораживания, стандартное используемое в 3FD значение составляет $\varepsilon_{\rm frz} = 0.4~ \Gamma$ эВ/фм 3 . Для моделирования дожига легких ядер оптимальным значением оказалось $\varepsilon_{\rm frz} = 0.2~ \Gamma$ эВ/фм 3 , что соответствует более позднему замораживанию.

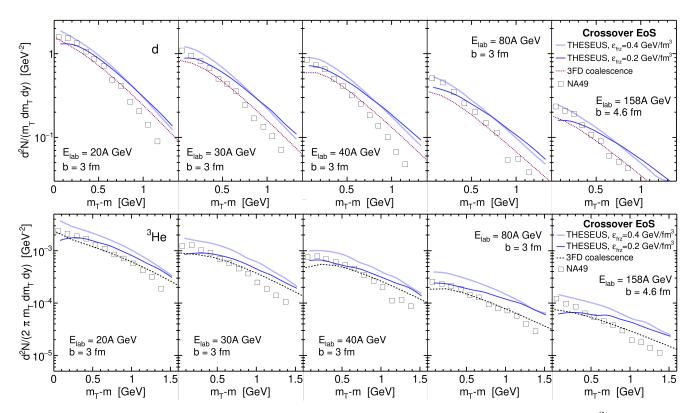


Рис. 2: Спектры по поперечным массам для дейтронов (верхний ряд) и ³Не (нижний ряд) в центральных столкновениях Pb+Pb при различных энергиях, рассчитанные с уравнением состояния с кроссовером. Показаны результаты, рассчитанные со стандартным замораживанием (бледно-голубые линии) и поздним (синие линии), результаты 3FD (фиолетовые пунктирные линии) [52] и экспериментальные данные NA49 [53].

Во втором разделе приведены результаты для энергий столкновения $\sqrt{s_{NN}}=6.4-19.6$ ГэВ. Быстротные распределения дейтронов и ядер ³Не, полученные с использованием уравнения состояния с кроссовером, показаны на Рисунке 1. Как видно, результаты THESEUS систематически превышают экспериментальные данные по выходам легких ядер в области центральных быстрот, но, в целом, разумно описывают эксперимент. Позднее замораживание $\varepsilon_{\rm frz}=0.2$ ГэВ/фм³ несколько улучшает согласие с данными, но не полностью. Также в диссертации показано, что степень согласия с экспериментом зависит от уравнения состояния: уравнение состояния с кроссовером и в этом случае обеспечивает лучшее согласие с данными, чем уравнение состояния с фазовым переходом 1-го рода.

Вычислены спектры по поперечным массам, $m_T = \sqrt{m^2 + p_x^2 + p_y^2} = \sqrt{E^2 - p_z^2}$, см. Рисунок 2. Нормировка спектров легких ядер, полученных в THESEUS с обычным замораживанием, сильно завышена. Имитация дожига (THESEUS с $\varepsilon_{\rm frz} = 0.2$ ГэВ/фм³) несколько улучшает нормировку при низких $m_T - m$, но ухудшает согласие с наклонами. Спектры и их наклоны лучше воспроизводятся при низких $m_T - m$. Наряду с быстротными распределениями, m_T -спектры лучше описывают данные при более низких энергиях, откуда можно предположить, что THESEUS лучше походит для моделирования легких ядер на энергиях NICA и FAIR. Также

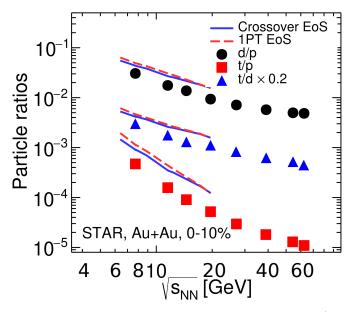


Рис. 3: Зависимости от энергии отношений чисел частиц d/p, t/p и t/d в области центральных быстрот. Моделирование выполнено при b=4 фм для Au+Au и b=3 фм для Pb+Pb в бине по быстроте |y|<0.3. Представлены результаты для уравнений состояния с кроссовером (синие линии) и с фазовым переходом 1-го рода (красные пунктирные линии). Результаты расчета сравниваются с данными STAR [48] для центральных (0-10%) столкновений Au+Au.

можно заключить, что небольшие расхождения в результатах протонов трансформируются в большие расхождения в результатах для легких ядер. Общая нормировка спектров 3FD-коалесценции лучше, однако, это достигается за счет настройки параметров коалесценции.

Исследованы отношения выходов частиц: d/p, t/p, и t/d, т.е. отношение числа дейтронов к числу протонов, числа тритонов к числу дейтронов и числа тритонов к числу протонов, соответственно, в области центральных быстрот в зависимости от энергии столкновения. На Рисунке 3 показаны результаты моделирования THESEUS и экспериментальные данные коллаборации STAR [48]. Протоны в этих отношениях не содержат вклада от слабых распадов, в соответствии с экспериментальной процедурой [55]. Как видно из Рисунка 3, моделирование воспроизводит рассматриваемые зависимости от энергии, однако, систематически превышает их значения по сравнению с экспериментальными данными. Если включить в выход протонов вклад от слабых распадов, то результат будет значительно лучше воспроизводить эксперимент.

Также исследовано поведение отношения выходов легких ядер $N_t N_p/N_d^2$, см. Рисунок 4. Показано, что на него сильно влияют протоны, полученные от слабых распадов. Вычисленный результат с протонами без вклада от слабых распадов превышает предсказанное значение: 0.29 [1]. Это предсказание основано на предположении, что все наблюдаемые протоны и легкие ядра происходят из одного и того же источника в центре сталкивающихся ядер. Однако, частицы, вылетевшие из околоцентральных источников, также вносят вклад в области центральных

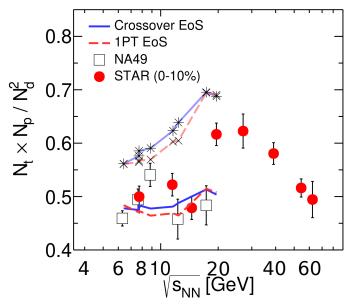


Рис. 4: Зависимость от энергии отношения выходов легких ядер $N_t \times N_p/N_d^2$ в области центральных быстрот в центральных столкновениях Au+Au и Pb+Pb. Моделирование выполнено при b=4 фм для Au+Au (при энергиях $\sqrt{s_{NN}}<17.4$ ГэВ) и b=4.6 фм для Pb+Pb (при энергии $\sqrt{s_{NN}}=17.4$ ГэВ) в бине по быстроте |y|<0.3. Использовались уравнений состояния с кроссовером (синие линии) и с фазовым переходом 1-го рода (красные пунктирные линии). Показаны отношения, в которые входят числа протонов N_p без вклада от слабых распадов (две нижние линии). Также для иллюстрации влияния слабых распадов показаны отношения с протонами, содержащими вклад слабых распадов (две верхние линии, помеченные крестами). Экспериментальные данные: STAR (Au+Au, 0–10%) [48] и NA49 (Pb+Pb, 0–7% при 20A-80A ГэВ и 0–12% при 158A ГэВ) [53].

быстрот. Относительный вклад околоцентральных областей в плотность протонов в области центральных быстрот больше, чем соответствующие вклады околоцентральных областей для легких ядер [52]. Мы пришли к выводу, что вклады слабых распадов должны аккуратно вычитаться из выхода протонов, чтобы рассчитываемое отношение $N_t N_p/N_d^2$ могло служить индикатором характеристик образования легких ядер и структуры фазовой диаграммы КХД.

 $S_{NN}=3$ ГэВ. В отличие от рассмотренного выше диапазона энергий столкновений, выход легких ядер при энергии 3 ГэВ играет заметную роль в общем балансе барионного заряда и поэтому заслуживает отдельного исследования. Спектры по поперечным импульсам в области центральных быстрот (|y| < 0.1) показаны на Рисунке 5. Спектры протонов рассчитываются стандартно, то есть со стандартным замораживанием 3FD и дожигом UrQMD, а спектры легких ядер — с поздним замораживанием. Для сравнения также отображаются распределения легких ядер, рассчитанные при стандартном замораживании. Как видно, результаты для разных уравнений состояния практически идентичны, а это означает, что в динамике доминирует адронная фаза. Разница между поздним замораживанием и стандарт-

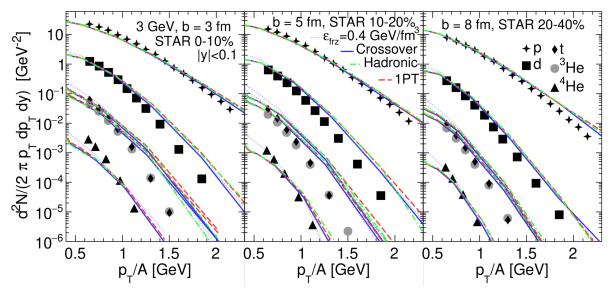


Рис. 5: Спектры по поперечным импульсам протонов и легких ядер $(d, t, ^3$ Не и 4 Не) в области |y| < 0.1, полученные в столкновениях Au+Au при $\sqrt{s_{NN}} = 3$ ГэВ и различных центральностях (прицельных параметрах b). Результаты рассчитаны для трёх различных уравнений состояния. Для легких ядер показаны результаты моделирования с поздним замораживанием ($\varepsilon_{\rm frz} = 0.2$ ГэВ/фм 3) для трех уравнений состояния и со стандартным замораживанием ($\varepsilon_{\rm frz} = 0.4$ ГэВ/фм 3) только для уравнения состояния с кроссовером. Протоны рассчитываются стандартно. Данные STAR взяты из работы [5].

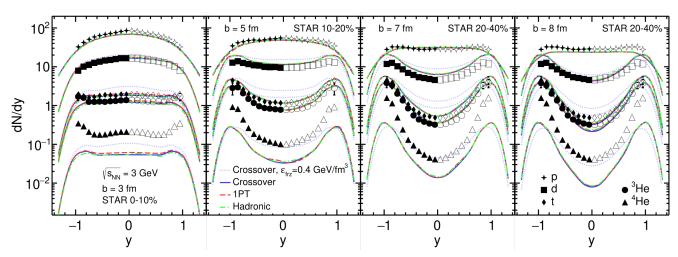


Рис. 6: Быстротные распределения протонов и легких ядер $(d, t, {}^{3}$ Не и 4 Не), полученные в столкновениях Au+Au при $\sqrt{s_{NN}}=3$ ГэВ и различных центральностях. Результаты рассчитаны для трёх уравнений состояния. Для легких ядер показаны результаты моделирования с поздним замораживанием (для трёх уравнений состояния) и со стандартным (только с кроссовером). Протоны рассчитаны стандартно. Данные STAR взяты из работы [5]. Закрашенные символы — экспериментальные точки, а незакрашенные — отраженные симметрично относительно y=0.

ным для кроссоверного уравнения состояния в основном проявляется при низких значениях p_T для легких ядер. В спектрах p_T эта разница не выглядит существен-

ной. Однако, в быстротных распределениях, см. Рисунок 6, которые в основном определяются спектрами с низкими p_T , разница весьма заметна.

Наиболее оптимальным для исследования легких ядер при 3 ГэВ оказалось то же значение параметра замораживания, $\varepsilon_{\rm frz}=0.2$ ГэВ/фм³, что и при более высоких энергиях столкновения. Воспроизведение экспериментальных распределений оказывается даже лучше, чем при более высоких энергиях. Моделирование THESEUS хорошо описывает разницу в форме распределения протонов и легких ядер и ее зависимость от центральности. Для экспериментальной центральности 20-40% мы приводим сравнение с результатами для двух прицельных параметров (b=7 и 8 фм), чтобы проиллюстрировать чувствительность результатов к выбору b. Как видно, результаты для протонов занижены в области центральных быстрот при b=8 фм, несмотря на идеальное воспроизведение экспериментального спектра с низкими p_T , см. Рисунок 5. Причина в том, что экстраполяция экспериментального спектра на более низкие p_T превосходит предсказания THESEUS. Аналогичная ситуация имеет место и для легких ядер. Таким образом, результаты для двух прицельных параметров (b=7 и 8 фм) иллюстрируют неопределенность предсказаний THESEUS.

Распределения 4 Не заслуживают отдельного обсуждения. Расчеты для позднего замораживания располагаются сильно ниже экспериментальных распределений. Расширение списка резонансов легких ядер за счет 5 H, 5 He и 5 Li, [47], распадающихся на 4 He, внесло бы дополнительный вклад в выход 4 He. Согласно работе [47], этот дополнительный вклад должен быть велик, т. е. порядка 60%, в центральных столкновениях при энергии 3 ГэВ. В то же время, расчет со стандартным замораживанием приводит к гораздо лучшему (практически идеальному в области центральных быстрот при центральности 10-20% и 20-40%) воспроизведению данных. Спектры p_T также гораздо лучше описываются со стандартным замораживанием, см. Рисунок 5. Это говорит о том, что ядра 4 He лучше выживают на стадии дожига, поскольку являются более пространственно компактными и сильно связанными объектами. Иными словами, для их описания более актуально стандартное замораживание.

Результаты для коллективных потоков для протонов и легких ядер, см. Рисунок 7, рассчитаны относительно плоскости реакции, которая точно определена в моделировании. Мы не приводим результаты для тритонов, поскольку они очень похожи на результаты для 3 Не, в том числе и по степени согласия с данными. Моделирование THESEUS для легких ядер выполнено для позднего замораживания ($\varepsilon_{\rm frz} = 0.2~\Gamma$ 9В/фм 3) для трёх различных уравнений состояния. Протоны рассчитываются в рамках обычного 3FD-замораживания с последующим дожигом UrQMD.

Направленный поток оказывается независимым от используемого уравнения состояния, что еще раз говорит о том, что в динамике доминирует адронная фаза. Результаты расчетов хорошо, за исключением больших положительных или отрицательных значений быстрот, воспроизводят экспериментальный направленный поток протонов [56]. Согласие с данными [6] ухудшается с увеличением атомного номера легкого ядра. Если расчетный наклон при быстроте y=0 направленного

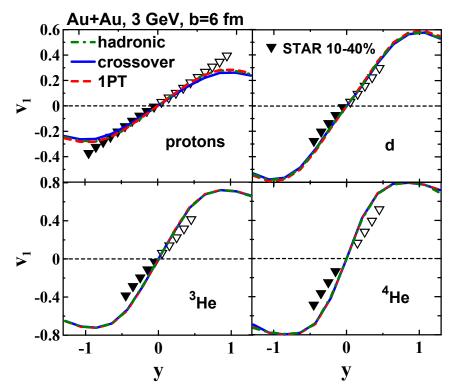


Рис. 7: Направленный поток протонов и легких ядер как функция быстроты в полуцентральных (b=6 фм) столкновениях Au+Au при энергии $\sqrt{s_{NN}}=3$ ГэВ. Результаты получены для трёх различных уравнений состояния. Для легких ядер используется позднее замораживание: $\varepsilon_{\rm frz}=0.2$ ГэВ/фм 3 , для протонов — стандартное и с дожигом UrQMD. Экспериментальные данные опубликованы в работах [6; 56], обозначены закрашенными символами, а отраженные симметрично нулевой быстроты — незакрашенными.

потока лишь немного круче экспериментального для дейтронов, то для 4 Не он уже заметно круче. Поток 4 Не не зависит от типа замораживания, тогда как наклоны потока более легких ядер при обычном замораживании становятся лишь немного круче.

Исследована зависимость потоков v_1 в зависимости от жесткости адронного уравнения состояния (см. Рисунок 8). Жесткость характеризуется коэффициентом несжимаемости ядерной материи, которую традиционно определяют как

$$K = 9n_0^2 \frac{d^2}{dn^2} \left(\frac{\varepsilon(n, T=0)}{n} \right)_{n=n_0},$$

где $\varepsilon(n,T=0)$ — плотность энергии ядерного вещества при нулевой температуре (T=0) как функция барионной плотности (n), n_0 — нормальная ядерная плотность.

Стандартно используемое в 3FD адронное уравнение состояния характеризуется жесткостью $K=190~{\rm M}{\rm p}{\rm B}$ и является довольно "мягким". На Рисунке 8 представлены также результаты для очень "мягкого" адронного уравнения состояния ($K=130~{\rm M}{\rm p}{\rm B}$) и "жесткого" ($K=380~{\rm M}{\rm p}{\rm B}$) [A1]. Как видно, поток $^4{\rm H}{\rm e}$

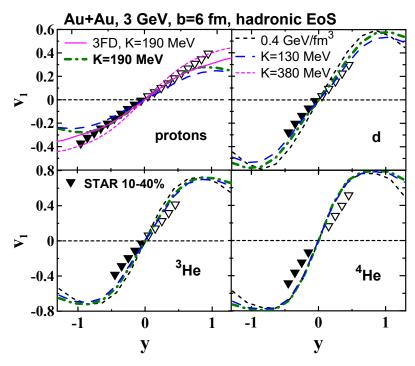


Рис. 8: То же, что и на Рисунке 7, но для различных вариантов адронного уравнения состояния: стандартного ($K=190~\mathrm{M}3\mathrm{B}$), очень "мягкого" ($K=130~\mathrm{M}3\mathrm{B}$) и "жесткого" ($K=380~\mathrm{M}3\mathrm{B}$). Расчеты THESEUS для легких ядер выполнены со стандартным ($\varepsilon_{\mathrm{frz}}=0.4~\mathrm{F}3\mathrm{B}/\mathrm{фm}^3$) и поздним ($\varepsilon_{\mathrm{frz}}=0.2~\mathrm{F}3\mathrm{B}/\mathrm{фm}^3$) замораживанием, а для протонов — со стандартным замораживанием и последующим дожигом UrQMD. Также показан протонный поток v_1 , рассчитанный в чистой 3FD, где не предусмотрен дожиг UrQMD, со стандартным уравнением состояния с $K=190~\mathrm{M}3\mathrm{B}$ (сплошная розовая линия) и "жестким" с $K=380~\mathrm{M}3\mathrm{B}$ (розовая линия, короткий пунктир).

оказывается независимым от жесткости уравнения состояния, а для дейтронов и ядер 3 Не его наклон в нулевой быстроте незначительно меняется. Очень "мягкое" уравнение состояния улучшает согласие с данными для более легких ядер по сравнению со стандартным адронным уравнением состояния, но приводит к несогласию с экспериментальным потоком протонов. В отличие от исследования в статье [56], наш расчет [A1] показывает, что "жесткое" уравнение состояния ($K=380~\mathrm{Mp}$) приводит к слишком крутому наклону потока протонов (см. тонкую штрихпунктирную линию на Рисунке 8), т.е. к еще большему расхождению с данными по потокам легких ядер. Поэтому оптимальным выбором является стандартное "мягкое" адронное уравнение состояния с жесткостью $K=190~\mathrm{Mpm}$ [A1], что согласуется с выводом известной статьи [57].

В отличие от ситуации с потоком протонов, имитация дожига (или позднее замораживание) меняет наклон потока при нулевой быстроте для дейтронов и 3 He, хотя и незначительно. Однако, на поток 4 He позднее замораживание не влияет.

Мы также получили результаты для эллиптического потока, однако, модель не смогла должным образом описать данные как для протонов, так и для легких ядер. Это связано с не вполне корректным описанием экранирования материей

зрителей (напрямую не участвующей в столкновении) расширяющегося центрального файрбола, которое и приводит к эффекту выдавливания. Это экранирование лишь частично учитывается в эволюции 3FD, поскольку замороженное вещество центрального файрбола остается экранированным даже после замораживания, тогда как в модели 3FD материя зрителей остается в гидродинамической фазе, в то время как частицы-участники замораживаются и не взаимодействуют со зрителями, продолжающими эволюционировать гидродинамически. Этап дожига, в принципе, должен был бы исправить этот недостаток, но этого не происходит. Причина в том, что THESEUS приписывает один и тот же момент времени всем образовавшимся частицам во время процедуры перехода от описания жидкостей к описанию частиц, в то время как в 3FD разные части системы замораживаются в разные моменты времени. Тем самым, экранирование материей зрителей сильно ослабляется после такого изохронного перехода к описанию в терминах частиц, поскольку частицы-участники и зрители оказываются сильно разделенными в образовавшейся таким образом конфигурации перед дожигом.

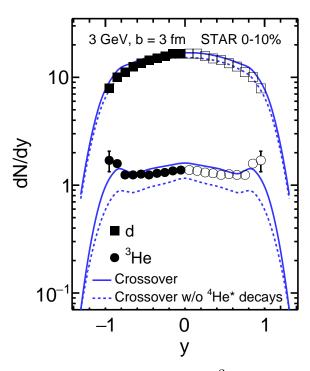


Рис. 9: Быстротные распределения дейтронов и 3 Не в центральных Au+Au столкновениях при энергии $\sqrt{s_{NN}}=3$ ГэВ. Результаты получены для кроссоверного сценария со вкладами от распадов возбужденных состояний 4 Не * и без них. Данные STAR взяты из работы [5], закрашенные символы — экспериментальные точки, незакрашенные — симметрично отраженные относительно нулевой быстроты.

Что касается вкладов нестабильного ${}^4{\rm He}^*$, то в области центральных быстрот они пренебрежимо малы в дейтроны, а в тритоны и ${}^3{\rm He}$ составляют менее 20% при энергии $\sqrt{s_{NN}} > 6$ ГэВ. На быстротах вблизи областей фрагментации эти вклады существенны даже при $\sqrt{s_{NN}} > 6$ ГэВ. Было предсказано [47], что такие вклады достигают значений порядка 60% для тритонов и ${}^3{\rm He}$ даже при нулевой быстроте при $\sqrt{s_{NN}} = 3$ ГэВ. Результаты наших расчетов для энергии 3 ГэВ представлены

на Рисунке 9 на примере кроссоверного уравнения состояния. В согласии с работой [47], вклад нестабильного 4 He* составляет $\sim 20\%$ для дейтронов и 50–100% (в зависимости от быстроты) для 3 He. Хотя вклад нестабильного 4 He* в выход дейтронов несущественен для воспроизведения данных, для 3 He он играет важную роль. Без этого вклада выход 3 He заметно занижается.

Поток v_1 дейтронов, тритонов и 3 Не оказывается нечувствительным к вкладам от распадов нестабильного 4 Не * . Без этих вкладов соответствующие потоки v_2 уменьшаются на $\sim 20\%$, что, однако, существенно не меняет степень их согласия с данными. Влияние на выход и поток протонов незначительно.

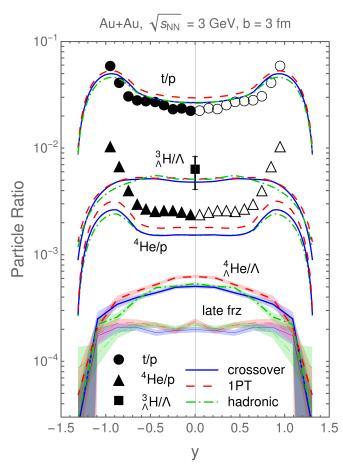


Рис. 10: Быстротные распределения отношений t/p, $^4{\rm He}/p$, $^3_{\Lambda}{\rm H}/\Lambda$ и $^4_{\Lambda}{\rm He}/\Lambda$ в центральных столкновениях Au+Au при энергии $\sqrt{s_{NN}}=3$ ГэВ, полученные для трех различных уравнений состояния. Выходы t и $^3_{\Lambda}{\rm H}$ рассчитаны с поздним замораживанием, $^4{\rm He}$ и $^4_{\Lambda}{\rm He}$ — со стандартным (жирные линии) и $^4_{\Lambda}{\rm He}$ с поздним замораживанием (тонкие линии "late frz"). Протоны p и Λ рассчитаны стандартно. Экспериментальные данные: STAR (0–10%) для p и легких ядер [5], точка $^3_{\Lambda}{\rm H}/\Lambda$ при y=0 [58]. Закрашенные символы — экспериментальные точки, а незакрашенные — отраженные относительно y=0.

В **третьей главе** приведены результаты моделирования для гиперядер и связанных с ними адронов: протонов и Λ -гиперонов, проведено сравнение с экспериментальными данными коллаборации STAR и дан анализ результатов. Расчет образования гиперядер полностью аналогичен расчету легких ядер. При моделиро-

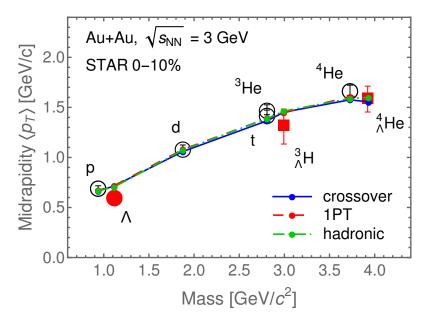


Рис. 11: Средний поперечный импульс в области центральных быстрот для p, Λ и легких гипер(ядер) в центральных Au+Au столкновениях при энергии $\sqrt{s_{NN}}=3$ ГэВ. Результаты получены с использованием трех уравнений состояния. p и Λ получены стандартно, d, t, 3 He, и ${}^3_\Lambda$ H вычислены при позднем замораживании, а 4 He и ${}^4_\Lambda$ He — при стандартном. Данные STAR взяты из работ [5; 59].

вании использовались три различных уравнения состояния: адронное, с фазовым переходом 1-го рода и с кроссовером.

Позднее замораживание, характеризующееся плотностью энергии $\varepsilon_{\rm frz}=0.2$ ГэВ/фм³ и предпочтительное для дейтронов, тритонов, и ³He, также используется для расчета выхода $^3_{\Lambda}$ H. Хотя наблюдаемые 4 He лучше воспроизводятся при стандартном замораживании $\varepsilon_{\rm frz}=0.4$ ГэВ/фм³, для описания $^4_{\Lambda}$ He больше подходит позднее замораживание, поскольку энергия связи $^4_{\Lambda}$ He ($B_{\Lambda}\simeq 2.4$ МэВ [60]) сходна с энергией связи $^3_{\Lambda}$ He ($B_{N}=2.6$ МэВ).

В *первом разделе* исследованы глобальные наблюдаемые. Быстротные распределения отношений t/p, ${}^4{\rm He}/p$, ${}^3_{\Lambda}{\rm H}/\Lambda$ и ${}^4_{\Lambda}{\rm He}/\Lambda$ показаны на Рисунке 10. Обнаружено, что отношение ${}^3_{\Lambda}{\rm H}/\Lambda$ в нулевой быстроте попадает в пределы ошибок экспериментальной точки [58]. Примечательно, что большая разница между отношениями t/p и ${}^3_{\Lambda}{\rm H}/\Lambda$ воспроизводится без каких-либо дополнительных параметров. Предсказаны быстротные распределения отношений ${}^3_{\Lambda}{\rm H}/\Lambda$ и ${}^4_{\Lambda}{\rm He}/\Lambda$.

Зависимость среднего поперечного импульса в области центральных быстрот от массы ядра представлена на Рисунке 11, где результаты расчетов показаны точками, а кривые показаны для наглядности. Как видно, эти кривые (для трех разных уравнений состояния) фактически совпадают. Более того, результаты для странных и нестранных видов частиц лежат на одних и тех же кривых. Рассчитанные точки хорошо согласуются с экспериментальными данными [5; 59]. Воспроизводится даже незначительное отклонение этих кривых от прямых.

Во *втором разделе* показано, что даже такая характеристика, как потоки, см. Рисунок 12, также достаточно хорошо воспроизводит данные [61]. Результаты

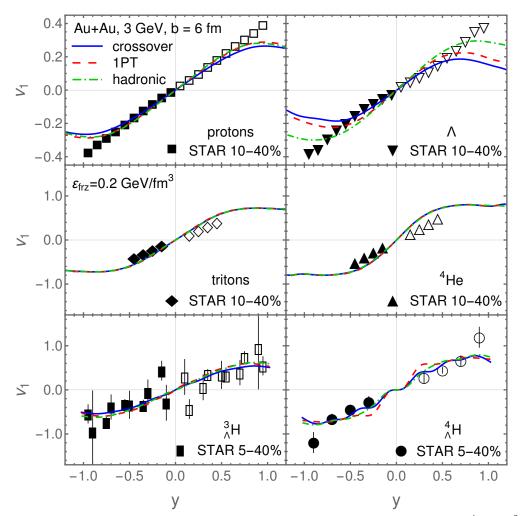


Рис. 12: Направленный поток p, Λ и легких (гипер)ядер $(t, {}^4\text{He}, {}^3_\Lambda\text{H}$ и ${}^4_\Lambda\text{He})$ в зависимости от быстроты в полуцентральных (b=6 фм) столкновениях Au+Au при энергии $\sqrt{s_{NN}}=3$ ГэВ. Приведены результаты для трех уравнений состояния. Моделирование для (гипер)ядер проведено с поздним замораживанием а для p и Λ — стандартно. Приведены экспериментальные данные STAR [6; 56; 61], где закрашенные символы отображают экспериментальные точки, а незакрашенные — отраженные относительно y=0.

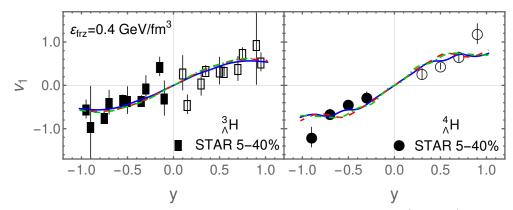


Рис. 13: То же, что и на Рисунке 12, но для гиперядер $^3_{\Lambda}$ Н и $^4_{\Lambda}$ Не, полученных со стандартным замораживанием ($\varepsilon_{\rm frz}=0.4~\Gamma$ эВ/фм 3).

сравниваются с данными STAR [6; 56; 61]. Моделирование THESEUS для легких (гипер)ядер выполнено для позднего замораживания ($\varepsilon_{\rm frz}=0.2~{\rm ГэВ/фм^3}$) для трёх уравнений состояния. Потоки протонов и Λ -гиперонов рассчитаны в рамках полного запуска THESEUS, т.е. с использованием стандартного замораживания и последующего дожига UrQMD. Направленный поток протонов практически не зависит от используемого уравнения состояния. Результаты расчетов идеально воспроизводят экспериментальный поток протонов [56], за исключением областей при больших значениях быстрот. Согласие с данными легких ядер [6] ухудшается с увеличением атомного номера легкого ядра, при этом меняется наклон направленного потока при y=0: если для тритонов он лишь немного круче экспериментального, то для 4 He он уже заметно круче.

Направленный поток Λ зависит от уравнения состояния, а для гиперядер оказывается независимым с точностью до статистических флуктуаций. По-видимому, в образовании v_1 доминирует нуклонный состав гиперядер. Сценарий с кроссовером лучше всего воспроизводит наклон в y=0 для потока Λ . Поток $^4_\Lambda$ Не воспроизводится в той же степени, что и поток легких ядер. Трудно судить о степени согласия с данными потока $^3_\Lambda$ Н из-за их больших погрешностей эксперимента.

На Рисунке 12 направленный поток 4 Не и ${}^4_\Lambda$ Не рассчитан с поздним замораживанием ($\varepsilon_{\rm frz}=0.2~{\rm ГэВ/фм^3}$) вместо стандартного, которое предпочтительнее для 4 Не и, предположительно, для ${}^4_\Lambda$ Не. Причина в том, что направленный поток 4 Не не зависит от выбора замораживания (позднего или стандартного). Тем не менее, мы дополнительно проверили эту независимость для ${}^4_\Lambda$ Не. Результаты расчета v_1 для ${}^3_\Lambda$ Н и ${}^4_\Lambda$ Не со стандартным замораживанием представлены на Рисунке 13. Как видно, потоки v_1 со стандартным замораживанием для обоих видов гиперядер практически идентичны (с точностью до статистических флуктуаций) потокам с поздним замораживанием. Наклон потока протонов при y=0 также остается неизменным после дожига. Все это указывает на то, что барионный направленный поток формируется на ранней стадии столкновения.

В Заключении приведены основные результаты и выводы диссертации, которые заключаются в следующем:

- Представлен новый подход к образованию легких (гипер)ядер, в котором рождение легких (гипер)ядер и адронов рассматривается единым образом. Этот подход реализован в новой версии генератора THESEUS-v2 [A3]. Единственный дополнительный параметр связан с поздним замораживанием легких (гипер)ядер, имитирующим стадию дожига, поскольку UrQMD не способна динамически описывать легкие (гипер)ядра. Это более экономный способ описания образования легких (гипер)ядер по сравнению с коалесценцией и поэтому обладающий большей предсказательной способностью.
- С помощью новой версии генератора, THESEUS-v2 [A3], получены выходы легких ядер (быстротные распределения) в столкновениях Au+Au и Pb+Pb при энергиях столкновения $\sqrt{s_{NN}}=3-19.6$ ГэВ и при различных центральностях столкновений, а также p_T и m_T -спектры, направленный и эл-

липтический потоки [A1; A6; A7]. Для моделирования стадии дожига легких (гипер)ядер использовалось позднее замораживание, характеризуемое параметром плотности энергии $\varepsilon_{\rm frz}=0.2~{\rm F}_{\rm 9}{\rm B/\phi m}^3$. На основе сравнения полученных результатов с экспериментальными данными сделан вывод о том, что дейтроны, тритоны и ядра $^3{\rm He}$ лучше моделируются с поздним замораживанием, а ядра $^4{\rm He}$ — со стандартным, что отражает разницу в их энергиях связи. В целом, THESEUS-v2 даёт хоть и неидеальный, но разумный результат, используя при этом минимальное число дополнительных параметров.

- Исследовано влияние распадов нестабильных состояний 4 Не* на выходы дейтронов, тритонов и 3 Не [A1; A6]. При энергиях $\sqrt{s_{NN}}=6.4-19.6$ ГэВ такой вклад оценен на примере быстротных распределений [A6]. Показано, что он существенен в основном при быстротах вблизи областей фрагментации, тогда как в центральной области быстрот он мал: для дейтронов практически не влияет на распределения, для 3 Не даёт небольшое видимое улучшение (менее 20%) воспроизведения экспериментальных данных. Для энергии $\sqrt{s_{NN}}=3$ ГэВ такой вклад гораздо более значителен [A1]: в распределении дейтронов он порядка 20% и в распределении 3 Не 50-100% (значение варьируется в зависимости от быстроты), что согласуется с более ранними предсказаниями [47]. Потоки v_1 дейтронов, тритонов и 3 Не нечувствительны к вкладу распадов 4 Не* [A1]. Потоки v_2 уменьшаются на $\sim 20\%$ без этих вкладов [A1], что существенно не меняет их согласие с экспериментом.
- Было проведено моделирование рождения легких гиперядер, а также Λ -гиперонов в столкновениях Au+Au при $\sqrt{s_{NN}}=3$ ГэВ [A2]. Расчет образования гиперядер полностью аналогичен расчету легких ядер. Установлено, что позднее замораживание, характеризующееся плотностью энергии замораживания $\varepsilon_{\rm frz}=0.2$ ГэВ/фм 3 , предпочтительное для дейтронов, тритонов, и 3 He, хорошо подходит и для расчета выхода $^3_\Lambda$ H [A2]. Для описания $^4_\Lambda$ He предположительно больше подходит позднее замораживание [A2], поскольку энергия связи $^4_\Lambda$ He ($B_\Lambda\simeq 2.4$ МэВ [60]) сходна с энергией связи 3 He ($B_N=2.6$ МэВ). Пока нет данных для проверки этого предположения.

Было обнаружено [A2], что отношение ${}^3_{\Lambda}$ Н/ Λ в нулевой быстроте попадает в пределы ошибок экспериментальной точки [58]. Большая разница между отношениями t/p и ${}^3_{\Lambda}$ Н/ Λ воспроизвелась без каких-либо дополнительных параметров [A2]. Предсказаны быстротные распределения отношений ${}^3_{\Lambda}$ Н/ Λ и ${}^4_{\Lambda}$ Не/ Λ [A2]. Показано, что средние поперечные импульсы в области центральных быстрот протонов, Λ -гиперонов и лёгких (гипер)ядер в центральных столкновениях хорошо согласуются [A2] с экспериментом [58; 59]. Расчёт направленного потока [A2] также достаточно хорошо воспроизводит данные [61]. Показано, что направленный поток не зависит от типа замораживания (позднего или стандартного) [A2], что указывает на формирование

барионного направленного потока на ранней стадии реакции.

Суммируя все вышесказанное, можно заключить, что термодинамический подход дает удовлетворительное описание всего массива данных по рождению легких (гипер)ядер в ядро-ядерных столкновениях при энергиях столкновения $\sqrt{s_{NN}}=3-19.6$ ГэВ. Это описание в совокупности не хуже, чем то, что достигается в подходах, основанных на коалесценции, и требует значительно меньшее число дополнительных параметров. Термодинамический подход требует всего один дополнительный параметр (плотность энергии позднего замораживания), компенсирующий неспособность UrQMD описывать эволюцию легких (гипер)ядер на стадии дожига. С ростом энергии столкновения качество термодинамического описания легких (гипер)ядер ухудшается, что, видимо, связано с быстрым уменьшением их множественности. При малых множественностях ухудшается применимость описания, основанного на макроканоническом ансамбле, т.е. термодинамики.

Публикации автора по теме диссертации

- A1. Kozhevnikova M., Ivanov Y. B. Light-nuclei production in Au+Au collisions at $\sqrt{s_{NN}}=3$ GeV within a thermodynamical approach: Bulk properties and collective flow // Phys. Rev. C. 2024. Vol. 109, no. 1. P. 014913. arXiv: 2311.08092 [nucl-th].
- A2. Kozhevnikova M., Ivanov Y. B. Production of light hypernuclei in Au+Au collisions at $\sqrt{s_{NN}}=3$ GeV within a thermodynamic approach // Phys. Rev. C. 2024. Vol. 109, no. 3. P. 034901. arXiv: 2401.04991 [nucl-th].
- A3. Kozhevnikova M., Ivanov Y. B., Karpenko I., Blaschke D., Rogachevsky O. Update of the Three-fluid Hydrodynamics-based Event Simulator: light-nuclei production in heavy-ion collisions // Phys. Rev. C. 2021. Vol. 103, no. 4. P. 044905. arXiv: 2012.11438 [nucl-th].
- A4. Blaschke D., Röpke G., Ivanov Y., Kozhevnikova M., Liebing S. Strangeness and light fragment production at high baryon density // Springer Proceedings in Physics / ed. by D. Elia, G. E. Bruno, P. Colangelo, L. Cosmai. 2020. Vol. 250. P. 183–190. arXiv: 2001.02156 [nucl-th].
- A5. Blaschke D., Friesen A. V., Ivanov Y. B., Kalinovsky Y. L., Kozhevnikova M., Liebing S., Radzhabov A., Röpke G. QCD Phase Diagram at NICA Energies: K^+/π^+ Horn Effect and Light Clusters in THESEUS // Acta Physica Polonica B, Proceedings Supplement. 2021. Vol. 14, no. 3. P. 485–489. arXiv: 2004.01159 [hep-ph].
- A6. Kozhevnikova M., Ivanov Y. B. Light-nuclei production in heavy-ion collisions within a thermodynamical approach // Phys. Rev. C. 2023. Vol. 107, no. 2. P. 024903. arXiv: 2210.07334 [nucl-th].

A7. Kozhevnikova M., Ivanov Y. B. Light-Nuclei Production in Heavy-Ion Collisions at $\sqrt{s_{NN}}=6.4-19.6$ GeV in THESEUS Generator Based on Three-Fluid Dynamics // Particles. — 2023. — Vol. 6, no. 1. — P. 440–450.

Список литературы

- 1. Shuryak E., Torres-Rincon J. M. Light-nuclei production and search for the QCD critical point // Eur. Phys. J. A. 2020. Vol. 56, no. 9. P. 241. arXiv: 2005.14216 [nucl-th].
- 2. Sun K.-J., Li F., Ko C. M. Effects of QCD critical point on light nuclei production // Phys. Lett. B. 2021. Vol. 816. P. 136258. arXiv: 2008.02325 [nucl-th].
- 3. Skokov V. V., Voskresensky D. N. Hydrodynamical description of first-order phase transitions: Analytical treatment and numerical modeling // Nucl. Phys. A. 2009. Vol. 828. P. 401–438. arXiv: 0903.4335 [nucl-th].
- 4. Steinheimer J., Randrup J. Spinodal amplification of density fluctuations in fluid-dynamical simulations of relativistic nuclear collisions // Phys. Rev. Lett. 2012. Vol. 109. P. 212301. arXiv: 1209.2462 [nucl-th].
- 5. Production of Protons and Light Nuclei in Au+Au Collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV with the STAR Detector. 2023. Nov. arXiv: 2311.11020 [nucl-ex].
- 6. Abdallah M. S. [et al.]. Light nuclei collectivity from $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions at RHIC // Phys. Lett. B. 2022. Vol. 827. P. 136941. arXiv: 2112.04066 [nucl-ex].
- 7. Nara Y., Maruyama T., Stoecker H. Momentum-dependent potential and collective flows within the relativistic quantum molecular dynamics approach based on relativistic mean-field theory // Phys. Rev. C. 2020. T. 102, № 2. C. 024913. arXiv: 2004.05550 [nucl-th].
- 8. Nara Y., Jinno A., Murase K., Ohnishi A. Directed flow of Λ in high-energy heavy-ion collisions and Λ potential in dense nuclear matter // Phys. Rev. C. 2022. T. 106, № 4. C. 044902. arXiv: 2208.01297 [nucl-th].
- 9. Oliinychenko D., Sorensen A., Koch V., McLerran L. Sensitivity of Au+Au collisions to the symmetric nuclear matter equation of state at 2–5 nuclear saturation densities // Phys. Rev. C. 2023. T. 108, № 3. C. 034908. arXiv: 2208.11996 [nucl-th].
- 10. Steinheimer J., Motornenko A., Sorensen A., Nara Y., Koch V., Bleicher M. The high-density equation of state in heavy-ion collisions: constraints from proton flow // Eur. Phys. J. C. 2022. T. 82, № 10. C. 911. arXiv: 2208.12091 [nucl-th].

- 11. Omana Kuttan M., Steinheimer J., Zhou K., Stoecker H. QCD Equation of State of Dense Nuclear Matter from a Bayesian Analysis of Heavy-Ion Collision Data // Phys. Rev. Lett. 2023. T. 131, № 20. C. 202303. arXiv: 2211.11670 [hep-ph].
- 12. Li A., Yong G.-C., Zhang Y.-X. Testing the phase transition parameters inside neutron stars with the production of protons and lambdas in relativistic heavy-ion collisions // Phys. Rev. D. 2023. T. 107, № 4. C. 043005. arXiv: 2211.04978 [nucl-th].
- 13. Wu Z.-M., Yong G.-C. Probing the incompressibility of dense hadronic matter near the QCD phase transition in relativistic heavy-ion collisions // Phys. Rev. C. 2023. T. 107, № 3. C. 034902. arXiv: 2302.11065 [nucl-th].
- 14. Parfenov P. Model Study of the Energy Dependence of Anisotropic Flow in Heavy-Ion Collisions at $\sqrt{s_{NN}}$ = 2–4.5 GeV // Particles. 2022. T. 5, No. 4. C. 561—579.
- 15. Mamaev M., Taranenko A. Toward the System Size Dependence of Anisotropic Flow in Heavy-Ion Collisions at $\sqrt{s_{NN}}$ = 2–5 GeV // Particles. 2023. T. 6, N 2. C. 622—637.
- 16. Yao N., Sorensen A., Dexheimer V., Noronha-Hostler J. Structure in the speed of sound: From neutron stars to heavy-ion collisions // Phys. Rev. C. 2024. T. 109, № 6. C. 065803. arXiv: 2311.18819 [nucl-th].
- 17. Yong G.-C. Phase diagram determination at fivefold nuclear compression // Phys. Lett. B. 2024. T. 848. C. 138327. arXiv: 2306.16005 [nucl-th].
- 18. Wei S.-N., Feng Z.-Q., Jiang W.-Z. Correlation of the hyperon potential stiffness with hyperon constituents in neutron stars and heavy-ion collisions // Phys. Lett. B. 2024. T. 853. C. 138658. arXiv: 2401.07653 [nucl-th].
- 19. Ivanov Y. B., Kozhevnikova M. Examination of STAR fixed-target data on directed flow at sNN=3 and 4.5 GeV // Phys. Rev. C. 2024. Vol. 110, no. 1. P. 014907. arXiv: 2403.02787 [nucl-th].
- 20. Konchakovski V. P., Cassing W., Ivanov Y. B., Toneev V. D. Examination of the directed flow puzzle in heavy-ion collisions // Phys. Rev. C. 2014. T. 90, № 1. C. 014903. arXiv: 1404.2765 [nucl-th].
- 21. Ivanov Y. B., Soldatov A. A. Directed flow indicates a cross-over deconfinement transition in relativistic nuclear collisions // Phys. Rev. C. 2015. Vol. 91, no. 2. P. 024915. arXiv: 1412.1669 [nucl-th].
- 22. Ivanov Y. B., Soldatov A. A. What can we learn from the directed flow in heavy-ion collisions at BES RHIC energies? // Eur. Phys. J. A. 2016. Vol. 52, no. 1. P. 10. arXiv: 1601.03902 [nucl-th].

- 23. Steinheimer J., Auvinen J., Petersen H., Bleicher M., Stöcker H. Examination of directed flow as a signal for a phase transition in relativistic nuclear collisions // Phys. Rev. C. 2014. T. 89, № 5. C. 054913. arXiv: 1402.7236 [nucl-th].
- 24. Nara Y., Niemi H., Ohnishi A., Stöcker H. Examination of directed flow as a signature of the softest point of the equation of state in QCD matter // Phys. Rev. C. 2016. T. 94, № 3. C. 034906. arXiv: 1601.07692 [hep-ph].
- 25. Shen C., Alzhrani S. Collision-geometry-based 3D initial condition for relativistic heavy-ion collisions // Phys. Rev. C. 2020. T. 102, № 1. C. 014909. arXiv: 2003.05852 [nucl-th].
- 26. Ryu S., Jupic V., Shen C. Probing early-time longitudinal dynamics with the Λ hyperon's spin polarization in relativistic heavy-ion collisions // Phys. Rev. C. 2021. T. 104, № 5. C. 054908. arXiv: 2106.08125 [nucl-th].
- 27. Du L., Shen C., Jeon S., Gale C. Probing initial baryon stopping and equation of state with rapidity-dependent directed flow of identified particles // Phys. Rev. C. 2023. T. 108, № 4. C. L041901. arXiv: 2211.16408 [nucl-th].
- 28. Nara Y., Niemi H., Steinheimer J., Stöcker H. Equation of state dependence of directed flow in a microscopic transport model // Phys. Lett. B. 2017. T. 769. C. 543—548. arXiv: 1611.08023 [nucl-th].
- 29. Nara Y., Stoecker H. Sensitivity of the excitation functions of collective flow to relativistic scalar and vector meson interactions in the relativistic quantum molecular dynamics model RQMD.RMF // Phys. Rev. C. 2019. T. 100, № 5. C. 054902. arXiv: 1906.03537 [nucl-th].
- 30. Nara Y., Ohnishi A. Mean-field update in the JAM microscopic transport model: Mean-field effects on collective flow in high-energy heavy-ion collisions at sNN=2–20 GeV energies // Phys. Rev. C. 2022. T. 105, № 1. C. 014911. arXiv: 2109.07594 [nucl-th].
- 31. Pandav A. // plenary talk at CPOD 2024, https://conferences.lbl.gov/event/1376/contributions/8772/attachments/5163/4984/CPOD2024_PandavA_e9.pdf. —.
- 32. Ivanov Y. B., Russkikh V. N., Toneev V. D. Relativistic heavy-ion collisions within 3-fluid hydrodynamics: Hadronic scenario // Phys. Rev. C. 2006. Vol. 73. P. 044904. arXiv: nucl-th/0503088.
- 33. Liu H., Zhang D., He S., Sun K.-j., Yu N., Luo X. Light nuclei production in Au+Au collisions at sNN = 5–200 GeV from JAM model // Phys. Lett. B. 2020. Vol. 805. P. 135452. arXiv: 1909.09304 [nucl-th]. [Erratum: Phys.Lett.B 829, 137132 (2022)].

- 34. Dong Z.-J., Chen G., Wang Q.-Y., She Z.-L., Yan Y.-L., Liu F.-X., Zhou D.-M., Sa B.-H. Energy dependence of light (anti)nuclei and (anti)hypertriton production in the Au-Au collision from $\sqrt{s_{NN}}=11.5$ to 5020 GeV // Eur. Phys. J. A. 2018. Vol. 54, no. 9. P. 144. arXiv: 1803.01547 [nucl-th].
- 35. Zhao W., Shen C., Ko C. M., Liu Q., Song H. Beam-energy dependence of the production of light nuclei in Au + Au collisions // Phys. Rev. C. 2020. Vol. 102, no. 4. P. 044912. arXiv: 2009.06959 [nucl-th].
- 36. Weil J. [et al.]. Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions // Phys. Rev. C. 2016. Vol. 94, no. 5. P. 054905. arXiv: 1606.06642 [nucl-th].
- 37. Aichelin J., Bratkovskaya E., Le Fèvre A., Kireyeu V., Kolesnikov V., Leifels Y., Voronyuk V., Coci G. Parton-hadron-quantum-molecular dynamics: A novel microscopic *n* -body transport approach for heavy-ion collisions, dynamical cluster formation, and hypernuclei production // Phys. Rev. C. 2020. Vol. 101, no. 4. P. 044905. arXiv: 1907.03860 [nucl-th].
- 38. Sun K.-J., Wang R., Ko C. M., Ma Y.-G., Shen C. Relativistic kinetic approach to light nuclei production in high-energy nuclear collisions. 2021. June. arXiv: 2106.12742 [nucl-th].
- 39. Andronic A., Braun-Munzinger P., Stachel J., Stocker H. Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions // Phys. Lett. B. 2011. Vol. 697. P. 203–207. arXiv: 1010.2995 [nucl-th].
- 40. Reichert T., Steinheimer J., Vovchenko V., Dönigus B., Bleicher M. Energy dependence of light hypernuclei production in heavy-ion collisions from a coalescence and statistical-thermal model perspective // Phys. Rev. C. 2023. Vol. 107, no. 1. P. 014912. arXiv: 2210.11876 [nucl-th].
- 41. Buyukcizmeci N., Reichert T., Botvina A. S., Bleicher M. Nucleosynthesis of light nuclei and hypernuclei in central Au+Au collisions at sNN=3 GeV // Phys. Rev. C. 2023. Vol. 108, no. 5. P. 054904. arXiv: 2306.17145 [nucl-th].
- 42. Typel S., Ropke G., Klahn T., Blaschke D., Wolter H. H. Composition and thermodynamics of nuclear matter with light clusters // Phys. Rev. C. 2010. Vol. 81. P. 015803. arXiv: 0908.2344 [nucl-th].
- 43. Ropke G., Bastian N. .-., Blaschke D., Klahn T., Typel S., Wolter H. H. Cluster virial expansion for nuclear matter within a quasiparticle statistical approach // Nucl. Phys. A. 2013. Vol. 897. P. 70–92. arXiv: 1209.0212 [nucl-th].
- 44. Röpke G. Nuclear matter equation of state including two-, three-, and four-nucleon correlations // Phys. Rev. C. 2015. Vol. 92, no. 5. P. 054001. arXiv: 1411.4593 [nucl-th].

- 45. Cleymans J., Oeschler H., Redlich K., Wheaton S. Comparison of chemical freezeout criteria in heavy-ion collisions // Phys. Rev. C. — 2006. — Vol. 73. — P. 034905. — arXiv: hep-ph/0511094.
- 46. Andronic A., Braun-Munzinger P., Redlich K., Stachel J. Decoding the phase structure of QCD via particle production at high energy // Nature. 2018. Vol. 561, no. 7723. P. 321–330. arXiv: 1710.09425 [nucl-th].
- 47. Vovchenko V., Dönigus B., Kardan B., Lorenz M., Stoecker H. Feeddown contributions from unstable nuclei in relativistic heavy-ion collisions // Phys. Lett. 2020. Vol. B. P. 135746. arXiv: 2004.04411 [nucl-th].
- 48. Zhang D. Light Nuclei (d,t) Production in Au + Au Collisions at $\sqrt{s_{NN}}$ = 7.7-200GeV // Nucl. Phys. A / ed. by F. Liu, E. Wang, X.-N. Wang, N. Xu, B.-W. Zhang. 2021. Vol. 1005. P. 121825. arXiv: 2002.10677 [nucl-ex].
- 49. Schnedermann E., Sollfrank J., Heinz U. W. Thermal phenomenology of hadrons from 200-A/GeV S+S collisions // Phys. Rev. C. 1993. Vol. 48. P. 2462—2475. arXiv: nucl-th/9307020.
- 50. Batyuk P. [et al.]. Event simulation based on three-fluid hydrodynamics for collisions at energies available at the Dubna Nuclotron-based Ion Collider Facility and at the Facility for Antiproton and Ion Research in Darmstadt // Phys. Rev. C. 2016. Vol. 94. P. 044917. arXiv: 1608.00965 [nucl-th].
- 51. Bass S. A. [et al.]. Microscopic models for ultrarelativistic heavy ion collisions // Prog. Part. Nucl. Phys. 1998. Vol. 41. P. 255–369. arXiv: nucl-th/9803035.
- 52. Ivanov Y. B., Soldatov A. A. Light fragment production at CERN Super Proton Synchrotron // Eur. Phys. J. A. 2017. Vol. 53, no. 11. P. 218. arXiv: 1703.05040 [nucl-th].
- 53. Anticic T. [et al.]. Production of deuterium, tritium, and He3 in central Pb + Pb collisions at 20A,30A,40A,80A, and 158A GeV at the CERN Super Proton Synchrotron // Phys. Rev. C. 2016. Vol. 94, no. 4. P. 044906. arXiv: 1606.04234 [nucl-ex].
- 54. Voloshin S. A., Poskanzer A. M., Snellings R. Collective phenomena in non-central nuclear collisions // Landolt-Bornstein / ed. by R. Stock. 2010. Vol. 23. P. 293–333. arXiv: 0809.2949 [nucl-ex].
- 55. Adam J. [et al.]. Beam energy dependence of (anti-)deuteron production in Au + Au collisions at the BNL Relativistic Heavy Ion Collider // Phys. Rev. C. 2019. Vol. 99, no. 6. P. 064905. arXiv: 1903.11778 [nucl-ex].
- 56. Abdallah M. S. [et al.]. Disappearance of partonic collectivity in sNN=3GeV Au+Au collisions at RHIC // Phys. Lett. B. 2022. Vol. 827. P. 137003. arXiv: 2108.00908 [nucl-ex].

- 57. Danielewicz P., Lacey R., Lynch W. G. Determination of the equation of state of dense matter // Science. 2002. Vol. 298. P. 1592–1596. arXiv: nucl-th/0208016.
- 58. Ji Y. // talk at Quark Matter 2023, https://indico.cern.ch/event/1139644/contributions/5456392/attachments/2707583/4708403/talk_FXT_H3L_Sep08_v11.pdf.—.
- 59. Ji Y. Measurements on the production and properties of light hypernuclei at STAR // EPJ Web Conf. 2023. Vol. 276. P. 04003.
- 60. Abdallah M. [et al.]. Measurement of H/14 and He/14 binding energy in Au+Au collisions at sNN = 3 GeV // Phys. Lett. B. 2022. Vol. 834. P. 137449. arXiv: 2207.00778 [nucl-ex].
- 61. Aboona B. [et al.]. Observation of Directed Flow of Hypernuclei HΛ3 and HΛ4 in sNN=3 GeV Au+Au Collisions at RHIC // Phys. Rev. Lett. 2023. Vol. 130, no. 21. P. 212301. arXiv: 2211.16981 [nucl-ex].