УДК 539.17

МАГНИТНЫЕ И ТЕПЛОВЫЕ ЭФФЕКТЫ ПРИ РАССЕЯНИИ НЕЙТРИНО В ГОРЯЧЕМ И ПЛОТНОМ ЯДЕРНОМ ВЕЩЕСТВЕ

© 2020 г. В. Н. Кондратьев^{1, 2, *}, А. А. Джиоев¹, А. И. Вдовин¹, С. Кэрубини³, М. Балдо³

¹ Международная межправительственная организация Объединенный институт ядерных исследований, лаборатория теоретической физики имени Н.Н. Боголюбова, Дубна, Россия

²Государственное бюджетное образовательное учреждение высшего образования Московской области "Университет "Дубна", Дубна, Россия

³Университет Катании, Факультет физики и астрономии "Этторе Майорана", Катания, Италия

**E-mail: vkondrat@theor.jinr.ru* Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

Рассмотрено нейтрино-ядерное рассеяние в горячем и плотном веществе, соответствующем взрыву сверхновых, слиянию нейтронных звезд, прото-нейтронным звездам. При ненулевой температуре нейтрино претерпевает экзо- и эндоэнергетическое рассеяние на нуклонах и ядрах, обусловленное гамов-теллеровской компонентой нейтрального тока. Показано, что средняя переданная при рассеянии энергия меняет свой знак при энергии нейтрино, превышающей температуру вещества примерно в четыре раза.

DOI: 10.31857/S0367676520080189

введение

Взаимодействие нейтрино с веществом представляет собой важную проблему в различных астрофизических явлениях, например, сверхновые, слияние нейтронных звезд, образование коры нейтронных звезд и т.д. В частности, давления, обусловленные потоком нейтрино и/или магнитным полем, рассматриваются как дополнительный ключевой вклад в формирование ударной волны сверхновых и возможный механизм передачи энергии всему изначально связанному веществу звезды-прародителя.

В сценарии взрыва за счет нейтринного разогрева, остановившаяся ударная волна может быть оживлена электронными нейтрино и антинейтрино, излучаемыми охлаждающейся прото-нейтронной звездой [1, 2]. Кроме того, способствовать возникновению взрыва могут многомерные эффекты, такие как конвекция и неустойчивость плазмы, как это следует из современного моделирования взрыва сверхновых [3-6]. Действительно, принудительная конвекция, вызывающая магниторотационную неустойчивость (МРН) и/или динамо процессы, может привести к огромному усилению магнитной индукции с чрезвычайно большой напряженностью поля до десятков тератесла (ТТл). Соответствующее магнитное давление накачивает энергию в вещество звезды и может рассматриваться как преобладающий механизм формирования ударной волны для сценария быстро

протекающего взрыва. Учитывая, что нейтринное и/или магнитное давление вносит значительный вклад в механизм взрыва сверхновых, необходим анализ транспорта нейтрино в веществе сверхновых с учетом магнитных эффектов.

Хакстон впервые указал [7], что реакции нейтрино на ядрах, вызванные нейтральным и заряженным токами, могут играть важную роль при взрыве сверхновых. Учет этих реакций при компьютерном моделировании коллапса коры звезды [7, 8] показывает, что в процессе термализации нейтрино неупругое рассеяние нейтрино на ядрах столь же существенно, как и рассеяние нейтрино электронами. В данной работе проанализировано влияние барионной компоненты на транспорт нейтрино в горячем и плотном веществе. Показано, что в намагниченной среде возникают дополнительные неупругие каналы нейтрино-ядерных реакций. Такие каналы, индуцированные магнитным полем, дают эффект, аналогичный рассеянию на нагретых ядрах.

ТРАНСПОРТ НЕЙТРИНО В ВЕЩЕСТВЕ ЗВЕЗД

Для количественного описания передачи энергии при рассеянии нейтрино на ядерной компоненте горячего вещества сверхновой рассмотрим энергетически взвешенные интегральные значения силовой функции $\Sigma_{GT_0}(E,T)$, которая дает среднюю силу переходов с энергией E между состояниями нагретой ядерной системы

$$S_n = \frac{G_F^2}{\pi} g_A^2 \int_{-\infty}^{\varepsilon_v} (-E)^n (\varepsilon_v - E)^2 \Sigma_{GT_0}(E, T) dE, \qquad (1)$$

где $G_{\rm F}$ — константа слабого взаимодействия Ферми, $g_A = -1.26$ — аксиально-векторная константа связи, а ε_v — энергия налетающего нейтрино. После акта рассеяния энергия нейтрино меняется на величину $\Delta \varepsilon_v = -E$. Величина S_0 соответствует сечению реакции неупругого рассеяния, т.е. $\sigma = S_0$, а отношение S_1/S_0 определяет среднюю энергию, переданную нейтрино от нагретой ядерной системы, $\langle \Delta \varepsilon_v \rangle = S_1/S_0$.

Силовая функция может содержать вклады переходов различной мультипольности. Однако для нейтрино с энергией $\varepsilon_v \leq 20$ МэВ основной вклад в неупругое рассеяние дают разрешенные 1⁺ переходы [10]. Более того, в указанном диапазоне энергий можно пренебречь переданным импульсом. В этом случае оператор 1⁺ переходов принимает форму зарядово-нейтрального оператора Гамова–Теллера (ГТ) $GT_0 = \sum_k \vec{\sigma}^{(k)} t_0^{(k)}$ [13]. Здесь $\vec{\sigma}^{(k)}$ – оператор спина *k*-го нуклона, а $t_0^{(k)}$ – оператор нулевой проекции изоспина в сферических координатах. После усреднения по всем возможным возбужденным состояниям ядерной системы, зависящую от температуры силовую функцию ГТ₀-переходов можно записать в следующем виде

$$\Sigma_{GT_0}(E,T) = \frac{1}{Z(T)} \times \sum_{i,f} \exp\left(-\frac{E_i}{T}\right) |\langle f | GT_0 | i \rangle|^2 \,\delta(E - E_f + E_i),$$
⁽²⁾

где Z(T) – статистическая сумма нуклона или ядра, а суммирование производится по всем возможным начальным и конечным состояниям системы. Температура Т в формуле (2) и далее в статье везде выражается в энергетических единицах (10¹⁰ К = 0.86 МэВ). Определение силовой функции $\Sigma_{GT_0}(E,T)$ подразумевает, что при $T \neq 0$ энергия перехода Е может быть как положительной, так и отрицательной величиной, что соответствует эндо- и экзоэнергетическому рассеянию нейтрино. В первом случае нейтрино теряет энергию при рассеянии ($\Delta \varepsilon_v < 0$), а во втором — приобретает ($\Delta \varepsilon_v > 0$). Силовая функция удовлетворяет принципу детального баланса $\Sigma_{GT_0}(-E,T) = \exp(-E/T)\Sigma_{GT_0}(E,T)$. Хотя $\Sigma_{GT_0}(-E,T) \leq \Sigma_{GT_0}(E,T)$, росту вклада переходов с энергией *E* < 0 в процесс рассеяния способствует больший по сравнению с E > 0 переходами объем фазового пространства (что представлено множителем ($\varepsilon_v - E$)² в формуле (1)) для нейтрино в конечном состоянии.

Рассеяние нейтрино в намагниченном невырожденном нуклонном газе

Рассеяние нейтрино в нуклонном газе, $n + N \rightarrow$ \rightarrow v' + N', представляет собой простейшую актуальную проблему. Этот пример дает прозрачные и четкие результаты для сечений и скоростей передачи энергии, а также фундаментальные представления о динамике нейтрино в горячем и плотном ядерном веществе при сильных магнитных полях, вносящих заметный вклад в энергию взрыва сверхновых и достигающих десятков ТТл, см. [4-6] и ссылки к ним. Вещество сверхновых вблизи и вне нейтрино-сферы, соответствующей сильной конвекции, при плотностях ~10¹² г · см⁻³ и температуре $T \sim 10$ МэВ можно рассматривать как невырожденный нуклонный газ из-за сильной нейтронизации. Как следует из решения уравнения Шрёдингера для уровней энергии свободной частицы в однородном магнитном поле, сильное магнитное поле Н приводит к расщеплению на величину $\Delta = |g_{\alpha}| \mu_N H = |g_{\alpha}| \omega_L$ энергетических уровней нуклонов со спиновыми магнитными моментами, направленными вдоль (спин вверх) и противоположно (спин вниз) относительно направления поля. Здесь μ_N — ядерный магнетон, а g_α — g-фактор нуклонов. Для рассеяния нейтрино на нуклонах, вызванного гамов-теллеровской компонентой нейтрального тока при таких условиях, из формул (1) и (2) получим следующее выражение для энергетически взвешенных интегральных значений силовой функции:

где

$$\Phi_n = \frac{1}{2 \operatorname{ch}(\delta_T)} \times$$

$$\times \left[e^{-\delta_T} (1 + \delta_{\varepsilon})^2 + (-1)^n e^{\delta_T} (1 - \delta_{\varepsilon})^2 \theta (1 - \delta_{\varepsilon}) \right],$$
(4)

(3)

 $S_n(\varepsilon_v, T) \approx \sigma_{GT_0} \Delta^n \Phi_n,$

а σ_{GT_0} — сечение рассеяния нейтрино свободными нуклонами за счет гамов-теллеровской компоненты нейтрального тока (см., например, работу [7] и ссылки в ней). В выражении (4) введены следующие обозначения: $\delta_T = \Delta/2T$, $\delta_{\varepsilon} = \Delta/\varepsilon_v$, $\theta(x)$ ступенчатая функция Хевисайда. Таким образом, для намагниченного нуклонного газа средняя переданная энергия при неупругом рассеянии нейтрино равна $\langle \Delta \varepsilon_v \rangle = \Delta \Phi_1 / \Phi_0$. Величина $\langle \Delta \varepsilon_v \rangle$ зависит как от параметров T, Δ нуклонного газа, так и от энергии ε_v налетающего нейтрино.

На рис. 1 для модели намагниченного нуклонного газа показана средняя переданная энергия $\langle \Delta \varepsilon_{\nu} \rangle$ в единицах Δ как функция от δ_{τ} и δ_{ε} . Как видно из рисунка, средняя переданная энергия, то есть отношение S_1/S_0 , изменяется от положительного значения для горячего нуклонного газа к отрицательному для холодной системы. Такое изменение соответствует переходу от экзоэнергетического ($\langle \Delta \varepsilon_{\nu} \rangle > 0$) к эндоэнергетическому ($\langle \Delta \varepsilon_{\nu} \rangle < 0$) режиму рассеяния нейтрино. Переход происходит при условии $S_1 = 0$, т.е. при температуре T = $= 0.5\Delta/[\ln(1+\delta_{\epsilon}) - \ln(1-\delta_{\epsilon})\theta(1-\delta_{\epsilon})]$. Очевидно, что физической причиной такого перехода является уменьшение теплового заселения верхнего из расщепленных энергетических уровней нуклона, что ведет к подавлению вклада ГТ₀-переходов с этого уровня на нижележащий уровень. Линия перехода из одного режима в другой определяется соотношением $\delta_{\varepsilon} = (e^{\delta_T} - 1)/(1 + e^{\delta_T})$, и на рис.1 она показана сплошной линией. Там же пунктирной линией показана линия перехода при $\delta_{\tau}, \delta_{\epsilon} \ll 1$. В этом случае температура перехода определяется соотношением $T = \varepsilon_v/4$. Не трудно показать, что коэффициент 1/4 в этом соотношении возникает из-за степени 2 в множителе $(\varepsilon_v - E)^2$ в формуле (1). Напомним, что множитель $(\varepsilon_v - E)^2$ связан с объ-емом фазового пространства для рассеянного нейтрино.

Рассеяние нейтрино на нагретом ядре ⁵⁶Fe

В качестве следующего примера рассмотрим рассеяние нейтрино на нагретых ядрах, а именно на нуклиде ⁵⁶Fe — одном из наиболее распространенных ядер в веществе мантии сверхновых. Для расчета величин S_n мы будем использовать так называемый метод теплового квазичастичного приближения случайной фазы (ТКПСФ) [9–11], который использует статистическую формулировку ядерной задачи многих тел при ненулевой температуре.

В методе ТКПСФ зависящая от температуры ГТ₀-силовая функция нагретого ядра $\Sigma_{GT_0}(E,T)$ выражается через собственные функции так называемого теплового гамильтониана $\mathcal{H} = H - \tilde{H}$. Здесь H – гамильтониан ядра, а \tilde{H} – его тильдапартнер, действующий в гильбертовом пространстве изоморфном таковому исходного гамильтониана H [12]. Тепловой гамильтониан диагонализуется в терминах тепловых мультипольных фононов

$$\mathcal{H} = \sum_{J,k} \omega_{Jk}(T) \left(Q_{Jk}^+ Q_{Jk} - \tilde{Q}_{Jk}^+ \tilde{Q}_{Jk} \right).$$
(5)

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8 2020

Рис. 1. Средняя переданная энергия $\langle \Delta \varepsilon_{v} \rangle$ в единицах Δ при неупругом рассеянии нейтрино на намагниченном нуклонном газе. Безразмерная величина $\langle \Delta \varepsilon_{v} \rangle / \Delta$ показана как функция от величин $\delta_T = \Delta/2T$ и $\delta_{\varepsilon} = \Delta/\varepsilon_{v}$. Темная область в правом нижнем углу соответствует отрицательным значениям $\langle \Delta \varepsilon_{v} \rangle / \Delta$ с минимумом равным –1, светлая область в левом верхнем углу соответствует положительной средней переданной энергии. Сплошная линия обозначает границу раздела между эндотермическим и экзотермическим режимами рассеяния, а штриховая линия соответствует соотношению $\varepsilon_{v} = 4T$ между энергией нейтрино и температурой.

Вакуум тепловых фононов, $|0(T)\rangle$, называется тепловым вакуумом, и он описывает равновесное состояние нагретого ядра. Взаимодействие с нейтрино приводит к возбуждению одно-фононных состояний над тепловым вакуумом. ГТ₀-переходы, вызванные рассеянием нейтрино, ведут к возбуждению тепловых фононов с моментом и четностью $J^{\pi} = 1^{+}$. В этом случае силовую функцию можно выразить через матричные элементы оператора $GT_0 = \sum_k \vec{\sigma}^{(k)} t_0^{(k)}$ между тепловым вакуумом и одно-фононными состояниями с $J^{\pi} = 1^{+}$:

$$\Sigma_{GT_0}(E,T) =$$

$$= \sum_k \{\xi_k \delta(\omega_k - E) + \tilde{\xi}_k \delta(\omega_k - E)\},$$
(6)

где ξ_k , ξ_k обозначают вероятности ГТ₀-переходов с теплового вакуума на одно-фононные состояния

$$\begin{aligned} \boldsymbol{\xi}_{k} &= \left| \left\langle \boldsymbol{Q}_{k} \left\| \boldsymbol{G} \boldsymbol{T}_{0} \right\| \boldsymbol{0}(T) \right\rangle \right|^{2}, \\ \boldsymbol{\tilde{\xi}}_{k} &= \left| \left\langle \tilde{\boldsymbol{Q}}_{k} \left\| \boldsymbol{G} \boldsymbol{T}_{0} \right\| \boldsymbol{0}(T) \right\rangle \right|^{2}. \end{aligned} \tag{7}$$

Переходы с теплового вакуума на фононы с положительной энергией описывают эндоэнер-

Рис. 2. Силовая функция зарядово-нейтральных Гамов–Теллеровских переходов в ⁵⁶Fe. Силовая функция показана для нескольких значений температуры: T = 0 (*a*), T = 1 (*б*) и T = 5 МэВ (*в*).

гетический процесс, в котором ядро получает энергию от налетающей частицы ($\Delta \varepsilon_v < 0$), а переходы на тильда-фононные состояния с отрицательной энергией соответствуют экзоэнергетическому процессу, когда энергию получает налетающая частица ($\Delta \varepsilon_v > 0$). Вероятности экзо- и эндоэнергетических процессов связаны принципом детального баланса $\tilde{\xi}_k = e^{-\omega_k/T} \xi_k$.

Для расчета силовой функции ГТ-переходов в нагретом ядре ⁵⁶Fe и анализа температурных эффектов, влияющих на рассеяние нейтрино мы объединили ТКПСФ с методом энергетического функционала для сил Скирма (см. работу [11] и ссылки в ней). В данной работе мы использовали силы Скирма SkM*. На рис. 2 показано, как меняется силовая функция ГТ₀-переходов с ростом температуры ядра. Для основного состояния, т.е. при T = 0, практически вся сила зарядово-нейтральных ГТ-переходов концентрируется в резонансном состоянии с энергией $E \approx 10 \text{ M} \Rightarrow B$, и лишь небольшая часть силы находится при низкой энергии $E \approx 4$ МэВ. Согласно нашим расчетам, резонансное состояние является суперпозицией протонных и нейтронных квазичастичных конфигураций, возбуждающихся при одночастичном переходе с переворотом спина
 $1 f_{7/2} \rightarrow 1 f_{5/2}.$ Низколежащее состояние формируется за счет нейтронного перехода $2p_{3/2} \rightarrow 2p_{1/2}$. Так как оператор ГТ перехода не действует на угловую часть одночастичной волновой функции, то 1⁺ переход $2p_{3/2} \rightarrow 1f_{5/2}$ не дает вклад в распределение ГТ₀-силы.

Энергетическая щель ≈4 МэВ между основным состоянием и нижайшим 1⁺ состоянием приводит к порогу реакции неупругого рассеяния нейтрино на ⁵⁶Fe (см. рис. 3*a*). Отметим, что согласно экспериментальным данным нижайшее 1⁺ возбужденное состояние в ⁵⁶Fe находится при энергии 3.12 МэВ [14]. При ненулевой температуре тепловое размытие нейтронной и протонной поверхностей Ферми в ядре приводит к разблокировке ГТ₀-переходов, запрещенных в основном состоянии принципом Паули. В результате происходит усиление низкоэнергетической области силовой функции. Кроме того, согласно принципу детального баланса происходит экспоненциальный рост той части силовой функции, которая находится в области отрицательных энергий, и, следовательно, дает вклад в экзоэнергетические процессы. Данный рост вызван тепловым заселением возбужденных состояний ядра и их последующим распадом. В частности, пик ГТ₀-силы при энергии $E \approx -10$ МэВ соответствует девозбуждению ГТ₀-резонанса. Повышение температуры также ведет к разблокировке низкоэнергетических запрещенных переходов. Однако, как показано в [10] их вклад в процесс неупругого рассеяния нейтрино с энергией є, ≤ 20 МэВ несущественен.

На рис. За показано, как меняется сечение $\sigma = S_0$ неупругого рассеяния нейтрино с ростом температуры ядра ⁵⁶Fe. Как видно, при T = 0 сечение резко возрастает при достижении нейтрино порога неупругого рассеяния $\varepsilon_v \approx 4$ МэВ. При $T \neq 0$ из-за разблокировки переходов с низкой и отрицательной энергией порог реакции исчезает, и низкоэнергетическая часть сечения возрастает более чем на три порядка при увеличении температуры от 1 до 5 МэВ. Помимо этого, как видно из рис. За, тепловые эффекты влияют и на высокоэнергетическую часть сечения.

Для анализа относительной роли экзо- и эндоэнергетических процессов в тепловом росте сечения рассеяния рассмотрим отношение

$$\alpha(\varepsilon_{v},T) = \frac{\sigma_{exo}(\varepsilon_{v},T)}{\sigma(\varepsilon_{v},T)},$$
(8)

где $\sigma_{exo}(\varepsilon_{v},T)$ учитывает только ту часть силовой функции, которая находится при отрицательных энергиях. На рис. 36 отношение $\alpha(\varepsilon_{y}, T)$ показано как функция температуры при разных значениях энергии налетающего нейтрино ε_{v} . Как следует из рисунка, роль экзоэнергетических процессов увеличивается с ростом температуры и уменьшается с ростом энергии нейтрино. Для нейтрино с энергией $\varepsilon_v < 10$ МэВ, вклад $\sigma_{exo}(\varepsilon_v, T)$ начинает превалировать в сечении уже при достаточно низких температурах. Для нейтрино с $\varepsilon_{y} > 10 \text{ МэВ основ-}$ ной вклад в процесс рассеяния при малых температурах дает возбуждение ГТ₀-резонанс, и поэтому вклад $\sigma_{exo}(\varepsilon_v, T)$ в полное сечение мал. Однако по мере роста температуры, в силу принципа детального баланса экспоненциально увеличивается вклад переходов с отрицательной энергией. Этому также способствует увеличившийся объем фазового пространства для нейтрино рассеявшихся экзоэнергетически. В результате, при высоких температурах экзоэнергетическая компонента сечения оказывается сопоставимой с эндоэнергетической или превышает ее.

Рассмотрим теперь влияние тепловых эффектов на обмен энергией между нейтрино и нагретым ядром ⁵⁶Fe в терминах средней переданной энергии $\langle \Delta \varepsilon_v \rangle = S_1/S_0$. На рис. 4 величина $\langle \Delta \varepsilon_v \rangle$ показана как функция энергии налетающего нейтрино ε_v для различных значений температуры *T*. Для средней переданной энергии при неупругом рассеянии на ⁵⁶Fe мы наблюдаем тот же самый эффект, что был обнаружен при рассмотрении рассеяния нейтрино на намагниченном нуклонном газе. А именно, для данной энергии нейтрино к положительному при росте температуры. Из предыдущего обсуждения ясно, что изменение

Рис. 3. *а* – Сечение неупругого рассеяния нейтрино на ⁵⁶Fe как функция энергии нейтрино ε_v при температурах *T* = 0 (сплошная линия с квадратами), *T* = = 1.0 МэВ (сплошная линия), *T* = 2.0 МэВ (штриховая линия), *T* = 3.0 МэВ (точечная линия), *T* = = 4.0 МэВ (штриховая линия с одной точкой) и *T* = = 5.0 МэВ (штриховая линия с двумя точками). *б* – Относительный вклад α экзотермически рассеянных нейтрино как функция температуры *T* при энергии налетающего нейтрино $\varepsilon_v = 5$ МэВ (сплошная линия), $\varepsilon_v = 10$ МэВ (штриховая линия), $\varepsilon_v = 15$ МэВ (штриховая линия с одной точкой), $\varepsilon_v = 20$ МэВ (штриховая линия с двумя точками).

знака средней переданной энергии, то есть переход от эндоэнергетического рассеяния ($\langle \Delta \varepsilon_v \rangle < 0$) к эк-зоэнергетическому ($\langle \Delta \varepsilon_v \rangle > 0$), происходит вслед-

Рис. 4. Средняя энергия $\langle \Delta \varepsilon_v \rangle$ переданная нейтрино при неупругом рассеянии на нагретом ядре ⁵⁶Fe как функция энергии налетающего нейтрино ε_v . Средняя переданная энергия $\langle \Delta \varepsilon_v \rangle$ показана при температурах T = 1.0 МэВ (сплошная линия), T = 2.0 МэВ (штриховая линия), T = 3.0 МэВ (точечная линия), T == 4.0 МэВ (штриховая линия с одной точкой) и T == 5.0 МэВ (штриховая линия с двумя точками).

ствие усиления роли ГТ₀-переходов связанных с разрядкой возбужденных состояний ядра. При достаточно больших температурах происходит заселение ГТ₀-резонанса, и при малой энергии нейтрино его девозбуждение дает основной вклад в увеличение энергии нейтрино. В результате оказывается, что $\langle \Delta \varepsilon_v \rangle \approx 9$ МэВ. Кроме того, чем выше температура, тем выше критическая энергия нейтрино ε_v , при которой происходит переход от экзоэнергетического к эндоэнергетическому режиму рассеяния. Для рассматриваемых температур T = 1, 2, 3, 4, 5 МэВ данный переход происходит при энергиях нейтрино $\varepsilon_v = 4.6, 11.6, 14.4, 18.1$ и 20.5 МэВ соответственно.

На рис. 5, для намагниченного нуклонного газа показана зависимость между температурой *T*, при которой средняя переданная энергия обращается в ноль, и энергией налетающего нейтрино ε_{v} . Как видно из рисунка, экзотермический режим осуществляется при температуре $T > \varepsilon_{v}/4$ или при энергии нейтрино, не превосходящей порог Δ эндоэнергетической реакции. Однако в последнем случае сечение рассеяния мало. Эндоэнергетический режим доминирует при больших энергиях нейтрино $\varepsilon_{v} > 4T$, превосходящих порог Δ . По-

Рис. 5. Зависимость между энергией ε_v нейтрино и температурой *T*, при которой средняя переданная энергия $\langle \Delta \varepsilon_v \rangle$ обращается в ноль. Для нуклонного газа эта зависимость показана для различных значений расщепления Δ энергетических уровней: $\Delta = 1$ МэВ (точечная линия), $\Delta = 5$ МэВ (штриховая линия), $\Delta = 10$ МэВ (штриховая линия с одной точкой) и $\Delta = 15$ МэВ (штриховая линия с одной точком). Сплошная линия соответствует соотношению $\varepsilon_v = 4T$. Сплошные кружки соответствуют рассеянию на ⁵⁶Fe.

лученные ранее энергии нейтрино $\varepsilon_v = 4.6$, 11.6, 14.4, 18.1 и 20.5 МэВ, при которых происходит смена режима рассеяния нейтрино на ⁵⁶Fe для температур T = 1, 2, 3, 4, 5 МэВ, показаны на рис. 5 сплошными кружками. Как видно из рисунка, при энергии нейтрино превышающей энергию Γ_0 -резонанса, сплошные кружки с хорошей точностью попадают на кривую соответствующую намагниченному нуклонному газу с расщеплением между уровнями $\Delta = 10$ МэВ. Данное обстоятельство не является удивительным, так как при энергии нейтрино больше чем энергия Γ_0 -резонанса, процесс рассеяния на ⁵⁶Fe в основном определяется возбуждением и девозбуждением Γ_0 -резонанса, энергия которого $E \approx 10$ МэВ.

ЗАКЛЮЧЕНИЕ

Исследованы особенности транспорта нейтрино в горячем и плотном звездном веществе. На основе анализа величины средней переданной энергии выявлены дополнительные важные механизмы термализации нейтрино, возникающие в намагниченном горячем нуклонном газе. Средняя переданная энергия почти линейно зависит от энергии нейтрино и изменяется от положительного (экзоэнергетический режим рассеяния) к отрицательному (эндоэнергетический режим рассеяния) значению при энергии нейтрино примерно в четыре раза превосходящей температуру. Эта особенность в динамических свойствах обусловлена принципом детального баланса и разностью объемов фазового пространства для нейтрино в конечном канале при рассеянии на нуклонах со спином вверх и вниз. На примере ⁵⁶Fe показано, что аналогичные особенности проявляются при рассеянии нейтрино на горячих атомных ядрах. Заметим, что при рассмотрении реакций нейтрино на ядрах, вызванных заряженным током, необходимо учитывать изменение энергии лептонной компоненты и модифицированного ядра, аналогично процессам гамма-захвата [15].

СПИСОК ЛИТЕРАТУРЫ

- 1. *Colgate S.A., White R.H.* // Astrophys. J. 1966. V. 143. P. 626.
- Bethe H.A., Wilson H.A. // Astrophys. J. 1985. V. 295. P. 14.
- Janka H.-T., Melson T., Summa T. // Annu. Rev. Nucl. Part. Sci. 2016. V. 66. P. 341.

- 4. Kondratyev V.N. // Eur. Phys. J. A. 2014. V. 50. P. 7.
- 5. Kondratyev V.N. // Phys. Lett. B. 2018. V. 782. P. 167.
- 6. Кондратьев В.Н., Коровина Ю.В. // Письма в ЖЭТФ. 2015. Т. 102. С. 155; Kondratyev V.N., Korovina Yu.V. // JETP Lett. 2015. V. 102. Р. 131.
- 7. Haxton W.C. // Phys. Rev. Lett. 1988. V. 60. P. 1999.
- Bruenn S.W., Haxton W.C. // Astrophys. J. 1991. V. 376. P. 678.
- Dzhioev A.A., Vdovin A.I. // Int. J. Mod. Phys. E. 2009. V. 18. P. 1535.
- 10. Dzhioev A.A., Vdovin A.I., Wambach J., Ponomarev V.Yu. // Phys. Rev. C. 2014. V. 89. Art. № 035805.
- Dzhioev A.A., Vdovin A.I., Martinez-Pinedo G. et al. // Phys. Rev. C. 2016. V. 94. Art. № 015805.
- Takahashi Y., Umezawa H. // Int. J. Mod. Phys. B. 1996. V. 10. P. 1755.
- Juodagalvis A., Langanke K., Martínez-Pinedo G. et al. // Nucl. Phys. A. 2005. V. 747. P. 87.
- Junde H., Su H., Dong Y. // Nucl. Data Sheets. 2011. V. 112. P. 1513.
- 15. *Kondratyev V.N.* // Phys. Rev. C. 2004. V. 69. Art. Nº 038801.