УДК 539.142

АНАЛИЗ МАГНИТНЫХ ХАРАКТЕРИСТИК СОСТОЯНИЙ ^{158, 160}Gd В РАМКАХ ФЕНОМЕНОЛОГИЧЕСКОЙ МОДЕЛИ

© 2020 г. П. Н. Усманов^{1,} *, А. И. Вдовин², Э. К. Юсупов¹

¹Наманганский инженерно-технологический институт, Наманган, Узбекистан ²Международная межправительственная организация Объединенный институт ядерных исследований, лаборатория теоретической физики имени Н.Н. Боголюбова, Дубна, Россия

**E-mail: usmanov 1956.56@mail.ru* Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

В рамках феноменологической модели, учитывающей кориолисово смешивание состояний низколежащих ротационных полос положительной четности, изучена структура возбужденных состояний и неадиабатические эффекты, проявляющиеся в вероятностях магнитных переходов в ядрах ^{158, 160}Gd. Рассчитаны волновые функции возбужденных состояний. Показано, что эффект смешивания полос существенно влияет на волновые функции вибрационных состояний (оснований полос).

DOI: 10.31857/S0367676520080311

введение

Экспериментальные данные о возбужденных состояниях нуклидов ^{158, 160} Gd достаточно обширны [1, 2]. Их исследовали в бета-распаде и электронном захвате, в различных ядерных реакциях: $(n,\gamma), (n,n'\gamma), (p,t), (t,p), (d,p), (d,d')$, в кулоновском возбуждении ядер, неупругом рассеянии электронов и с помощью ядерной резонансной флуоресценции.

Результаты этих исследований можно суммировать следующим образом. В ядре ¹⁵⁸Gd помимо основной полосы выявлены четыре полосы, построенные на основаниях с $K^{\pi} = 0^+$, нижайшая из которых с энергией основания $E_x = 1196$ кэВ, интерпретируется как бета-вибрационная. Заметим, что энергии оснований полос, построенных на уровнях $K^{\pi} = 0^+$, с хорошей точностью воспроизводятся в рамках квазичастично-фононной модели ядра (КФМ) [3]. В ядре ¹⁵⁸Gd известна также гамма-полоса ($K^{\pi} = 2^+$).

Наряду с полосами, построенными на основаниях $K^{\pi} = 0^+, 2^+, B^{158}$ Gd имеются две полосы, построенные на уровнях $K^{\pi} = 1^+$ с энергиями $E_x = 1848$ и 1930 кэB, соответственно. Энергии этих уровней также хорошо описывает КФМ [3]. В работах [4, 5] приведены энергии еще двух 1^+ состояний в этом ядре с энергиями возбуждения $E_x > 3$ МэВ. Данные о построенных на них полосах отсутствуют.

Последняя компиляция оцененных данных о возбужденных состояниях ядра¹⁶⁰Gd опубликована давно [2]. Данные о низколежащих состояниях с $K^{\pi} = 0^+$, содержащиеся в [2], были дополнены и скорректированы в последующих ($n, n' \gamma$) экспериментах [6–8]. Таким образом, в ядре¹⁶⁰Gd сейчас известны: основная полоса, гамма-полоса $K^{\pi} = 2_1^+$, бета-полоса $K^{\pi} = 0_2^+$ и еще одна полоса с $K^{\pi} = 0_3^+$ (энергия основания $E_x = 1558$ кэВ). Заметим, что положение 0_3^+ -уровня с хорошей точностью предсказали теоретические расчеты в рамках КФМ [3].

Состояний с $K^{\pi} = 1^+$ в ядре ¹⁶⁰Gd известно около десятка. Абсолютное большинство из них, кроме состояний с энергиями возбуждения 1569 и 2109 кэВ [6], принадлежат ножничной моде и находятся в интервале энергии возбуждения 2.3 < E_x < < 3.5 МэВ. В теоретических расчетах [3] энергия нижайшего 1^+ уровня получилась завышенной приблизительно на 300 кэВ.

Помимо энергий возбужденных состояний для ядер^{158,160}Gd имеются данные об абсолютных и относительных значениях вероятностей Е2-переходов между полосами [1, 2, 6–10]. Вся сово-

1175

купность экспериментальных данных об энергиях состояний низколежащих полос и вероятностях E2-переходов в ядрах^{158, 160}Gd была проанализирована в работе [11] в рамках феноменологической модели [12], учитывающей смешивание полос изза кориолиосова взаимодействия.

В настоящей продолжаются исследования начатые в [11]. Используя модель [12], проанализировано как смешивание полос влияет на магнитные характеристики возбужденных состояний ядер 158,160 Gd — коэффициенты смеси мультиполей $\delta(E2/M1)$, приведенные вероятности M1-переходов B(M1)и магнитные моменты возбужденных состояний основных полос $\mu(I^+0_1)$. Заметим,

что феноменологическая модель [12] уже использовалась для описания магнитных характеристик состояний низколежащих полос в деформированных ядрах в работах [12–14].

МАГНИТНЫЕ ДИПОЛЬНЫЕ ПЕРЕХОДЫ

Основные параметры модели [12] необходимые для вычисления энергий и волновых функций возбужденных состояний ядер ^{158, 160} Gd определены и опубликованы в работе [11]. Здесь будут обсуждаться только параметры необходимые для расчетов магнитных характеристик ядерных возбуждений.

В рамках модели [12] выражение для приведенной вероятности М1-перехода из состояния $I_i K_i$ на уровень $I_f 0_1$ основной (0_1) полосы имеет следующий вид:

$$B(M1; I_i K_i \to I_f 0_1) = = \frac{1}{2I_i + 1} |\langle I_f 0_1 \| \hat{m}(M1) \| I_i K_i \rangle|^2,$$
(1)

где $\hat{m}(M1)$ — магнитный дипольный оператор.

Приведем выражение для приведенного матричного элемента M1-перехода из формулы (1):

$$\langle I' 0_{1} \| \hat{m}(M1) \| IK \rangle = \sqrt{\frac{3(2I+1)}{4\pi}} \times \\ \times \left(\sum_{K_{1}=1}^{2} (g_{K_{1}} - g_{R}) K_{1} \psi_{K_{1},K}^{I} \psi_{K_{1},0_{1}}^{I} C_{IK_{1};10}^{I'K_{1}} + \frac{\sqrt{6}}{10} \sum_{v} m_{1v}^{'} \psi_{0_{1}0_{1}}^{I} \psi_{1v,K}^{I} C_{I1;1-1}^{I'0} \right),$$

$$(2)$$

где $m'_{1v} = \langle 0^+_1 | \hat{m}(M1) | 1^+_v \rangle$ — матричные элементы между внутренними волновыми функциями основной и 1^+_v -полос; $C^{I_f K_f}_{I_f K_i; l(K_i+K_f)}$ — коэффициенты Клебша—Гордана; $\psi^I_{K,K'}$ — амплитуды смешивания базисных состояний; g_K — внутренний g-фактор полосы с $K \neq 0$, $g_R = Z/A$ — гиромагнитный фак-

тор, связанный с вращением. Из систематики гиромагнитных отношений для деформированных ядер редкоземельной и трансурановой области следует $g_R \approx 0.4 \pm 0.1$.

Нарядус приведенными вероятностями М1-переходов исследуют коэффициенты смеси мультиполей δ(E2/M1), которые вычисляют по следующей формуле:

$$\delta(I_i K_i \to I_f K_f) =$$

$$= 0.834 E_{\gamma} (\mathbf{M} \ni \mathbf{B}) \frac{\langle I_f K_f \| \hat{m}(\mathbf{E}2) \| I_i K_i \rangle}{\langle I_f K_f \| \hat{m}(\mathbf{M}1) \| I_i K_i \rangle} \left(\frac{\boldsymbol{e} \cdot \boldsymbol{6}}{\boldsymbol{\mu}_N} \right), \quad (3)$$

где $\hat{m}(E2)$ — электрический квадрупольный оператор, E_{γ} — энергия γ -перехода, б — барн, μ_N — ядерный магнетон.

Вычисленные и экспериментальные [6, 8, 9] значения коэффициентов смеси мультиполей $\delta(E2/M1)$ из состояний 0⁺_i-, 2⁺- и 1⁺-полос для ядер ^{158, 160}Gd приведены в табл. 1 и 2, соответственно. В расчетах $\delta(E2/M1)$ теоретические значения приведенных матричных элементов $\langle I_f K_f \| \hat{m}(E2) \| I_i K_i \rangle$ брались из работы [11]. Отметим, что в формуле (2) основной вклад в приведенные матричные элементы межполосных М1-переходов дает последний член. Рассчитывая матричные элементы М1-оператора для ядра ¹⁵⁸Gd, мы предполагали, что параметры m'_{1v} одинаковы для всех трех 1⁺-состояний.

Величина параметра $m'_1 = 1.81\mu_N$ и его знак были определены из условия наилучшего описания экспериментальных данных о $\delta(E2/M1)$.

В расчетах для ядра ¹⁶⁰Gd учитывалось смешивание с одиннадцатью состояниями $K^{\pi} = 1_{\nu}^{+}$ и построенными на них полосами (если последние были известны). Экспериментальные значения отношений $R_{ll_{\nu}}^{\mathfrak{skcn}}$ приведенных вероятностей M1-переходов с оснований 1⁺_v соответствующих полос на основное и нижайшее 2⁺-состояние полосы, построенной на основном состоянии, $R_{11_{\nu}^{+}}^{_{
m > KC\Pi}} = B(\mathrm{Ml}; 1^{+}1_{\nu} \rightarrow 2^{+}0_{1}) / B(\mathrm{Ml}; 1^{+}1_{\nu} \rightarrow 0^{+}0_{1})$ близки к адиабатическому значению $R_{\Pi_{+}^{+}}^{aдиa6}$ (см. табл. 3). Этот экспериментальный факт свидетельствует о том, что головные уровни полос с $K^{\pi} = 1_{\nu}^{+}$ по-лос являются чистыми. Действительно, кориолисовы силы смешивают состояния ротационных полос с $\Delta K = 1$ и одинаковыми значениями полного углового момента I. Во всех полосах положительной четности кроме полос с основаниями $K^{\pi} = l_{\nu}^{+}$ отсутствуют уровни со спином I = 1. Поэтому головные уровни $K^{\pi} = 1^{+}_{\nu}$ полос являют-

УСМАНОВ и др.

				•			
$I_i K_i$	$I_f K_f$	<i>Е</i> _γ , МэВ	$\langle \mathrm{E2} \rangle_{if}, \mathrm{e} \cdot \Phi_{\mathrm{M}}^2$	$\langle M1 \rangle_{if} \mu_N$	δ _{эксп} [9]	δ_{reop}	δ _{адиаб} [16]
202	201	1.1804	-3.226	0.0434	-0.70 (7)	-0.73	-
402	40 ₁	1.1454	-5.953	-0.0571	+1.0 (2)	1.0	-
203	201	1.4379	5.841	0.0447	-1.5 (4)	1.58	-
40 ₃	40 ₁	1.4058	6.539	0.0563	+6 (2) или –0.76 (11)	1.36	-
221	201	1.1076	-16.540	-0.0116	$+80 \le \delta \le -25$	13.17	-
321	201	1.1859	-17.070	-0.010	+30 (+32, -14)	16.88	-
321	40 ₁	1.0040	13.300	0.0091	-23 (+19, -7)	12.24	-
421	40 ₁	1.0970	-14.370	-0.0525	+6.4 (+14, -10) или -0.73 (4)	2.49	-
212	20 ₁	1.8846	1.943	-0.1706	-0.08 (12) или +2.9 (+18, -9)	-0.18	0.78
312	20 ₁	2.0099	4.956	0.1161	+0.45 (20) или +7 (+70, -4)	0.72	-1.55
41 ₂	401	1.8337	-0.195	-0.1742	+0.25 (13) или +1.8 (6)	0.02	0.39
112	221	0.7431	4.390	0.0018	+0.17 (15)	15.11	-
312	221	0.9024	-1.965	-0.0013	+1.5 (7)	11.4	_

Таблица 1. Коэффициенты смеси мультиполей $\delta(E2/M1)$ для ¹⁵⁸Gd. Здесь $\langle E2 \rangle_{if}$ и $\langle M1 \rangle_{if}$ – приведенные матричные элементы E2- и M1-переходов, соответственно, E_{γ} – энергия перехода

Таблица 2. Коэффициенты смеси мультиполей $\delta(E2/M1)$ для 160 Gd. $\langle E2 \rangle_{if}$ и $\langle M1 \rangle_{if}$ – приведенные матричные элементы E2- и M1-переходов, соответственно; E_{γ} – энергия перехода

$I_i K_i$	$I_f K_f$	<i>Е</i> _γ , МэВ	$\langle \text{E2} \rangle_{if}$, e ΦM^2	$\left< \mathrm{M1} \right>_{i\!f} \mu_N$	δ _{эксп} [8]	δ _{эксп} [6]	δ_{reop}	δ _{адиаб} [16]
221	201	0.9134	-18.23	-0.050	-0.45(+4, -5)	$-72(+35,-\infty)$	2.8	_
321	201	0.9822	18.71	0.056	+47 (+18, -10)	+47 (+18, -10)	2.7	_
321	40 ₁	0.8089	14.39	0.049	0.11(3)	-11.7 (+16, -23)	1.98	-
421	401	0.8995	-19.70	-0.110	+21 (+21, -7)	+21 (+21, -7)	1.34	-
521	401	1.0125	16.55	0.089	+15 (+17, -6)	+49 (+34, -14)	1.57	-
52 ₁	60 ₁	0.746	16.88	0.082	+8 (+13, -4)	+0.03(3) или -22(+11, -800)	1.28	-
62 ₁	60 ₁	0.8782	-19.16	-0.175	—	$+30 < \delta < -1.5$	0.80	_
202	201	1.3611	-4.47	0.108	0.00(8)	-0.02(4) или +2.46(+30, -25)	-0.46	_
402	40 ₁	1.3130	-6.48	0.190	+0.28 (+34, -12)	+0.57 (+17, -44)	-0.37	—
111	201	1.4934	7.48	0.010	+1.34 (+16, -6)	$+0.3 < \delta < 24.6$	9.31	9.53
111	22 ₁	0.5801	-6.098	-0.003	+0.28 (+25, -18)	+0.45(+50,-24) или +2 < δ < -11	11.8	-
21 ₁	201	1.5114	-0.776	0.064	_	+0.24 (5) или +5.8 (+24,-13)	-0.15	2.11
311	201	1.5897	-5.316	0.008	—	+0.9(5)	-9.0	-4.15
311	40 ₁	1.4167	5.538	0.007	—	+1.5 (5)	9.68	6.75
203	201	1.5235	5.213	-0.081	_	0.83 (+10, -15) или -3.4 (+8, -11)	-0.82	_
203	321	0.5414	-1.676	-0.001	_	+0.06 (5) или -4.3 (+12,-29)	8.4	_

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8 2020

ν	<i>Е</i> _{1v} , кэВ	R _{эксп}	$B(\mathbf{M}\mathbf{l};0^{+}0_{1}\rightarrow1^{+}1_{\nu})\left(\mu_{N}^{2}\right)$	$m'_{1\nu}(\mu_N)$
1	1568	_	_	0.2
2	2348	0.56 ± 0.07	0.22 ± 0.02	3.92 ± 0.17
3	2670	0.60 ± 0.01	0.19 ± 0.01	3.64 ± 0.10
4	2796	0.63 ± 0.03	0.75 ± 0.05	7.23 ± 0.24
5	2820	1.43 ± 0.21	0.20 ± 0.03	3.74 ± 0.27
6	3170	0.64 ± 0.06	0.42 ± 0.04	5.41 ± 0.25
7	3277	0.59 ± 0.02	0.58 ± 0.06	6.36 ± 0.32
8	3308	0.62 ± 0.03	0.43 ± 0.05	5.48 ± 0.31
9	3331	0.49 ± 0.05	0.22 ± 0.03	3.92 ± 0.26
10	3340	0.63 ± 0.05	0.25 ± 0.03	4.18 ± 0.24
11	3477	0.46 ± 0.04	0.32 ± 0.06	4.72 ± 0.43

Таблица 3. Характеристики 1_v^+ состояний в ¹⁶⁰Gd [15]. Здесь E_{1v} – энергии 1_v^+ -уровней, $R_{_{3KC\Pi}} = B(M1; 1^+1_v \rightarrow 2^+0_1)/B(M1; 1^+1_v \rightarrow 0^+0_1)$

ся чистыми и отношения $R_{\Pi_v^+}^{_{\mathfrak{SKCII}}}$ близки к адиабатическим значениям.

Для переходов из состояний первой полосы с $K^{\pi} = l_1^+$ ядра ¹⁶⁰Gd в работе [6] были определены экспериментальные значения коэффициентов смеси мультиполей δ , что позволило нам фиксировать значение параметра $m'_{l_1} = 0.2\mu_N$. Значения других приведенных в табл. 3 параметров m'_{l_v} определялись по адиабатической формуле

$$B(M1; I1_{\nu}^{+} \to I^{*}0_{1}^{+}) = \frac{3}{4\pi} \left(\frac{\sqrt{6}}{10} C_{I1;1-1}^{I^{*}0} m_{1\nu}^{'}\right)^{2} \mu_{N}^{2}, \quad (4)$$

с использованием экспериментальных данных [15] для вероятностей М1-переходов из состояний $I^{\pi} = 1^{+}_{\nu}$ на уровни основной полосы. Однако формула (4) не позволяет определить однозначно знаки параметров m'_{1v} . Поэтому, как и в случае ядра ¹⁵⁸Gd, мы предположили, что знаки параметров $m'_{1\nu}$ одинаковы. Положительность параметров *m*₁, была определена из условия наилучшего согласия вычисленных значений $\delta_{\text{теор}}$ с экспериментальными данными [6, 8]. Знаки рассчитанных коэффициентов смеси мультиполей δ_{теор} (см. табл. 1 и 2), как правило, совпадают с экспериментальными, но их абсолютные значения во многих случаях меньше экспериментальных. Тем не менее, имея в виду точность определения самих экспериментальных значений $\delta_{3\kappacn}$, согласие наших расчетов с экспериментом можно считать удовлетворительным. Однако следует отметить еще один факт. Для ядра ¹⁶⁰Gd известна [2] экспериментальная вероятность М1-перехода

из 2^+2_1 состояния γ -вибрационной полосы на 2^+0_1 уровень основной полосы: $B(M!; 2^+2_1 \rightarrow 2^+0_1) \leq 1.3 \cdot 10^{-6}$ (в единицах Вайскопфа). Рассчитанная нами вероятность этого перехода получилась равной $B(M!; 2^+2_1 \rightarrow 2^+0_1) = 2.4 \cdot 10^{-3}$ в единицах Вайскопфа, т.е. на три порядка больше экспериментальной. Возможная причина этого расхождения, равно как и заниженных значений $\delta_{\text{теор}}$, наше предположение о совпадении знаков параметров m'_{1y} в формуле (5).

В табл. 1 и 2 приведены также адиабатические значения коэффициентов смеси мультиполей $\delta_{aдиa6}$ для переходов из состояний 1⁺-полос, которые вычислялись по следующей формуле

$$\delta(I1_{\nu}^{+} \to I'0_{1}) = -9.853E_{\gamma}\left(\frac{m_{1\nu}}{m_{1\nu}'}\right)\frac{C_{I1;2-1}^{I'0}}{C_{I1;1-1}^{I'0}},$$
 (5)

где значение параметра m_{1v} взято из работы [11]. Заметим, что значения $\delta_{\text{теор}}$ и $\delta_{\text{адиаб}}$ различаются не очень сильно. Исключение составляет переход $4l_2 \rightarrow 40_1$ в ядре ¹⁵⁸Gd, для которого $\delta_{\text{теор}}$ и $\delta_{\text{адиаб}}$ имеют противоположные знаки и различающиеся на порядок абсолютные значения. Возможно, что причина различий $\delta_{\text{теор}}$ и $\delta_{\text{адиаб}}$ в теоретическом матричном элементе E2-перехода $4l_2 \rightarrow 40_1$ из работы [11]. В пользу этого предположения говорит тот факт, что $\delta_{\text{теор}}$ для перехода $2l_2 \rightarrow 20_1$ в этом же ядре имеет тот же знак, что $\delta_{\text{адиаб}}$, и этот знак, по-видимому, совпадает со знаком $\delta_{\text{эксп}}$. При этом основное различие между $\delta_{\text{теор}}$ для двух

Таблица 4. Приведенные вероятности М1-переходов из состояний полос с $K^{\pi} = 0_2^+, 0_3^+$ и 2_1^+ на основную полосу в ядре ¹⁵⁸Gd

$I_i K_i$	$I_f K_f$	$B(M1), \mu_N$			
		эксп. [1]	теор.		
22 ₁	201	0.00032 (13)	0.0001		
42 ₁	40 ₁	0.00077 (+ 111, -9)	0.0028		
20_{2}	201	0.00079 (11)	0.0019		
402	40 ₁	0.00174 (+ 348, -25)	0.0033		
203	201	0.0029 (7)	0.0020		

обсуждаемых переходов сводится к вышеупомянутому матричному элементу E2-перехода.

В изотопах ^{158, 160}Gd экспериментальные значения $\delta(E2/M1)$ для переходов с состояний γ -полосы ($K^{\pi} = 2_1^+$) значительно больше по абсолютной величине, чем для переходов с состояний 0_2 , 0_3 -полос. Это связано с тем, что значения B(E2)для переходов с γ - полосы всегда больше, чем с 0_2 -, 0_3 -полос, тогда как величины B(M1) для переходов с γ -, 0_2 - и 0_3 -полос сравнимы между собой (см. табл. 1 и 2).

В адиабатическом приближении М1-переходы из состояний 0_i - и γ -полос на уровни основной запрещены. В рамках модели [12] эти переходы появляются благодаря примеси 1⁺-состояний в их волновых функциях. В табл. 4 представлены рассчитанные значения вероятностей М1-переходов для ядра ¹⁵⁸Gd. Согласие с приведенными здесь же экспериментальными данными из работы [1] удовлетворительное.

МАГНИТНЫЕ ДИПОЛЬНЫЕ МОМЕНТЫ

В рамках модели [12] для магнитного момента имеет место следующее выражение

$$\mu_{K}(I) = g_{R}I + \sum_{K_{i}} (g_{K_{i}} - g_{R}) \frac{K_{i}^{2}}{I + 1} |\psi_{K_{i}K}^{I}|^{2} + \frac{\sqrt{3}}{10} \sum_{v} m_{l_{v}}^{'} \psi_{0_{I}K}^{I} \psi_{l_{v}K}^{I} \sqrt{\frac{I}{I + 1}}.$$
(6)

В адиабатическом приближении выражение (6) упрощается: для полос $K^{\pi} = 0^+_{1,2}$

$$\mu_K(I) = g_{\rm R}I,\tag{7}$$

Таблица 5. Магнитные моменты $\mu(I^+0_1)$ состояний основных ротационных полос ядер ^{158, 160} Gd

Ι	¹⁵⁸ Gd,	μ_N	160 Gd, μ_N		
	эксп. [1, 15]	теор.	эксп. [2, 15]	теор.	
2	0.84 (20)	0.84	0.72 (4)	0.72	
4	1.55 (13)	1.66	1.52 (20)	1.44	
6	2.28 (30)	2.50	2.30 (30)	2.16	
8	—	3.33	—	2.88	
10	_	4.16	3.40 (50)	3.60	
12	_	4.99	_	4.31	

для полос $K \neq 0$ (т.е. полос $K^{\pi} = 2_1^+, 1_{\nu}^+$)

$$\mu_{K}(I) = g_{R}I + (g_{K} - g_{R})\frac{K^{2}}{I+1}\left|\psi_{K_{i}K}^{I}\right|^{2}.$$
 (8)

Используя экспериментальное значение магнитного момента для состояния I = 2 основной полосы, мы определили величину $g_{\rm R}$ -фактора, который оказался равным $g_{\rm R} = 0.42$ для ядра ¹⁵⁸Gd и $g_{\rm R} = 0.36$ для ядра ¹⁶⁰Gd [1, 2].

Рассчитанные нами значения магнитных моментов состояний основных ротационных полос ядер ^{158, 160}Gd и соответствующие экспериментальные данные из работ [1, 2, 15] приведены в табл. 5. Согласие теоретических и экспериментальных значений $\mu(I^+0_1)$ хорошее.

ЗАКЛЮЧЕНИЕ

В настоящей работе продолжены начатые в [11] исследования характеристик состояний полос положительной четности спектров ядер ^{158, 160}Gd в рамках феноменологической модели [12], учитывающей кориолисово смешивание состояний низколежащих ротационных полос. Рассчитаны коэффициенты смеси мультиполей δ (E2/M1), приведенные вероятности M1-переходов и магнитные моменты μ (*I*).

Теоретические значения $\delta(E2/M1)$ для переходов с уровней полос $K^{\pi} = 0^+_{2,3}, 2^+_1, 1^+_{\nu}$ на состояния основной полосы, значения B(M1) и магнитных моментов состояний основных полос $\mu(I^+0_1)$ в целом удовлетворительно согласуются с имеющимися экспериментальными данными.

Эффект смешивания низколежащих полос существенно влияет на магнитные характеристики АНАЛИЗ МАГНИТНЫХ ХАРАКТЕРИСТИК СОСТОЯНИЙ ^{158, 160}Gd

С другой стороны, результаты расчетов показали, что модель [12] требует улучшения. В частности, необходимо усовершенствовать процедуру

возбужденных состояний даже при низких спи-

нах. Так, не учитывая смешивание с полосами

 $K^{\pi} = 1^{+}_{,,}$ нельзя объяснить магнитные дипольные

определения параметров $m'_{1,v}$ и научиться определять их знаки.

Работа выполнена при финансовой поддержке государственной научно-технической программы фундаментальных исследований Республики Узбекистан (проект ОТ-Ф2-75).

СПИСОК ЛИТЕРАТУРЫ

- 1. Nica N. // Nucl. Data Sheets. 2017. V. 141. P. 1.
- 2. Reich C.W. // Nucl. Data Sheets. 2005. V. 105. P. 557.
- 3. Соловьев В.Г., Сушков А.В., Ширикова Н.Ю. // ЭЧАЯ. 1996. Т. 27. № 6. С. 1643; Soloviev V.G., Sushkov A.V., Shirikova N.Yu. // Phys. Part. Nucl. 1996. V. 27. № 6. P. 667.
- 4. Berg U.E.P., Blasing C., Drexler J. et al. // Phys. Lett. 1984. V. 149. P. 59.
- 5. Pitz H.H., Berg U.E.P., Heil R.D. et al. // Nucl. Phys. 1989. V. A 492. P. 411.
- 6. Говор Л.И., Демидов А.М., Куркин В.А., Михайлов И.В. // **A**Φ. 2009. T. 72. № 11. C. 1859; Govor L.I., Demidov A.M.,

Kurkin V.A., Mikhailov I.V. // Phys. Atom. Nucl. 2009. V. 72. № 11. P. 1799.

- 7. Lesher S.R., Casarella C., Aprahamian A. et al. // Phys. Rev. C. 2015. V. 91. Art. № 054317.
- 8. Lesher S.R., Casarella C., Aprahamian A. et al. // Phys. Rev. C. 2017. V. 95. Art. № 064309.
- 9. Говор Л.И., Демидов А.М., Михайлов И.В. // ЯФ. 2001. T. 64. № 7. C. 1329; Govor L.I., Demidov A.M., Mikhailov I.V. // Phys. Atom. Nucl. 2001. V. 64. № 7. P. 1254.
- 10. Бегжанов Р.Б., Беленький В.М., Залюбовский И.И. Справочник по ядерной физике. Ташкент: Фан, 1989
- 11. Усманов П.Н., Вдовин А.И., Юсупов Э.К., Салихбаев У.С. // Письма в ЭЧАЯ. 2019. Т. 19. № 6. C. 509; Usmanov P.N., Vdovin A.I., Yusupov E.K., Salikhbaev U.S. // Phys. Part. Nucl. Lett. 2019. V. 19. № 6. P. 706.
- 12. Усманов П.Н., Михайлов И.Н. // ЭЧАЯ. 1997. Т. 28. № 4. C. 887; Usmanov P.N., Mikhailov I.N. // Phys. Part. Nucl. 1997. V. 28. № 4. P. 348.
- 13. Михайлов И.Н., Усманов П.Н., Охунов А.А. и др. // Изв. РАН. Сер. физ. 1993. Т. 57. № 1. С. 17.
- 14. Усманов П.Н., Охунов А.А., Салихбаев У.С., Вдовин А.И. // Письма в ЭЧАЯ. 2010. Т. 7. № 3. С. 306; Usmanov P.N., Okhunov A.A., Salikhbaev U.S., Vdovin A.I. // Phys. Part. Nucl. Lett. 2010. V. 7. № 3. P. 185.
- 15. Friedrichs H., Hager D., von Brentano P. et al. // Nucl. Phys. A. 1994. V. 567. P. 266.
- 16. Alaga G. // Nucl. Phys. 1957. V. 4. P. 625.