(n,cp) reactions study at the n_TOF facility at CERN: results for the Cosmological Lithium problem.

M. Barbagallo^{1,2}, O. Aberle¹, V. Alcayne³, J. Andrzejewski⁴, L. Audouin⁵, V. Bécares³, V. Babiano-Suarez⁶, M. Bacak^{1,7,8}, Th. Benedikt⁹, S. Bennett¹⁰, E. Berthoumieux⁸, J. Billowes¹⁰, D. Bosnar¹¹, A. Brown¹², M. Busso^{2,13,14}, M. Caamaño¹⁵, L. Caballero-Ontanaya⁶, F. Calviño¹⁶, M. Calviani¹, D. Cano-Ott³, A. Casanovas¹⁶, F. Cerutti¹, E. Chiaveri^{1,10}, N. Colonna², G. Cortés¹⁶, M. A. Cortés-Giraldo¹⁷, L. Cosentino¹⁸, S. Cristallo^{2,13,19}, L. A. Damone^{2,20}, P. J. Davies¹⁰, M. Dietz²¹, C. Domingo-Pardo⁶, R. Dressler²², Q. Ducasse²³, E. Dupont⁸, I. Durán¹⁵, Z. Eleme²⁴, B. Fernández-Domínguez¹⁵, A. Ferrari¹, P. Finocchiaro¹⁸, V. Furman²⁵, K. Göbel⁹, A. Gawlik⁴, S. Gilardoni¹, I. F. Gonçalves²⁶, E. González-Romero³, C. Guerrero¹⁷, F. Gunsing⁸, S. Heinitz²², J. Heyse²⁷, D. G. Jenkins¹², A. Junghans²⁸, F. Käppeler²⁹, Y. Kadi¹, A. Kimura³⁰, I. Knapova³¹, M. Kokkoris³², Y. Kopatch²⁵, M. Krtička³¹, D. Kurtulgil⁹, I. Ladarescu⁶, C. Lederer-Woods²¹, S. J. Lonsdale²¹, D. Macina¹, A. Manna^{33,34}, T. Martínez³, A. Masi¹, C. Massimi^{33,34}, P. Mastinu³⁵, M. Mastromarco¹, E. A. Maugeri²², A. Mazzone^{2,36}, E. Mendoza³, A. Mengoni³⁷, V. Michalopoulou^{1,32}, P. M. Milazzo³⁸, F. Mingrone¹, J. Moreno-Soto⁸, A. Musumarra^{18,39}, A. Negret⁴⁰, F. Ogállar⁴¹, A. Oprea⁴⁰, N. Patronis²⁴, A. Pavlik⁴², J. Perkowski⁴, L. Persanti^{2,13,19}, C. Petrone⁴⁰, E. Pirovano²³, I. Porras⁴¹, J. Praena⁴¹, J. M. Quesada¹⁷, D. Ramos-Doval⁵, T. Rauscher^{43,44}, *R. Reifarth⁹*, *D. Rochman²²*, *M. Sabaté-Gilarte^{17,1}*, *A. Saxena⁴⁵*, *P. Schillebeeckx²⁷*, *D. Schumann²²*, *A. Sekhar¹⁰*, *A. G. Smith¹⁰*, *N. V. Sosnin¹⁰*, *P. Sprung²²*, *A. Stamatopoulos³²*, *G. Tagliente²*, *J. L. Tain⁶*, *A.* Tarifeño-Saldivia¹⁶, L. Tassan-Got^{1,32,5}, A. Tsinganis¹, J. Ulrich²², S. Urlass^{28,1}, S. Valenta³¹, G. Vannini^{33,34}, V. Variale², P. Vaz²⁶, A. Ventura³³, D. Vescovi^{2,13}, V. Vlachoudis¹, R. Vlastou³², A. Wallner⁴⁶, P. J. Woods²¹, T. Wright¹⁰, P. Žugec¹¹ and the n TOF Collaboration

¹European Organization for Nuclear Research (CERN), Switzerland

²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy

³Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain ⁴University of Lodz, Poland

⁵Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France

⁶Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain

⁷Technische Universität Wien, Austria

⁸CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

⁹Goethe University Frankfurt, Germany

¹⁰University of Manchester, United Kingdom

¹¹Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia

¹²University of York, United Kingdom

¹³Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy

¹⁴Dipartimento di Fisica e Geologia, Università di Perugia, Italy

¹⁵University of Santiago de Compostela, Spain

¹⁶Universitat Politècnica de Catalunya, Spain

¹⁷Universidad de Sevilla, Spain

¹⁸INFN Laboratori Nazionali del Sud, Catania, Italy

¹⁹Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Teramo, Italy

²⁰Dipartimento di Fisica, Università degli Studi di Bari, Italy

²¹School of Physics and Astronomy, University of Edinburgh, United Kingdom

²²Paul Scherrer Institut (PSI), Villingen, Switzerland

²³Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany

²⁴University of Ioannina, Greece

²⁵Joint Institute for Nuclear Research (JINR), Dubna, Russia

²⁶Instituto Superior Técnico, Lisbon, Portugal

²⁷European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440 Geel, Belgium

²⁸Helmholtz-Zentrum Dresden-Rossendorf, Germany

²⁹Karlsruhe Institute of Technology, Campus North, IKP, 76021 Karlsruhe, Germany

³⁰Japan Atomic Energy Agency (JAEA), Tokai-mura, Japan

³¹Charles University, Prague, Czech Republic

³²National Technical University of Athens, Greece

³³Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy

³⁴Dipartimento di Fisica e Astronomia, Università di Bologna, Italy

³⁵Istituto Nazionale di Fisica Nucleare, Sezione di Legnaro, Italy

³⁶Consiglio Nazionale delle Ricerche, Bari, Italy

³⁷Agenzia nazionale per le nuove tecnologie (ENEA), Bologna, Italy

³⁸Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy

³⁹Dipartimento di Fisica e Astronomia, Università di Catania, Italy

⁴⁰Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania

⁴¹University of Granada, Spain

⁴²University of Vienna, Faculty of Physics, Vienna, Austria

⁴³Department of Physics, University of Basel, Switzerland

⁴⁴Centre for Astrophysics Research, University of Hertfordshire, United Kingdom

⁴⁵Bhabha Atomic Research Centre (BARC), India

⁴⁶Australian National University, Canberra, Australia

Abstract

The Big Bang Nucleosynthesis describes the production of the lightest nuclides from deuterium to Li at the early stages of the Universe. While a general good agreement is found for most of the isotopes involved in the synthesis, a serious discrepancy between the predicted abundance of ⁷Li and the related experimental observations is still present. This discrepancy has been referred since several decades as Cosmological Lithium Problem. In one last attempt to find nuclear solutions to this longstanding conundrum, the $^{7}Be(n,\alpha)^{4}He$ and $^{7}Be(n,p)^{7}Li$ reactions, that affect predominantly the production of ⁷Li via the destruction of his parent nucleus ⁷Be, have been studied. Here we present the ⁷Be $(n,\alpha)^4$ He and ⁷Be $(n,p)^7$ Li reaction crosssection measurements performed at the high-resolution n TOF facility using the time-of-flight technique and high purity samples. The result of the experiments definitely rules out neutron induced reactions as a solution to the puzzle, thus indicating that explanations have to be sought out in other Physics scenarios.

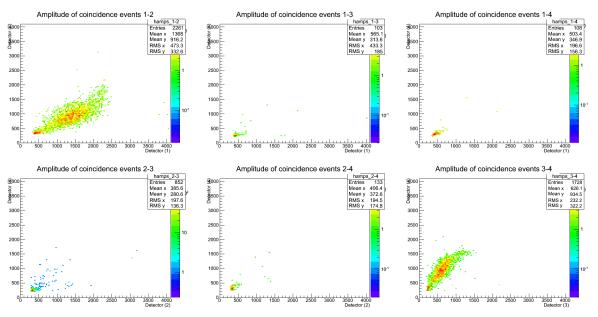
1 Cosmological Lithium Problem and Nuclear Physics

Big Bang Nucleosynthesis (BBN) is one of the cornerstones for Big Bang Theory and at the same time it represents one of the few reliable links to the first seconds of the Universe having consequences directly observable nowadays. BBN theory yields precise predictions for the abundancies of primeval light elements and since its first formulation and following developments [1-2] it has been based on the firmly established physics background of Standard Model. While the predictions of BBN for D and ⁴He are in agreement with the primordial abundancies inferred by experimental observations at high red-shift or in metal poor stars [3], a serious discrepancy is observed for ⁷Li, where a mismatch of a factor from two to three is observed between predictions. This discrepancy is now referred to as the Cosmological Lithium Problem (CLiP). In order to solve this longstanding puzzle, a plethora of

solutions has been put forward, ranging from solutions in the fields of Astrophysics, Nuclear Physics, non Standard Cosmology and new physics beyond Standard Model.

In standard BBN, the nuclear reactions chain begins when the temperature in the Universe has dropped down below 1 MeV allowing to reach the equilibrium between protons and neutrons. Subsequently, with temperature continuously decreasing, 16 well established main reactions drive the formation of stable light nuclei up to mass number A=8. In this scenario, 97% of ⁷Li is produced via electron capture beta decay of primordial ⁷Be ($t_{1/2}$ =52.3d), consequently the abundance of ⁷Li is intrinsically determined by the production and destruction of his father nucleus ⁷Be. As a matter of fact a nuclear solution to the Cosmological Lithium Problem is related to this isotope. ⁷Be is produced essentially via ³He(α, γ)⁷Be reaction that has been extensively studied and is accurately known [4-5], leaving no room for possible modifications in thermonuclear rate for ⁷Be production. On the other hand, while charged particle induced reactions responsible for ⁷Be destruction have been measured and the related significant contributions have been ruled out [6-9], data on reactions induced by neutrons have been so far scarce and incomplete, affecting the reliability of BBN calculations at the energy window of interest for the CLiP, i.e. 20-120 keV (or equivalently 0.23 T₉-1.4 T₉).

According to BBN theory ⁷Be is destroyed via (n,α) and (n,p) channels, accounting respectively for 2.5% and 97% to its destruction rate. The lack of experimental data for these reactions is essentially due to the intrinsic difficulty of the measurement, related to the extremely high specific activity of ⁷Be (13 GBq/µg). Concerning ⁷Be $(n,\alpha)^4$ He reaction, only one direct measurement performed at thermal energy (0.025 eV) was available in literature [10]. Therefore in BBN calculations data have been extrapolated to the relevant energy window assuming typically an uncertainty of a factor 10. On the other hand, previous data for ⁷Be $(n,p)^7$ Li reaction cross-section extend on a wider range, from thermal energy up to 13.5 keV [11], leaving nevertheless the BBN energy window uncovered.


2 n_TOF program on Cosmological Lithium Problem

In order to address this lack of data, the time-of-flight measurements of the ${}^{7}Be(n,\alpha)^{4}He$ and ${}^{7}Be(n,p)^{7}Li$ reaction cross-sections have been performed at the newly built second experimental area (EAR2) of the n_TOF facility at CERN. The main features of the n_TOF neutron beam at the EAR2 measurement station are the wide neutron energy spectrum, spanning from 2 meV to 100 MeV, the high intensity of >10⁷ neutrons/pulse at the sample position, the low repetition rate, of less than 0.8 Hz, and the good energy resolution ($10^{-3} \le \Delta E/E \le 10^{-2}$ in the energy range of interest for these measurements) [12]. All these features make EAR2 ideal for measurements on isotopes only available in very small amounts, with short half-lives, or both, as is the case for ⁷Be.

2.1 The ⁷Be(n,α)⁴He cross-section measurement and its implication for CLiP

The measurement of ⁷Be(n, α) ⁴He cross-section has been performed by means of a detection system capable of detecting in coincidence the two alpha particles emitted back-to-back in the reaction, whose Q-value is about 19 MeV. The detection system used consisted of two sandwiches of 140 μ m thickness and 3x3 cm² active area silicon detectors placed directly in the neutron beam. Each sandwich of silicons hosted in the middle part a sample with the ⁷Be deposit, providing a high coverage of solid angle [14]. The samples were produced by means of two different techniques, namely molecular plating and vaporization, at the Paul Scherrer Institut (PSI) [13]: starting from a solution of Be(NO₃)₂, a total amount of ~40 GBq of ⁷Be was deposited on two thin backings, respectively 5 μ m aluminum and 0.6 μ m stretched polyethilene foil. Such thin backings permitted the high-energy alpha particles emitted in the reaction to reach the active area. The combination of the coincidence and time-of-flight techniques allowed to distinguish clearly the α -particles from the background due to the high activity of the samples

and to competing reactions, as shown in Fig. 1 where coincidences matrices for correlated detectors (i.e. detectors hosting the ⁷Be samples) and uncorrelated ones are reported.

Fig. 1: Scatter plot for signal amplitudes in all possible pairs of detectors of the stack. Top left and bottom right plot refer to pairs hosting the ⁷Be sample, while the remaining panels show coincidence events for uncorrelated pairs of detectors

The cross-section of the ${}^7\text{Be}(n,\alpha)^4\text{He}$ reaction has been then determined in the energy range from 10 meV to 10 keV and while at thermal energy it has been found in agreement with the previous measurement, it has indicated that at higher energy a substantial revision is needed. The n_TOF results combined with ENDF/B-VII.1 evaluation lead to a change of the ${}^7\text{Be}$ destruction rate due do this reaction, hinting nevertheless to a minor role of this channel in BBN and leaving therefore Cosmological Lithium Problem unsolved [15]. At a later time a second independent measurement performed at the Osaka Research Center for Nuclear Physics (RCNP) confirmed this conclusion, finally ruling out the possibility that the so far poorly known ${}^7\text{Be}(n,\alpha)^4\text{He}$ channel could account for a significant ${}^7\text{Be}$ depletion [16].

2.2 The ⁷Be(n,p)⁷Li cross-section measurement and its implication for CLiP

The ⁷Be(n,p)⁷Li reaction is featured by a relatively small Q-value, equal to 1.64 MeV, with low energy protons emitted with about 1.02 MeV and 1.40 MeV, according to the state in which the residual ⁷Li nucleus is left. Therefore, together with the availability of a sufficiently intense neutron beam, also strong constraints on the level of purity of the sample are set. The combination of the measurement capabilities on the n_TOF and ISOLDE [17] facilities at CERN allowed to perform the accurate measurement of the ⁷Be(n,p)⁷Li reaction cross-section from 0.025 eV to 325 keV neutron energy, hence fully covering for the first time in a direct measurement the energy range of interest for Big Bang Nucleosynthesis. In particular, a high purity ⁷Be sample was produced by ISOL technique at ISOLDE and shortly after exposed to the pulsed wide spectrum neutron beam at the n_TOF facility. The ⁷Be target preparation was carried out in two steps: 200 GBq of ⁷Be were extracted from the cooling water of the SINQ spallation source at the Paul Scherrer Institute (PSI) [18] and deposited onto a suitable support in the form of a ⁷Be (NO₃)₂ colloid [19]. Afterward the solution was used to produce at ISOLDE

a ⁷Be beam that was implanted on a thin aluminium backing, resulting in a 1.1 GBq activity sample with a purity of about 99% (the remaining 1% was due to ⁷Li contamination) [18].

At n_TOF the measurement of the ⁷Be(n,p)⁷Li cross-section relied on the detection and identification by means of a silicon telescope of the protons emitted in the reaction. The telescope consisted of two silicon strip detectors of 300 μ m and 20 μ m thickness and 5x5 cm² wide active area divided in 16+16 strips. Thanks to the high purity of the sample and the telescope technique, in combination with the time-of-flight measurement at the high intensity pulsed neutron beam, the contributions of any source of background associated to the activity of the sample or to reactions induced on the sample backing could be heavily suppressed [19]. The n_TOF results of this measurement show that ⁷Be(n,p)⁷Li cross-section is higher than previously recognized at low energy, by ~40%, but consistent with current evaluations above 50 keV [20].

This new result, in combination with the n_TOF result on the ${}^7Be(n,\alpha){}^4He$ cross-section, has been used to calculate new BBN reaction rates and it has been found that it leads to, at most, a 10% decrease in the lithium production relative to previous estimations. Such a change does not have a significant impact on the Cosmological Lithium Problem, left therefore still unsolved.

3 Conclusions

The Cosmological Lithium Problem is one of the most important unresolved problems in Nuclear Astrophysics. The large discrepancy between the abundance of primordial ⁷Li predicted by the standard theory of Big Bang Nucleosynthesis and the value deduced from the observation of galactic halo dwarf stars. A few neutron-induced reactions are important in the processes leading to the formation of the first nuclides at the very beginning of our universe, amongst these, the (n,p) and (n, α) reactions on ⁷Be play a key role in the determination of the abundance of primordial lithium. Taking advantage of the new high intensity flux neutron beam line of the n_TOF facility at CERN the measurements of the ⁷Be(n, α)⁴He and ⁷Be(n,p)⁷Li reaction cross-sections have been performed, in order to provide for the first time data in the neutron energy range of interest for Nuclear Astrophysics. The two n_TOF measurements finally rule out neutron-induced reactions, and possibly nuclear physics, as a potential explanation of the CLiP, leaving all alternative physics and astronomical scenarios still open.

References

- [1] Alpher R. A., Bethe H. A. and Gamow G., 1948, Phys. Rev., 73, 803.
- [2] R.V. Wagoner et al., Astrophys. J. 148, 3 (1967).
- [3] B. D. Fields, Ann. Rev. Nuc. Par. Sci, 61, 47-68 (2011)
- [4] F. Confortola et al., Phys Rev. C 75 (2007) 065803
- [5] L. Canton and L.G. Levchuk, Nucl. Phys. A 808 (2008) 192
- [6] C. Angulo et al., Astroph. J. 630, L105 (2005)
- [7] P. O. Malley et al., Phys Rev. C 84, (2011) 042801
- [8] O.S. Kirsebom and B. Davis, Phys. Rev. C 84, (2011) 058801

- [9] C. Broggini, L. Canton, G. Fiorentini and F.L. Vilante, J. Cosmol. Astrop. 06 (2012) 30
- [10] P. Bassi et al., Il Nuovo Cimento XXVIII, 1049 (1963)
- [11] P. E. Koehler et al., Phys Rev. C 37, (1988) 917
- [12] M. Sabate-Gilarte et al., Eur. Phys. J. A 53, 210 (2017)
- [13] E. Maugeri et al., Journal of Instrumentation, 12 P02016 (2017).
- [14] L. Cosentino et al., Nucl. Instrum. Methods Phys. Res., Sect. A 830, 197 (2016)
- [15] M. Barbagallo et al., Phys. Rev. Lett. 117(2016), 0152701
- [16] T. Kawabata et al., Phys Rev. Lett. 118 (2017), 052701
- [17] M. J. G. Borge and B. Jonson, J. Phys. G 44, 044011 (2017).
- [18] E. Maugeri et al., Nucl. Instrum. Methods Phys. Res., Sect. A 889, 138 (2018)
- [19] M. Barbagallo et al., Nucl. Instrum. Methods Phys. Res., Sect. A 887, 27 (2018)
- [20] L. Damone et al., Phys. Rev. Lett. 121 (2018), 042701