УДК 539.165:539.122:539.1.074.55:539.123:539.166

ПОИСК ^{β+}ЕС И ЕС/ЕС РАСПАДОВ ⁷⁴Se

© 2020 г. Н. И. Рухадзе^{1, *}, А. С. Барабаш², В. Б. Бруданин¹, А. А. Клименко¹, С. И. Коновалов², А. В. Рахимов¹, Е. Н. Рухадзе³, Ю. А. Шитов¹, И. Штекл³, В. И. Юматов², Г. Варо⁴

¹ Международная межправительственная организация Объединенный институт ядерных исследований, Дубна, Россия ² Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт", Москва, Россия ³ Чешский технический университет в Праге, Институт экспериментальной и прикладной физики, Прага, Республика Чехия ⁴ Моданская подземная лаборатория, Модан, Франция

> **E-mail: rukhadze@jinr.ru* Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

Поиск двойного бета-распада (β^+ EC, EC/EC) ядра ⁷⁴Se проведен в Моданской подземной лаборатории (LSM, Франция, на глубине 4800 м водного эквивалента) с использованием ультра-низкофонового HPGe детектора Obelix с чувствительным объемом 600 см³ и образца природного селена с массой 1.6 кг, содержащего 0.89% (~14.24 г) ⁷⁴Se. Из обработки экспериментальных данных, накопленных за 135 сут измерений, получены новые экспериментальные ограничения на β^+ EC и EC/EC распады ядра ⁷⁴Se на основное 0⁺ и возбужденные состояния 2⁺₁, 596 кэB, 2⁺₂, 1204 кэB ядра ⁷⁴Ge.

DOI: 10.31857/S0367676520080268

введение

Поиск безнейтринного двойного бета-распада $(\beta^{-}\beta^{-}, \beta^{+}\beta^{+}, \beta^{+}EC, EC/EC)$ имеет большое значение в физике частиц и ядерной физике как инструмент изучения свойств нейтрино и слабого взаимодействия. Наблюдение безнейтринного двойного бета-распада (0vββ) позволит прояснить природу нейтрино (майорановское или дираковское) абсолютное значение массы нейтрино, иерархию нейтринных масс и возможное нарушение закона сохранения лептонного заряда [1]. Двухнейтринный двойной бета-распад (2νββ) – это процесс второго порядка, разрешенный в рамках стандартной модели (СМ), и его изучение дает возможность экспериментально определять ядерные матричные элементы (ЯМЭ) для процессов двойного бетараспада. Это приводит к развитию теоретических моделей расчета ЯМЭ как для 2νββ, так и для 0νββ распадов. Двойной бета-распад может происходить как путем переходов на основное состояние, так и на различные возбужденные состояния дочернего ядра. В настоящее время 2νββ распад на основное состояние дочерних ядер зарегистрирован для 11 ядер (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U) [2]. Изучение переходов на возбужденные состояния дочерних ядер позволяет получить дополнительную информацию о двойном бета-распаде. Меньшие энергии переходов на возбужденные состояния дочерних ядер приводят к существенному подавлению вероятностей двойного бета распада по сравнению с переходами на основное состояние в тех же ядрах [1, 3]. Однако такие процессы сопровождаются испусканием у-квантов при разрядке возбужденных состояний, что облегчает детектирование этих редких процессов с помощью низкофонововых высокоэффективных НРGe детекторов. Двухнейтринный двойной бета распад (2ν2β-) на возбужденные состояния дочерних ядер был зарегистрирован в распадах ¹⁰⁰Мо-¹⁰⁰Ru (0⁺₁, 1130.3 кэВ) и ¹⁵⁰Nd-¹⁵⁰Sm (0⁺₁, 740.4 кэВ). Наиболее точное значение для периода полураспада ¹⁰⁰Мо-¹⁰⁰Ru (0⁺₁, 1130.3 кэВ) [3] было получено в эксперименте, проведенном на спектрометре Obelix [4] в Моданской подземной лаборатории (LSM, Модан, Франция, на глубине 4800 м водного эквивалента). Высокая чувствительность спектрометра Obelix в исследованиях редких процессов, позволила провести аналогичные иссле-

Рис. 1. Схема двойного бета-распада ядра ⁷⁴Se: 1 – энергия распада ⁷⁴Se–⁷⁴Ge (разность атомных масс) Q = 1209.2 кэВ, 2 - KK, KL, LL-захваты, и $\beta^+\text{EC}$ распад на основное 0^+ состояние ядра ⁷⁴Ge, 3 - KK, KL, LL- захваты, и $\beta^+\text{EC}$ распад на 2_1^+ , 595.9 кэВ состояние ядра ⁷⁴Ge, 4 - LL-захват на 2_2^+ , 1204.2 кэВ состояние ядра ⁷⁴Ge, $5 - \gamma$ -переход с энергией 1204.2 кэВ и относительной интенсивностью 31.5%, $6 - \gamma$ -переход с энергией 608.2 кэВ и относительной интенсивностью 68.5%, $7 - \gamma$ -переход с энергией 595.9 кэВ.

дования двойного бета-распады ядра 58 Ni на возбужденные состояния 58 Fe [5] и ядра 74 Se на основное и на возбужденные состояния 74 Ge.

УСЛОВИЯ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

Исследование процесса двойного бета распада (β⁺EC, ECEC) ⁷⁴Se проводилось в Моданской подземной лаборатории (LSM, Франция) на глубине 4800 м водного эквивалента с использованием ультра-низкофонового детектора из сверхчистого германия (HPGe) Obelix с чувствительным объемом 600 см³ и относительной эффективностью ~160% [6], относительно кристалла NaI диаметром 3 дюйма и высотой 3 дюйма, с точечным источником, установленным на расстоянии 25 см от поверхности детектора для энергии гаммаквантов 1332 кэВ ⁶⁰Со [6]. Энергетическое разрешение детектора Obelix составляет ~1.2 кэВ на γ-линии 122 кэВ (⁵⁷Со) и ~2 кэВ на γ-линии 1332 кэВ (⁶⁰Со). Детекторная часть криостата окружена пассивной защитой из нескольких слоев археологического свинца толщиной ~12 см (активность менее 60 мБк · кг⁻¹) и низкоактивного свинца (активность 5–20 Бк · к Γ^{-1}) общей толшиной ~20 см. и помещена внутри герметичного стального кожуха. Для предотвращения скопления газа радона (²²²Rn) около детектора, внутренняя часть пассивной защиты продувается воздухом с пониженным содержанием радона (концентрация ²²²Rn в этом воздухе составляет ~15 мБк · м⁻³) от установленной в LSM системы очистки воздуха от радона. Низкофоновые измерения основываются на сравнении измерений образца с фоном спектрометра. Фон спектрометра измеряется до и после основных измерений. Длительность измерений фона составляет, как правило, не менее 30 сут. Контрольные измерения фона спектрометра при исследованиях ⁷⁴Se составляли ~53 сут. Интегральная скорость счета фона спектрометра для измерений селена составила 73 отсчетов · кг⁻¹ · сут⁻¹ в энергетическом диапазоне 30–2900 кэВ. Измеряемый образец из природного порошкообразного селена с массой 1.6 кг, содержащий 0.89% (~14.24 г) ⁷⁴Se, был помещен в тефлоновую коробку диаметром 115 мм, высотой 80 мм и толщиной стенок 3 мм. Коробка с природным селеном была установлена на крышке криостата детектора Obelix. Измерения проводились в течении 135 сут.

АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Поиск двойного бета-распада (безнейтринного и двухнейтринного) ядра ⁷⁴Se проводился ранее в работах [7, 8]. Схема этого процесса (рис. 1) составлена на основе данных, приведенных в [8]. Искомый β^+ EC распад ⁷⁴Se должен сопровождаться испусканием позитрона, который затем, после аннигиляции с электроном, образует два коррелированных гамма-кванта с энергиями по 511 кэВ. При 0vEC/EC распаде ⁷⁴Se возможны следующие варианты переходов: а) захват двух электронов с L-оболочки атома, при этом энергия распада равна ~1206.4 кэВ; б) захват одного электрона с К-оболочки, а другого с L-оболочки атома, в этом случае энергия распада ~1196.7 кэВ; в) захват двух электронов с К-оболочки атома, при этом энергия распада ~1187.0 кэВ. Перечис-

Рис. 2. Спектр природного селена, накопленный на спектрометре Obelix в течении 135 сут.

ленные ветви 0vECEC распадов на основное состояние должны сопровождаться испусканием гамма-квантов соответствующих энергий. 0vLL распад на второе 2⁺ состояние ядра ⁷⁴Ge будет сопровождаться испусканием гамма-квантов с энергиями 1204.2 или 595.9 + 608.3 кэВ. 0vLL распал на первое 2⁺ состояние ⁷⁴Ge 595.9 кэВ должен сопровождаться испусканием гамма-кванта ~610.6 кэВ и гамма-кванта 595.9 кэВ. Учитывая, наличие в экспериментальном спектре фоновой линии 609.3 кэВ (²¹⁴Ві), анализ этой ветви распада проводился только по гамма-квантам 595.9 кэВ. 0vKL распал на первое 2⁺ состояние ядра ⁷⁴Ge 595.9 кэВ должен сопровождаться испусканием гаммакванта ~600.9 кэВ и гамма-кванта 595.9 кэВ. Распад 0vKK на первое 2⁺ состояние ядра ⁷⁴Ge 595.9 кэВ должен сопровождаться испусканием гаммакванта ~591.2 кэВ и гамма-кванта 595.9 кэВ. Учитывая вышеизложенное, объектами наблюдения и анализа в исследованиях двойного бета распада ядра ⁷⁴Se были γ-кванты с энергиями 511, 591.2, 595.9, 600.9, 1187.0, 1196.7, 1204.2 и 1206.4 кэВ, поиск которых проводился в спектре натурального селена (рис. 2), накопленного в течении 135 сут на спектрометре Obelix. Возможный EC/EC (KK, KL, LL) распад ядра ⁷⁴Se должен сопровождаться испусканием одного или двух гамма-квантов с вышеприведенными энергиями (рис. 1). Все эти у-кванты могут быть с высокой эффективностью зарегистрированы детектором Obelix. Обработка экспериментальных данных, накопленных за 135 сут измерений, основана на поиске возможных пиков в вышеперечисленных областях спектра селена (рис. 2). Фитирование таких областей с максимальным энерговыделением (1187, 1196.7, 1204.2 и 1206.4 кэВ) при поиске 0vEC/EC распада

⁷⁴Se показано на рис. 3. Экспериментальные точки спектра на рис. 3 приведены с погрешностями. Фитирование участков спектра проводилось в предположении линейного фона (т.е. прямой линии на участке спектра). Отклонение фона от прямой линии на рис. Зв предположительно связано с возбуждением уровня 1204.2 кэВ ядра ⁷⁴Ge, содержащегося в самом детекторе в количестве ~36.7%. А отклонение от прямой линии на рис. Зб вызвано флуктуацией фона в этой области спектра. Эффективность детектора Obelix для регистрации у-квантов, вылетающих из образца природного селена, рассчитывалась с помощью симуляций проведенных на основе пакета ROOT-VMC-GEANT4 DPGE в диапазоне 0.05-5 МэВ. После чего расчетная эффективность проверялась с помощью измерений низкоактивных образцов, изготовленных на основе порошка окиси лантана (La_2O_3). Природный La в этом порошке содержит 0.0888 ± $\pm 0.0007\%$ изотопа ¹³⁸La с периодом полураспада $T_{1/2} = (1.02 \pm 0.01) \cdot 10^{11}$ лет, распад которого сопровождается испусканием γ-квантов с энергиями 788.7 и 1435.8 кэВ. Этот метод калибровки детектора по эффективности при низкофоновых измерениях детально описан в работе [4]. Обработка данных, полученных при измерении природного селена на спектрометре Obelix в течение 135 сут, показала отсутствие искомых пиков в областях энергий ү-квантов, сопровождающих двойной бета распад ядра ⁷⁴Se (рис. 3). Для определения пределов на изучаемые ветви распада ⁷⁴Se было определено количество исключенных событий (N_{excl}) на 90% уровне достоверности для всех возможных гамма переходов в распаде ⁷⁴Se \rightarrow ⁷⁴Ge (аналогично подобной процедуре в работе [5]). Эти величины составляют соответственно -11 (591.2 кэВ), 31 (595.9 кэВ), 11 (600.9 кэВ), 9 (1187.0 кэВ), 13 (1196.7 кэВ), 18 (1204.2 кэВ), 7 (1206.4 кэВ) – см. табл. 1. Пределы на исследуемые ветви двойного бета распада ⁷⁴Se, в некоторых случаях, определялись по совместному анализу двух ү-переходов. В этих случаях, энергии гамма-переходов (*E*_γ, кэВ) объединяет знак "+" (см. табл. 1). На основе этих данных получены новые экспериментальные ограничения на периоды полураспада β^+EC , EC/EC распада ⁷⁴Se на основное

и на возбужденные 2_1^+ , 596 кэВ и 2_2^+ , 1204 кэВ состояния ⁷⁴Ge. В табл. 1 также указаны возможные переходы двойного бета-распада ⁷⁴Se на возбужденные состояния (значения их энергий приведены в кэВ) или на основное состояние (g. s.) ⁷⁴Ge (Переход), энергии гамма-переходов (E_γ , кэВ) и эффективность регистрации (Эфф. %) гамма-квантов, испущенных при таких гамма-переходах вместе с коли-

Рис. 3. Участки спектра природного селена для поиска возможных пиков с энергиями 1187.0 (*a*), 1196.7 (*б*), 1204.2 (*в*) и 1206.4 кэВ (*г*) при двойном бета-распаде ⁷⁴Se. Сплошными линиями на участках спектра показаны результаты фитирования фона в этих областях. Обсуждение нелинейностей фона на рис. З*в* и З*б* приведено в тексте статьи.

чеством исключенных событий для данной энергии перехода (N_{excl}). Для сравнения полученных результатов с существующими данными приведены также предыдущие экспериментальные ограничения на соответствующие ветви двойного бетараспада ⁷⁴Se, полученные в работах [7, 8]. Все пре-

Переход	E_{γ} , кэ ${f B}$	Эфф. %	N _{excl}	$T_{1/2}, 10^{19}$ лет	<i>T</i> _{1/2} , 10 ¹⁹ лет [7]	<i>T</i> _{1/2} , 10 ¹⁹ лет [8]
$0vLL \rightarrow 2^+_2$, 1204.2	595.9 + 1204.2	1.23 0.57	31 18	1.10	0.55	0.70
$0vLL \rightarrow 2_1^+, 595.9$	595.9	1.82	31	1.58	1.30	0.82
$0\nu LL \rightarrow g.s.$	1206.4	1.67	7	6.47	0.41	0.58
$0\nu KL \rightarrow 2^+_1, 595.9$	600.9 595.9	1.81 1.81	11 31	4.37 1.57	1.12	0.82
$0vKL \rightarrow g.s.$	1196.7	1.67	13	3.48	0.64	0.96
$0\nu KK \rightarrow 2^+_1, 595.9$	591.2 595.9	1.81 1.81	11 31	4.39 1.57	1.57	1.43
$0\nu KK \rightarrow g.s.$	1187.0	1.67	9	4.83	0.62	_
$2\nu \text{ECEC} \rightarrow 2^+_2, \ 1204$	595.9 + 1204.2	1.23 0.57	31 18	1.10	0.55	0.70
$2\nu \text{ECEC} \rightarrow 2_1^+, 596$	595.9	2.11	31	1.83	0.77	0.92
$(0\nu + 2\nu)\beta^+ EC \rightarrow g.s.$	511	4.32	512	0.23	0.19	-

Таблица 1. Экспериментальные ограничения на β^+ EC и ECEC распады ⁷⁴Se

делы в табл. 1 приведены на 90% уровне достоверности.

ЗАКЛЮЧЕНИЕ

Проведен поиск двойного бета-распада ⁷⁴Se на спектрометре Obelix, позволивший уточнить экспериментальные ограничения на различные ветви β^+EC , EC/EC распадов ⁷⁴Se на основное и на возбужденные состояния ⁷⁴Ge Измерения образца природного селена на спектрометре Obelix в Моданской подземной лаборатории будет продолжено с увеличенной массой исследуемого изотопа и улучшенной геометрией измерения, обеспечивающей повышение эффективности регистрации гаммаквантов. Это должно обеспечить дальнейшее улучшение приведенных в табл. 1 экспериментальных пределов на двойной бета распад ⁷⁴Se.

По завершению измерений ⁷⁴Se планируется провести исследования двойного бета распада ⁹⁶Zr и ¹⁵⁰Nd на возбужденные состояния дочерних ядер. Эти исследования будут, как и исследование распада ⁷⁴Se, проводиться в Моданской подземной лаборатории с использованием детекторов Obelix и Idefix (коаксиальный HPGe детектор Р-типа в ультра низкофоновом криостате U-типа с чувствительным объемом и основными характеристиками аналогичными детектору Obelix). Idefix, как и Obelix, изготовлен фирмой Канберра и установлен в Моданской подземной лаборатории. Авторы благодарят персонал LSM за техническую поддержку и помощь в проведении измерений. Настоящая работа выполнена в рамках соглашения LEA-JOULE и договора о сотрудничестве между IN2P3 (Франция) и JINR (ОИЯИ, Россия) № 15-93 и частично поддержана грантами Республики Чехия LM2015072, ERDF сz.02.1.01/0.0/0.0/16 013/0001733 и РФФИ (проект № 20-52-16201).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Haxton W.C.*, *Stephenson G.S.* // Progr. Part. Nucl. Phys. 1984. V. 12. P. 409.
- 2. Barabash A.S. // AIP Conf. Proc. 2013. V. 1572. P. 11.
- 3. Arnold R., Augier C., Barabash A.S. et al. (The NEMO-3 collaboration) // Nucl. Phys. A. 2014. V. 925. P. 25.
- 4. Brudanin V.B., Egorov V.G., Hodák R. et al. // JINST. 2017. V. 12. P. 02004.
- Рухадзе Н.И., Бруданин В.Б., Клименко А.А. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. С. 786; Rukhadze N.I., Brudanin V.B., Klimenko A.A. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. P. 708.
- https://www.aps.anl.gov/files/APS-Uploads/DET/Detector-Pool/Spectroscopic-Detectors/Canberra/Germanium_Detectors_Manual.pdf.
- Barabash A.S., Hubert Ph., Nachab A., Umatov V. // Nucl. Phys. A. 2007. V. 785. P. 371.
- Lehnert B., Wester T., Degering D. et al. // J. Phys. G. 2016. V. 43. Art. № 085201.