УДК 539.17:539.142:539.143

ПОЛНЫЕ СЕЧЕНИЯ РЕАКЦИЙ ЯДЕР ^{6,8}He, ⁹Li НА МИШЕНЯХ ²⁸Si, ⁵⁹Co, ¹⁸¹Ta

© 2020 г. Ю. Г. Соболев^{1, *}, Ю. Э. Пенионжкевич^{1, 2}, В. В. Самарин^{1, 3}, М. А. Науменко¹, С. С. Стукалов¹, И. Сивачек^{1, 4}, С. А. Крупко¹, А. Куглер⁴, Ю. Лоуко⁵

¹Международная межправительственная организация Объединенный институт ядерных исследований, Дубна, Россия

²Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

³Государственное бюджетное образовательное учреждение высшего образования Московской области

"Университет "Дубна", Дубна, Россия

⁴Институт ядерной физики, Чешская академия наук, Ржеж, Чехия

⁵Циклотронная лаборатория университета Ювяскюля, Ювяскюля, Финляндия

**E-mail: sobolev@jinr.ru* Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

Проведены эксперименты с реакциями ^{6, 8}He, ⁹Li + ²⁸Si, ⁵⁹Co, ¹⁸¹Ta в диапазоне энергий пучков ^{6, 8}He, ⁹Li от 6 до 36 A · MэB. Мгновенные нейтроны и γ -излучение регистрировались 12-детекторным γ -спектрометром. Значения полных сечений реакций и распределения по множественности испускания γ -квантов и нейтронов рассчитаны с учетом распределений по кратности сработавших детекторов.

DOI: 10.31857/S0367676520080293

введение

Исследование структуры легких экзотических ядер, лежащих на границе области стабильности, и особенностей реакций с их участием является важной задачей современной ядерной физики [1-6]. Необычность легких нейтронно-избыточных ядер с гало проявляется в неожиданно больших сечениях реакций [1] и особенностях их энергетической зависимости [4-9]. Использование в качестве мишеней кремниевых и пластиковых сцинтилляционных детекторов (с ядрами ²⁸Si и ¹²С соответственно) в большинстве ранее проведенных экспериментов (см., например, [5, 9]) не позволяло получить результаты для более тяжелых мишеней. В данной работе в качестве мишеней для пучков ^{6, 8}Не, ⁹Li наряду с ядрами ²⁸Si были использованы и более тяжелые ядра ⁵⁹Со. ¹⁸¹Та.

МЕТОДЫ ИЗМЕРЕНИЯ ПОЛНЫХ СЕЧЕНИЙ РЕАКЦИИ

Полное сечение ядерных реакций σ_R может быть получено путем измерения количества I_0 частиц, влетевших в мишень, и I частиц, вылетевших из мишени без взаимодействия:

$$I = I_0 \exp(-nd\sigma_R), \tag{1}$$

где nd — приведенное число ядер мишени толщиной d, n — концентрация ядер атомов. При $n\sigma_R \ll 1$ можно с достаточной точностью ограничиться первым членом разложения экспоненты в ряд

$$nd\sigma_R \approx (I_0 - I)/I_0, \qquad (2)$$

$$nd\sigma_R \approx I_R/I_0$$
, (3)

где $I_R = I_0 - I$ — число событий реакций. Формула (2) применяется для определения полного сечения реакции в методе аттенюации пучка (от англ. attenuation — ослабление), впервые предложенном и реализованном в работе [10]. В экспериментах с использованием метода аттенюации пучка измеряются величины *I* и I_0 . Формула (3) применяется для определения полного сечения реакции в методе регистрации продуктов реакции, впервые предложенном и реализованном в работе [11]. В экспериментах с использованием этого метода измеряются величины I_R и I_0 . Многообразие вариантов реализации метода определяется способами измерения величины I_R .

В ряде экспериментов [7, 12, 13] число событий реакции *I_R* вычислялось по формуле:

$$I_R = N \varepsilon_{abs}^{-1}, \tag{4}$$

где *N* – число событий регистрации нейтронов и γ -квантов, ε_{abs} — абсолютная эффективность детектора. Формула (4) применяется, в основном, для У-калориметров и спектрометров с малым числом детекторов. Она является приближенной. поскольку в ней не учитывается число испускаемых в конкретном событии ядерной реакции нейтронов и ү-квантов, называемое множественностью М. Характерной особенностью ядерных реакций с тяжелыми ионами в исследуемой области энергий является широкое распределение по множественности испускаемых у-квантов и нейтронов. Процессы неупругого рассеяния сопровождаются эмиссией одного или нескольких У-квантов, в то время как слияние или глубоко-неупругие передачи сопровождаются каскадами у-квантов большой множественности, а также эмиссией нейтронов. Возбужденное составное ядро, образовавшееся в результате слияния ядер, обычно испускает нейтроны, также регистрируемые спектрометром. Нейтроны испускаются и при развале слабосвязанных ядер-снарядов при столкновениях с ядрамимишенями. События реакций сопровождаются испусканием нейтронов и ү-квантов с разной множественностью, и поэтому регистрируются спектрометром с разной эффективностью. В работах [8, 9] описана процедура получения значений полных сечений реакций σ_R из экспериментальных данных, полученных с помощью спектрометра, состоящего из шести сцинтилляционных детекторов. Измерялось распределение по числу N_k (k = 1, ..., 6) сработавших детекторов за вычетом фона. Полное число событий реакции определялось суммой

$$N = \sum_{k=1}^{6} N_k.$$
 (5)

Полное сечение реакции σ_R вычислялось с учетом распределения по множественности M испускания γ -квантов и нейтронов.

В настоящей работе для повышения точности измерений использован спектрометр с телесным углом, близким к 4π , и состоящий из двенадцати сцинтилляционных детекторов. С их помощью измерялось распределение по кратности – числу N_k (k = 1,...,12) сработавших детекторов. Полное сечение реакции σ_R определялось с учетом распределения по множественности M испускания мгновенных γ -квантов и нейтронов, полученного из распределения по кратности.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА И КАЛИБРОВКА СОСТАВНОГО у-СПЕКТРОМЕТРА

Основные элементы экспериментальной установки, подробно описанные в [8, 9], можно объединить в две группы, обозначенные на рис. 1 цифрами 1-8 и 9-10, соответственно. Первую группу составляли тонкие детекторы, обеспечивающие решение задачи транспортировки частиц пучка в мишень, их идентификации и отбора по траекториям. Идентификация частиц пучка проводилась с помощью измерения времени пролета T_{TOF} (time of flight) на времяпролетной базе 9.7 м между пластиковым сцинтилляционным детектором 1 (рис. 1) и вторым активным коллиматором 6, а также потерь энергии ΔE_0 в стартовом Siдетекторе 5. Идентификация и определение траекторий частиц были необходимы для выбора ансамбля І событий соударений частиц с центральной областью мишени без касания с элементами крепления и стенками реакционной камеры. Вторая группа включала в себя 12 сцинтилляционных CsI(Tl) детекторов с фотоэлектронными умножителями (ФЭУ), образующих составной у-спектрометр, перекрывающий телесный угол $\Omega_{det} = 0.9 \cdot 4\pi$ вокруг мишени.

Для калибровки спектрометра использовался эталонный источник ⁶⁰Со *14* (рис. 1*6*), а также триггерный СеВг₃ γ -детектор *15* размером 50 × 50 × × 50 мм³ и β-счетчик на основе фотоумножителя *11*, свето-сборника *12* и пластикового сцинтиллятора ВС400 *13* диаметром 10 мм и толщиной 1 мм. Для измерения источник ⁶⁰Со на пластиковом сцинтилляторе β-детектора устанавливался вместо мишени. ФЭУ β-детектора и СеВг₃ детектор располагались на расстоянии 90 мм от позиции мишени так, чтобы не перекрывать телесный угол спектрометра. Телесный угол, перекрываемый триггерным детектором СеВг₃ $\Omega_{tr} = 0.021\pi$ мал, поэтому его влиянием на эффективность регистрации спектрометра можно было пренебречь.

Ядро 60 Со в результате β^- распада в 99.88% случаев превращается в ядро ⁶⁰Ni* в возбужденном состоянии 4⁺, при этом энергия испущенных электронов не превышает 317.9 кэВ [14]. Последующие переходы ядра 60 Ni в состояние 2⁺, а затем в состояние 0⁺ сопровождаются испусканием у-квантов с энергиями 1173 и 1332 кэВ, соответственно. Времена жизни состояний 4⁺ и 2⁺ малы, поэтому последовательные события эмиссии β-частиц и у-квантов воспринимаются регистрирующей электроникой как одновременные. Регистрируя детектором с телесным углом Ω_{tr} γ -кванты с энергией 1332.5 кэВ в пике полного поглощения (фотопике), можно накапливать события испускания второго у-кванта с энергией 1173 кэВ в телесный угол $\Omega = 4\pi - \Omega_{tr} = 4\pi \times (1 - 0.021)$. Энергетические спектры CeBr₃ детектора, полученные при калибровке у-спектрометра с помощью источника 60 Со (по схеме на рис. 1*б*), представлены на рис. 2. На рис. 2а представлен инклюзивный энергетический спектр CeBr₃ триггерного детектора, включа-

Рис. 1. Трехмерная схема экспериментальной установки (*в*) и ее разрез при проведении измерений с пучком ядер-снарядов (*a*) и при калибровке составного спектрометра (*б*): *1* – пластиковый сцинтилляционный детектор, *2* – полиэтиленовые пластины, *3* – первый активный коллиматор, *4* – ΔE стриповый Si-детектор, *5* – ΔE_0 стартовый Si-детектор, *6* – второй активный коллиматор, *7* – мишень (²⁸Si, ⁵⁹Co или ¹⁸¹Ta), *8* – окно для вывода пучка, *9* – сцинтилляционные CsI(Tl) детекторы с ФЭУ, *10* – Pb защита, *11* – ФЭУ, *12* – светоотражатель, *13* – сцинтиллятор для регистрации β-частиц, *14* – источник ⁶⁰Co, *15* – CeBr₃ детектор, *16* – реакционная камера.

ющий как события регистрации у-квантов от ядра ⁶⁰Ni*, так и фоновые события. Регистрации у-квантов с энергиями 1173 кэВ и 1332 кэВ от ядра ⁶⁰Ni* соответствуют фотопики, указанные цифрами 1 и 2. Фоновые слабовыраженные пики 3-7 обусловлены регистрацией ионизирующего излучения от радиоактивных примесей в материале CeBr₃ сцинтиллятора [15]. На рис. 26 представлен энергетический спектр CeBr₃ триггерного детектора, полученный при условии совпадения быстрых импульсов от CeBr₃ и β-детекторов во временном окне $\Delta T \approx 20$ нс, графически изображенном контуром на двумерном спектре рис. 2в. Из рис. 26 видно, что фоновые события, образующие пьедестал под пиком 2 на рис. 2*a*, исключаются с помощью условия γ - β совпадения. Условие γ - β совпадения обеспечивает накопление событий испускания γ -квантов с множественностью M = 1 с относительной погрешностью менее 5%.

Накопление и запись событий с множественностью M = 1, и последующее объединение записей по две, три и т.д. позволяет получать записи смоделированных событий испускания γ -квантов с множественностью M = 2,3 и т.д. Эти смоделированные события соответствуют "одновременному" испусканию из источника двух, трех и т.д. γ -квантов с энергией E = 1173.2 кэВ. Число смоделированных событий излучения $M \gamma$ -квантов, в которых сработали k детекторов спектрометра, обозначим $N_k^{(M)}$, k = 0,...,12. Абсолютную эффективность регистрации $\varepsilon_{abs}(M)$ спектрометром смоделированных событий излучения с множественностью M можно определить как отношение полного числа зарегистрированных событий со срабатыванием k детекторов, от k = 1 до k = 12, к полному числу n_M событий

$$\varepsilon_{abs}(M) = \frac{1}{n_M} \sum_{k=1}^{12} N_k^{(M)}, \ n_M = \sum_{k=0}^{12} N_k^{(M)}.$$
(6)

Результаты измерения абсолютной эффективности регистрации $\varepsilon_{abs}(M)$ смоделированных событий с множественностью М для ү-спектрометра с 6 и 12 детекторами представлены на рис. За. С помощью кода GEANT-4 [9] были смоделированы события регистрации описанной установкой изотропного излучения каскадов у-квантов с энергией E = 1173.2 кэB, которые испускались из центра мишени в полный телесный угол, и получена абсолютная эффективность регистрации, также представленная на рис. За. Видно, что рассчитанные эффективности регистрации практически совпадают с экспериментальными. Это подтверждает эквивалентность способа объединения событий регистрации отдельных у-квантов измерению событий одновременного испускания нескольких у-квантов. Поэтому результаты, полученные с источником ⁶⁰Со, использованы для анализа экспериментальных данных при исследовании изучаемых ядерных реакций.

Вероятности $w_M(k)$ срабатывания k детекторов спектрометра при регистрации смоделиро-

ванных событий излучения ү-каскадов множественностью *М*

$$w_M(k) = \frac{1}{n_M} N_k^{(M)}$$
(7)

показаны на рис. Зб, Зв, при этом

$$\sum_{k=0}^{12} w_M(k) = 1.$$
 (8)

ЭКСПЕРИМЕНТ И ОБРАБОТКА ДАННЫХ

Эксперимент проводился на канале ахроматического фрагмент-сепаратора ACCULINNA [16] ускорителя У-400М Лаборатории ядерных реакций ОИЯИ. Продукты реакции первичного пучка ядер 15 N с энергией 49.7 $A \cdot M$ эВ на производящей мишени ⁹Ве толщиной 500 мкм формировались фрагмент-сепаратором и идентифицировались $\overline{\text{TOF}} - \Delta E_0$ методом перед тем, как попасть в центр реакционной камеры, где устанавливались ми-шени. Двумерный спектр $T_{TOF} \times \Delta E_0$ идентификации частиц пучка для одного из сеансов эксперимента представлен на рис. 4. Видно, что ядра ⁶Не и ⁹Li образуют хорошо разделенные области, позволяющие надежно выделять для последующего анализа определенную группу частиц. В экспериментах были использованы следующие мишени: ²⁸Si (d = 790 мкм), ⁵⁹Co (d = 65 мкм), ¹⁸¹Ta (d = 110 мкм для ⁶He, ⁹Li и d = 216 мкм для ⁸He). Для каждого значения энергии частиц пучка проводились сеансы измерения с мишенью и без мишени. Длительность сеансов облучения мишени определялась необходимостью набора достаточно большого числа событий реакции $N \sim 10^3$ для статистической достоверности результатов.

Пусть N_k , N'_k — числа зарегистрированных событий реакции со срабатыванием k детекторов с мишенью и без мишени, соответственно.

При измерениях без мишени связь числа N'_k срабатывания k детекторов с числом I_0 аппроксимировалась линейной зависимостью

$$N'_{k} = \beta_{k} I_{0} \tag{9}$$

с фоновыми коэффициентами β_k , найденными методом наименьших квадратов по результатам *m* измерений

$$\beta_{k} = \frac{\sum_{j=1}^{m} I_{0j} N'_{kj}}{\sum_{j=1}^{m} I_{0j}^{2}}.$$
(10)

а

Рис. 2. (*a*) Инклюзивный энергетический спектр CeBr₃ детектора, полученный при калибровке γ -спектрометра с помощью источника ⁶⁰Co. (*б*) Энергетический спектр CeBr₃ детектора, набранный с условием γ - β совпадения. (*в*) Двумерный спектр $T \times E$, где Tвремя между импульсами от β и γ детекторов, E – амплитуда импульса γ -детектора; контуром представлено временно́е окно $\Delta T \approx 20$ нс γ - β совпадения. Энергиям γ -квантов, испускаемых ядром ⁶⁰Ni*, соответствуют пик 1 (1173 кэВ) и пик 2 (1332 кэВ); фоновые слабовыраженные пики 3-7 обусловлены регистрацией ионизирующего излучения от радиоактивных примесей внутри CeBr₃ сцинтиллятора.

Значения погрешности $\delta\beta_k$ оценивались с помощью линейной регрессии [8, 9]. Значения фоновых коэффициентов β_k для пучка ядер ⁹Li с энергиями от 16 до 36 $A \cdot M$ ЭВ приведены на рис. 5: они монотонно убывают с ростом k. Относительные частоты $P_k = N_k/I_0$ числа зарегистрированных событий и их числа за вычетом фона $p_k = P_k - \beta_k$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8 2020

Рис. 3. (*a*) Экспериментальные абсолютные эффективности $\varepsilon_{abs}(M)$ регистрации γ -каскадов, измеренные с источником ⁶⁰Со для 6-детекторного (квадраты) и 12-детекторного (кружки) спектрометров, а также результаты моделирования с помощью программы GEANT-4 для 6-детекторного (звездочки) и 12-детекторного (треугольники) спектрометров. (*б*, *в*) Вероятности $w_M(k)$ срабатывания k детекторов для экспериментально смоделированных событий излучения γ -квантов с множественностью M; значения M указаны цифрами над вершинами распределений.

Рис. 4. Двумерный $T_{TOF} \times \Delta E_0$ спектр идентификации пучка ядер ⁶Не и ^{7, 8, 9}Li перед мишенью. По оси абсцисс показано время пролета (в каналах). По оси ординат показаны энергетические потери частиц пучка в ΔE_0 -детекторе толщиной 243 мкм. Статистика для ядер ⁷Li существенно меньше, чем для остальных ядер.

для реакций ядер ⁹Li на мишенях ²⁸Si, ⁵⁹Co и ¹⁸¹Ta при энергиях 24, 20.8 и 22.7 A · МэВ, соответственно, также показаны на рис. 5. Для более легкой мишени ²⁸Si (рис. 5*a*) преобладают события с малой кратностью, при этом значения относительной частоты p_k быстро убывают с ростом k в сравнительно узком интервале $1 \le k \le 7$. Для мишени ⁵⁹Со (рис. 5б) распределение p_k имеет максимум при k = 5 с протяженностью распределения $1 \le k \le 10$. Для самой тяжелой мишени ¹⁸¹Та (рис. 5в) наблюдается широкое распределение на всем доступном интервале $1 \le k \le 12$ с максимумами при k = 1 и k = 9. С учетом быстрого уменьшения значений N_k с ростом k при расчете полного сечения реакции для мишени ²⁸Si, значение *М_{тах}* было выбрано равным 12, а для мишеней ⁵⁹Со и ¹⁸¹Та использовалось значение $M_{max} = 36$.

Результат измерения сечения реакции с учетом кратности k срабатывания детекторов составного спектрометра определялся следующим образом. Пусть в каждом событии реакции M γ -квантов (и/или нейтронов) испускаются с вероятностью $\Gamma(M)$, $1 \le M \le M_{max}$, тогда вероятность срабатывания k детекторов при регистрации реакции равна

$$P(k) = \sum_{M=1}^{M_{\text{max}}} \Gamma(M) w_M(k).$$
(11)

При полном числе реакций $I_R = I_0 \sigma_R nd$, расчетное число их регистраций со срабатыванием k детекторов составит

$$P(k)I_R = \eta I_0 \sigma_R nd \sum_{M=1}^{M_{max}} \Gamma(M) w_M(k).$$
(12)

Здесь η – поправка, учитывающая неизотропный выход нейтронов вперед при развале слабосвязанных ядер ⁶He, ⁸He. Она определена в работах [8, 9] в предположении, что зависит, главным образом, от энергии отделения одного и двух внешних нейтронов, Для нахождения значений η полные сечения реакций с ядрами ⁶He, ⁸He и ⁹Li нормировались на данные, полученные ранее в других работах. Из условия равенства числа зарегистрированных событий их расчетному значению $N_k - N'_k = N_k - \beta_k I_0$ следует система линейных уравнений для неизвестных $\tilde{\sigma}_M = \eta \sigma_M =$ = $\eta \sigma_B \Gamma(M)$

$$\sum_{M=1}^{M_{max}} \tilde{\sigma}_M w_M(k) - \frac{N_k - \beta_k I_0}{I_0 n d} = 0.$$
(13)

Поскольку коэффициенты системы (13) определены с погрешностями, ее точное решение может приводить к нефизическим значениям $\tilde{\sigma}_M < 0$. Поэтому корректнее находить неизвестные величины $\tilde{\sigma}_M$ из условия минимума суммы квадратов левых частей

$$F\left(\tilde{\sigma}_{1},\ldots,\tilde{\sigma}_{M_{max}}\right) =$$

$$= \sum_{k=1}^{12} \left[\sum_{M=1}^{M_{max}} \tilde{\sigma}_{M} w_{M}(k) - \frac{N_{k} - \beta_{k} I_{0}}{I_{0} n d} \right]^{2}$$
(14)

при ограничении $\tilde{\sigma}_M \ge 0$. Приближенные значения величин $\tilde{\sigma}_M$ для реакций ядер ⁹Li на мишенях ²⁸Si, ⁵⁹Co и ¹⁸¹Ta при энергиях 24, 20.8 и 22.7 *А* · МэВ, соответственно, показаны на рис. 6. Для более легкой мишени ²⁸Si (рис. 6*a*) преобладают события реакции с малой множественностью $1 \le M \le 9$. Для мишени ⁵⁹Со (рис. 66) распределение по множественности $\tilde{\sigma}_M$ более широкое $1 \le M \le 15$. Для самой тяжелой мишени ¹⁸¹Та (рис. 6*в*) ширина распределения примерно вдвое больше: $1 \le M \le 27$. Расчеты сечений образования составного ядра с испарением нейтронов и заряженных частиц, проведенные с использованием базы знаний NRV [14], качественно подтвердили возможность вылета большего числа испарительных нейтронов (до 20) в реакциях с ядрами ¹⁸¹Та при энергиях до 40 $A \cdot M$ эВ. В реакциях с ядрами ⁵⁹Со и ²⁸Si число испарительных нейтронов меньше – до 11 и 10, соответственно. Экспериментальные значения множественности зарегистрированных нейтронов и гамма-квантов, представленные на рис. 6, качественно согласуются с расчетами для испарения нейтронов.

Полное сечение реакции σ_R определяется формулами

$$\sigma_R = \frac{\tilde{\sigma}_R}{\eta}, \ \tilde{\sigma}_R = \sum_{M=1}^{M_{max}} \tilde{\sigma}_M.$$
(15)

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8 2020

Рис. 5. Значения фоновых коэффициентов β_k для пучка ядер ⁹Li с энергиями от 16 до 36 $A \cdot$ МэВ (точки), относительные частоты $P_k = N_k/I_0$ числа зарегистрированных событий (треугольники) и их числа за вычетом фона $p_k = P_k - \beta_k$ (кружки) для реакций ядер ⁹Li на мишенях ²⁸Si (*a*), ⁵⁹Co (*б*) и ¹⁸¹Ta (*в*) при энергиях 24, 20.8 и 22.7 $A \cdot$ МэВ, соответственно; все величины даны в единицах 10⁻⁴.

Рис. 6. Приближенные значения величин $\tilde{\sigma}_M$ для реакций ядер ⁹Li на мишенях ²⁸Si (*a*), ⁵⁹Co (*б*) и ¹⁸¹Ta (*в*) при энергиях 24, 20.8 и 22.7 *A* · МэВ, соответственно.

Погрешности $\delta\beta_k$ коэффициентов β_k приводят к погрешности $\Delta\tilde{\sigma}_R$ величины $\tilde{\sigma}_R$. Оценка $\Delta\tilde{\sigma}_R$ может быть получена по формуле

$$\Delta \tilde{\sigma}_{R} = \max\left\{ \left| \tilde{\sigma}_{R}^{(+)} - \tilde{\sigma}_{R} \right|, \left| \tilde{\sigma}_{R}^{(-)} - \tilde{\sigma}_{R} \right| \right\},$$
(16)

где $\tilde{\sigma}_{R}^{(+)}$ и $\tilde{\sigma}_{R}^{(-)}$ – значения, полученные для набора параметров $\beta_{k} + \delta\beta_{k}$ и $\beta_{k} - \delta\beta_{k}$, соответственно. Для оценки относительной ε_{σ} и абсолютной $\Delta\sigma_{R}$

Рис. 7. Полные сечения реакций ядер ⁹Li на мишенях 28 Si (пустые треугольники), ⁵⁹Co (заполненные квадраты) и ¹⁸¹Ta (заполненные треугольники), полученные по формуле (15) в настоящей работе, в сравнении с полным сечением реакции ⁷Li + ²⁸Si из работ [4] (пустые квадраты) и [17] (ромбы).

погрешностей полного сечения реакции были использованы выражения

$$\varepsilon_{\sigma} = \frac{\Delta \tilde{\sigma}_R}{\tilde{\sigma}_R} + \frac{\Delta \eta}{\eta}, \ \Delta \sigma_R = \sigma_R \varepsilon_{\sigma}.$$
 (17)

Полные сечения реакций ядер ⁹Li на мишенях ²⁸Si, ⁵⁹Co и ¹⁸¹Ta в диапазоне энергий $E_{lab} =$ $= 16 - 36 A \cdot M \Rightarrow B$, полученные по формуле (15), приведены на рис. 7. При вычислениях было использовано значение поправки $\eta = 0.97 \pm 0.03$, при котором величины полного сечения реакции ⁹Li + ²⁸Si при энергиях пучка ⁹Li около $30 A \cdot M$ эB в пределах погрешностей перекрываются со значениями, полученными в работе [17]. Полные сечения реакции ⁹Li + ²⁸Si в области энергий пучка 16-25 A · МэВ, полученные в данной работе, примерно на 350 мб меньше сечений, полученных в работе [7]. Различие может быть обусловлено менее совершенной реализацией метода обработки данных в более ранних экспериментах [7], где величины сечений получали по формуле (4), в которой не учитывается распределение по кратности сработавших детекторов.

Из рис. 7 видно, что величины полного сечения реакции ${}^{9}\text{Li} + {}^{28}\text{Si}$ примерно на 100 мб превышают полные сечения реакции ${}^{7}\text{Li} + {}^{28}\text{Si}$. Этот факт не может быть связан с различием размеров ядер ${}^{7}\text{Li}$ и ${}^{9}\text{Li}$, поскольку среднеквадратичный зарядовый радиус ядра ${}^{9}\text{Li}$ (2.25 фм [14]) меньше, чем у ядра ${}^{7}\text{Li}$ (2.44 фм [14]). Причина превыше-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8 2020

ния сечения может быть связана с внешними нейтронами ядра ⁹Li: энергия отделения одного нейтрона от ядра ⁹Li 4.06 МэВ занимает промежуточное положение межлу типичными значениями 8-10 МэВ лля большого числа стабильных тяжелых ядер и значениями 1-2 МэВ для ядер с гало, например ⁶Не, у которого энергия отделения одного нейтрона 1.87 МэВ и энергия отделения двух нейтронов 0.98 МэВ [14]. В кластерной модели ядра ⁹Li его представляют как конфигурацию из двух внешних нейтронов и остова ${^7\text{Li}}$. состоящего из двух нуклонных кластеров $\alpha + t$ (смотрите, например [18]). В оболочечной модели деформированного ядра (параметр квадрупольной деформации $\beta_2 \approx -1$ [19]) парами нейтронов заняты два близких верхних уровня с энергиями -4и —4.5 МэВ [18]. Для ядра ⁷Lі в аналогичной модели два внешних нейтрона занимают более глубокий уровень с энергией -7.2 МэВ [18].

Полные сечения реакций ядер ⁹Li на мишенях ⁵⁹Со и ¹⁸¹Та превышают сечение реакции ⁹Li + ²⁸Si примерно в 1.5 и 2.2 раза, соответственно. Отношение сечений слияния ядер ⁹Li с тяжелыми стабильными ядрами с массовыми числами A₁ и A₂ примерно равно отношению геометрических сечений для этих ядер, которое можно оценить значением $\left[\left(9^{1/3} + A_1^{1/3}\right) / \left(9^{1/3} + A_2^{1/3}\right)\right]^2$. Для пар ядер ⁵⁹Со и ²⁸Si, ¹⁸¹Ta и ²⁸Si эти отношения соответственно равны 1.36 и 2.29 и близки к экспериментальным значениям. Полное сечение реакции приблизительно можно представить в виде суммы сечения слияния и сечения периферических реакций, отношение последних можно оценить значением $\left[\left(9^{1/3}+A_1^{1/3}\right)/\left(9^{1/3}+A_2^{1/3}\right)\right]$. Для пар ядер ⁵⁹Со и ²⁸Si, ¹⁸¹Та и ²⁸Si последнее отношение равно 1.17 и 1.51. соответственно. В целом, эти оценки объясняют полученные значения полных сечений реакций ${}^{9}\text{Li} + {}^{28}\text{Si}, {}^{59}\text{Co}, {}^{181}\text{Ta}.$

Полные сечения реакций ядер ⁶Не на мишенях ²⁸Si, ⁵⁹Co и ¹⁸¹Ta в диапазоне энергий ⁶He 20– 36 $A \cdot M \ni B$, полученные по формуле (15), приведены на рис. 8а. При расчетах было использовано значение поправки $\eta = 0.83 \pm 0.03$, при котором значения полного сечения реакции ${}^{6}\text{He} + {}^{28}\text{Si}$ в пределах погрешностей перекрываются со значениями, полученными в работах [4, 17]. Меньшее по сравнению с ядром ⁹Li значение поправки η обусловлено меньшей энергией связи внешних нейтронов в ядре ⁶Не. Полные сечения реакций ядер⁸Не на мишенях ²⁸Si и ¹⁸¹Та в диапазоне энергий 7-21 A · МэВ, найденные по формуле (15), приведены на рис. 86. При расчетах было использовано значение поправки $\eta = 0.90 \pm 0.03$, при котором значения полного сечения реакции ⁸He + ²⁸Si в пре-

Рис. 8. (а) Полные сечения реакций ⁶He + ²⁸Si (заполненные треугольники вершиной вверх), ⁶He + ⁵⁹Co (заполненные квадраты) и ⁶He + ¹⁸¹Ta (заполненные треугольники вершиной вниз), полученные в настоящей работе по формуле (15), в сравнении с полным сечением реакции ⁶He + ²⁸Si из работ [4] (пустые квадраты) и [17] (пустые ромбы). (*б*) Полные сечения реакций ядер ⁸He на мишенях ²⁸Si (заполненные треугольники вершиной вверх) и ¹⁸¹Ta (заполненные треугольники вершиной вверх) и ¹⁸¹Ta (заполненные треугольники вершиной вниз), полученные в настоящей работе по формуле (15), в сравнении с полным сечением реакции ⁶He + ²⁸Si из работ [9] (пустые квадраты), [17] (пустые ромбы), [13] (окружность), [12, 20] (пустые звезды).

делах погрешностей перекрываются со значениями, полученными в работах [9, 12, 17]. Значение поправки η для ядра ⁸Не превышает соответствующее значение для ядра ⁶Не, что можно объяснить большей энергией отделения одного нейтрона (2.53 МэВ [14]) и двух нейтронов (2.13 МэВ [14]) у ядра ⁸Не. Отношения полных сечений реакций ядер $^{6, 8}$ Не на ядре 28 Si и на более тяжелых ядрах примерно такое же, как для ядра 9 Li.

ЗАКЛЮЧЕНИЕ

В работе измерены распределения по кратности срабатывания детекторов составного ү-спектрометра для событий реакций $^{6, 8}$ He, 9 Li + 28 Si, ⁵⁹Со, ¹⁸¹Та в диапазоне энергий пучков ^{6, 8}Не, ⁹Li от 6 до 36 A · МэВ. С использованием метода регистрации нейтронов и гамма-квантов получены полные сечения реакций на основе измеренной функции отклика у-спектрометра и экспериментальных распределений по кратности для каждой энергии пучка частиц, а также функции распределения по множественности испускания У-квантов и нейтронов. Полученные экспериментальные полные сечения реакций с ядром ²⁸Si находятся в согласии с опубликованными результатами и при этом охватывают ранее неисследованный диапазон энергий. Большие значения полных сечений реакции на мишенях ⁵⁹Со и ¹⁸¹Та могут быть в начальном приближении объяснены большими размерами ядер ⁵⁹Со и ¹⁸¹Та. При обработке данных применена методика, учитывающая экспериментальные значения эффективности регистрации гамма-излучения различной множественности и кратности срабатывания детекторов спектрометра. Предложенный способ измерений с регистрацией мгновенного нейтронного и гамма-излучения составным спектрометром с несколькими сцинтилляционными детекторами в сочетании описанной методикой обработки данных расширяет возможности метода регистрации нейтронов и гаммаквантов по измерению полного сечения реакций, а также, позволяет получать функцию распределения по множественности испускания у-квантов и нейтронов в выбранных каналах реакций.

Авторы выражают благодарность группам циклотрона У-400М и установки ACCULINNA Лаборатории ядерных реакций ОИЯИ за всемерную помощь при проведении экспериментов на пучках фрагмент-сепаратора.

СПИСОК ЛИТЕРАТУРЫ

- Tanihata I., Hamagaki H., Hashimoto O. et al. // Phys. Lett. B. 1985. V. 160. P. 380.
- Tanihata I., Hamagaki H., Hashimoto O. et al. // Phys. Rev. Lett. 1985. V. 55. P. 2676.
- 3. *Пенионжкевич Ю.Э., Калпакчиева Р.Г.* Легкие ядра у границы нейтронной стабильности. Дубна: ОИЯИ, 2016. 383 с.
- Соболев Ю.Г., Будзановский А., Бялковский Э. и др. // Изв. РАН. Сер. физ. 2005. Т. 69. С. 1603; Sobolev Yu.G., Budzanowski A., Bialkowski E. et al. // Bull. Russ. Acad. Sci. Phys. 2005. V. 69. P. 1790.
- Пенионжкевич Ю.Э., Соболев Ю.Г., Самарин В.В. и др. // ЯФ. 2017. Т. 80. С. 525; Penionzhkevich Yu.E., Sobolev Yu.G., Samarin V.V. et al. // Phys. Atom. Nucl. 2017. V. 80. P. 928.
- Kolata J.J., Guimarães V., Aguilera E.F. // Eur. Phys. J. A. 2016. V. 52. P. 123.
- Соболев Ю.Г., Пенионжкевич Ю.Э., Азнабаев Д. и др. // ЭЧАЯ. 2017. Т. 48. С. 871; Sobolev Yu.G., Penionzhkevich Yu.E., Aznabaev D. et al. // Phys. Part. Nucl. 2017. V. 48. P. 922.
- Penionzhkevich Yu.E., Sobolev Yu.G., Samarin V.V. et al. // Phys. Rev. C. 2019. V. 99. Art. № 014609.
- Соболев Ю.Г., Пенионжкевич Ю.Э., Маслов В.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. С. 451; Sobolev Yu.G., Penionzhkevich Yu.E., Maslov V.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 451.
- 10. Gooding T.J. // Nucl. Phys. 1959. V. 12. P. 241.
- 11. Burge E.J. // Nucl. Phys. 1959. V. 13. P. 511.
- Saint-Laurent M.G., Anne R., Bazin D. et al. // Z. Phys. A. 1989. V. 332. P. 457.
- Villari A.C.C., Mittig W., Plagnol E. et al. // Phys. Lett. B. 1991. V. 268. P. 345.
- 14. http://nrv.jinr.ru.
- Quarati F.G.A., Dorenbos P., van der Biezen J. et al. // Nucl. Instrum. Methods Phys. Res. A. 2013. V. 729. P. 596.
- Rodin A.M., Stepantsov S.V., Bogdanov D.D. et al. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 204. P. 114.
- Warner R.E., Patty R.A., Voyles P.M. et al. // Phys. Rev. C. 1996. V. 54. P. 1700.
- Самарин В.В., Науменко М.А. // Изв. РАН. Сер. физ. 2019. Т. 83. С. 460; Samarin V.V., Naumenko М.А. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 411.
- 19. http://cdfe.sinp.msu.ru/services/radchart/radmain.html.
- 20. *Li Ch., Zhan W-L., Xiao G-Q. et al.* // High Energy Phys. Nucl. Phys. 2007. V. 31. № 1. P. 52.