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Abstract
Pre-equilibrium proton induced emissions of light complex nuclei with ener-
gies in the continuum have been studied comprehensively for many years. The
process is considered as an intra-nuclear nucleon-nucleon multistep statistical
reaction with typical double-differential cross sections and especially analyz-
ing power distributions. The final stage of the reaction may be a result of a
direct pickup or knockout of the ejectile. The discussion on this subject con-
tinues to be a hot topic for theoretical and experimental investigations. Here
we will discuss the interplay between the knockout and pickup mechanisms as
final step of the pre-equilibrium reaction and its dependence on the energy of
the projectile.

1 Introduction
Pre–equilibrium nuclear reactions have been studied extensively over many years. In the early nineties
E. Gadioli and P.E. Hodgson collected all valuable experimental and theoretical results in a book [1]
concluding that for a deeper insight into the reaction mechanism of this type of reaction a systematic
study of their characteristics is needed. A comprehensive program for investigating the properties of
the proton induced pre–equilibrium reactions to the continuum has been conducted in iThemba LABS
in Faure, South Africa. The earliest results about the double differential cross–section of the 90Zr(p, p′)
reaction [2] showed that the features of the experimental angular distributions can be reproduced very
good by the statistical multistep direct theory of Feshbach, Kerman and Koonin (FKK) [3] (see Fig.1).
First the classical exciton model of Griffin [4] exploits the idea that the projectile undergoes several
intra-nuclear collisions before the final stage of the reaction. Quantum mechanical theories based on the
same assumption were suggested also by Tamura, Udagawa and Lenske [5], Nishioka, Weidenmüller and
Yoshida [6]. Later Koning and Akkermans [7] studied critically the models mentioned above and came
to the conclusion that the calculated angular distribution of the 90Zr(p, p′) reaction at 80 MeV incident
energy do not differ very strongly. Thus they recommended the simplest multistep direct method (the
FKK model) as most adequate for the analysis of experimental data.

As part of the systematic studies [8–10] of proton induced pre–equilibrium reactions we have
compare experimental data obtained in iThemba LABS with results from theoretical FKK calculations of
(p, α) reactions to the continuum recognizing that the emission of composite particles follows the same
multistep mechanism as the nucleon emission. In this contribution we will sketch briefly the method
we use to study double–differential cross–section and analyzing power and discuss few examples which
demonstrate the importance of the reaction mechanism as a crucial ingredient of the calculations.

2 The theoretical method
We assume that pre-equilibrium (~p,α) reactions occur in a series of nucleon–nucleon scattering events
within the target, followed by a final process in which the α–particle is emitted. The single step direct
reaction can be a knockout of an α–cluster or a pickup of a triton.
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Fig. 1: Laboratory angle distribution for the reaction 90Zr(p, p′) at selected ejectile energies as adopted from
Cowley et al. [2].

For the theoretical description of the (~p, α) reaction we implement the FKK multistep direct theory
[3], where the double differential cross section is a sum of terms related to one-, two- and so on steps.
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The first-step cross section is calculated in terms of the DWBA method:
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where the differential cross sections dσDW/dΩ to particular final (N,L, J) states are calculated using
the computational code DWUCK4 [11].

The distorted waves in the incident and outgoing channels are calculated within the hybrid nucleus-
nucleus optical potential [12] for the volume part and standard spin-orbit potential, both ingredients of the
optical potential being complex. The volume part generally depends on the radius–vector r connecting
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the centers of the target and projectile.

U(r) = NRV DF (r) + iN IWDF (r) . (3)

The parameters NR and N I correct the strength of the microscopically calculated real V DF and imagi-
nary WDF constituents of the whole potential.

The spin–orbit parts of the optical potentials can be chosen among the phenomenological poten-
tials available in the literature, as we have done in [9, 10]. Another possibility is to use the standard
form of the spin–orbit potential as defined in DWUCK4, but the depth and the geometrical parameters
of the Woods–Saxon potential are those which fit best the double folding potential eq.3. This procedure
reduces the number of the phenomenological parameters and derives all parts of the optical potentials in
a consistent way.

When the emission energy decreases the multi–step contribution to the calculated observables
have to be taken into account. Using the FKK theory [3] the two–step cross section is calculated as a
convolution of the (p, p′) cross section and the direct (p, α) cross section:
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where ki, k and kf are the momenta of the initial, intermediate and final steps. The three-step double
differential cross-section can be calculated analogously.

The theoretical (p, p′) and (p, p′, p′′) double-differential cross section distributions which are re-
quired for the calculation of the two– and three–step contributions were derived from Refs. [8,13]. These
cross section distributions which were extracted by means of a FKK theory, reproduce experimental in-
clusive (p, p′) quantities [13]. Interpolations and extrapolations in incident energy and target mass were
introduced to match the specific requirements accurately.

The extension of the FKK theory from cross–sections to analyzing power is formulated by Bonetti
et al. [14]. The multistep expression for the analyzing power becomes
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with Ai, {i = 1, 2, . . .} referring to analyzing powers for the successive multisteps.

One should emphasize the role of the analyzing power in the study of the reaction mechanism. The
main advantage of the experiments with polarized proton beams is namely the possibility to measure this
observable. The shape of the analyzing power as a function of the scattered angle is much more sensitive
to the reaction mechanism then the differential cross–section. Moreover as the analyzing power is a ratio
of cross–sections, it is independent of the absolute cross section of the reaction. For small difference
between the incident and the outgoing energy, where the first step dominates, the analyzing power has a
distinctive shape. When the higher steps take place, they affect significantly the shape and the magnitude
of the analyzing power and it tents towards zero for low emission energies. Figs.3 and 2 illustrate this
statement.

3 Energy dependence of the reaction mechanism
The mechanism of the direct (~p, α) reaction has been discussed intensively over the years, but a decisive
conclusions has not been made. For example in Ref. [15] it was shown that calculations assuming pickup
of a triton and knockout of an α–particle equally well fit the angular distribution and the analyzing power
of the 90,92Zr(~p, α) reactions to the ground state and the first few excited states, while the knockout

85



mechanism is preferred for describing transitions to the continuum [16]. To address this problem for
pre–equilibrium processes we studied proton induced reactions on 59Co and 93Nb at incident energies
from 160 MeV to 65 MeV (see Ref. [17] and references there). We performed DWBA calculations
assuming both reaction mechanisms and compared the theoretical results with the experimental data
for the double differential cross–section and the analyzing power for a small difference between the
incoming and outgoing energies, where the first–step process dominates. Numerically the difference
between both types of calculations lies in the form factor, and the incoming and the outgoing distorted
waves are calculated using the same optical model potentials for protons and α–particles, respectively.

In Ref. [9] was shown that at 160 MeV incident energy the experimental data for the characteristics
of the 93Nb(p, α) reaction are reasonably well described assuming that the ejectile originates from an α–
cluster knockout in the final stage.
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Fig. 2: Double-differential cross sections (left panels) and analyzing power (right panels) as a function of scattering
angle θ for the 93Nb(~p, α) reaction at an incident energy of 100 MeV and two α- particle emission energiesEout as
indicated. Theoretical cross-section and analyzing power calculations for pickup (red dashed lines) and knockout
(blue dashed-dotted lines) are shown, with the sums of both reaction mechanisms plotted as black solid lines.

In. Fig. 2 double-differential cross sections and analyzing power as a function of scattering angle
for the 93Nb(~p, α) reaction at an incident energy of 100 MeV and two α–particle emission energies
Eout are shown. At the highest outgoing energy of 98 MeV where the first step contribution dominates
the results for both reaction mechanisms, knockout and pickup, are shown. It is seen that for forward
scattering angles the pickup differential cross–section is closer to the experimental points, while for the
backwards angles the knockout process dominates. Looking at the analyzing power, the pickup is the
reaction mechanism which describes best the main features of the shape and magnitude of the analyzing
power. For the lower emission energies the knockout differential cross–section decreases faster then
the pickup one. In this case we conclude that both reaction mechanisms should be taken into account
although the importance of the pickup prevails.

To extend the study of the 93Nb(~p, α) reaction for lower incident energies we re-examine the
experimental data for 65 MeV proton incident energy by Sakai et al. [18]. We use the same proce-
dure mentioned before. The double-differential cross–section and the analyzing power for the highest
outgoing energy of 53 MeV are described reasonably well by the knockout mechanism and no other
combination of pickup and knockout achieves better agreement with the experimental data. Once fitted
at this emission energy the magnitudes of the differential cross section and the analyzing power are in
very good agreement with the experimental data at lower emission energies as well.

The reason for the energy dependence of the reaction mechanism is in detail discussed in our
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Fig. 3: Double-differential cross sections (left panels) and analyzing power (right panels) as a function of scat-
tering angle θ for the 93Nb(~p, α) reaction at an incident energy of 65 MeV and two α- particle emission energies
Eout as indicated. Theoretical calculations for a knockout reaction mechanism (solid line) are compared with the
experimental data by Sakai et al. [18]

previous papers [17, 19]. The differential cross–section for either knockout or pickup depends on the
difference between the angular momentum in the incident and exit channel, the so called momentum
mismatch. Knockout is characterized by a low angular momentum relative to the core, because the
α–particle is a fully paired system. Pickup in a (p, α) reaction involves a system of two neutrons and
a proton and this composite system can have a large angular momentum in respect to the core. The
momentum mismatch depends on the energy of the projectile, thus reaction mechanism is influenced
strongly by the incident energy.

4 Conclusion
Based on the investigation of the pre–equilibrium 93Nb(~p, α) reaction we offer an explanation about the
energy dependence of the reaction mechanism at the final step of the process. We have shown that both
mechanisms - knockout and pickup are important and the angular momentum of the transferd composite
particle to the rest of the system has a far-reaching consequence for the cross–section trends as a function
of incident energy.
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