УДК 539.172,539.142

# КОРОТКОДЕЙСТВУЮЩИЕ *NN*-КОРРЕЛЯЦИИ В РЕАКЦИИ <sup>12</sup>C + $p \rightarrow {}^{10}A + pp + N$

© 2020 г. Ю. Н. Узиков<sup>1, 2, 3, \*</sup>

<sup>1</sup>Межгосударственная межправительственная организация Объединенный институт ядерных исследований, Дубна, Россия

<sup>2</sup>Государственное бюджетное образовательное учреждение высшего образования Московской области "Университет "Дубна", Дубна, Россия

<sup>3</sup>Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия \*E-mail: uzikov@iinr.ru

> Поступила в редакцию 30.10.2019 г. После доработки 25.11.2019 г. Принята к публикации 27.12.2019 г.

В плосковолновом приближении разработан формализм для расчета характеристик эксклюзивной реакции  ${}^{12}C(p, ppN){}^{10}A$  с выбиванием нуклона из короткодействующей коррелированной нуклонной пары  $\langle NN \rangle$  из ядра  ${}^{12}C$  протоном с энергией несколько ГэВ. Спектроскопические факторы для пар  $\langle NN \rangle$  рассчитываются в трансляционно-инвариантной модели оболочек с промежуточной связью. Релятивистские эффекты в процессе  $p + \langle NN \rangle \rightarrow p + N + N$  учитываются в динамике светового фронта.

DOI: 10.31857/S0367676520040365

### **ВВЕДЕНИЕ**

В последние годы проводятся активные исследования короткодействующих нуклонных корреляций (КНК) в ядрах (см. обзор [1] и ссылки в нем). При этом под КНК понимается пара нуклонов с небольшим импульсом центра масс и большими (больше характерного импульса Ферми для тяжелых ядер  $p_{\rm F} = 250 \,{\rm M} \cdot {\rm B} \cdot {\rm c}^{-1}$ ) противоположно направленными импульсами входящих в пару нуклонов  $\vec{p}_1 = -\vec{p}_2$ . Экспериментальное исследование КНК-пар с использованием электронных и протонных пучков показало, что такие корреляции существуют в ядрах, причем вероятность найти в ядре коррелированную пр-пару примерно в 20 раз выше, чем вероятность обнаружить ppили пп-пару [2]. Это доминирование рп-состояний в КНК-парах может быть связано с действием тензорных сил в спин-триплетной пр-паре, отсутствующих в спин-синглетном <sup>1</sup>S<sub>0</sub>-состоянии рр- и пп-пар. Результаты измерений показывают (см. [3] и ссылки там), что при достаточно больших относительных импульсах в паре  $q_{rel} > p_{\rm F}$  и небольших значениях импульса центра масс пары *k*<sub>ст</sub> импульсное распределение КНК-пар в ядрах факторизуется в виде  $n(\vec{p}_1, \vec{p}_2) \approx C_A n_{cm}(\vec{k}_{cm}) n_{rel}(\vec{q}_{rel}),$ где  $n_{cm}(\vec{k}_{cm})$  — распределение по импульсу центра масс  $\vec{k}_{cm}$ , а  $n_{rel}(\vec{q}_{rel})$  — распределение по внутреннему относительному импульсу в паре  $\vec{q}_{rel}$ . Для широкого класса ядер от <sup>4</sup>Не до <sup>208</sup>Рb распределение  $n_{rel}(\vec{q}_{rel})$  при  $\left|\vec{q}_{rel}\right| \gg p_{\mathrm{F}}$  и  $\left|\vec{k}_{cm}\right| < \left|\vec{q}_{rel}\right|$  является универсальной функцией короткодействующей части NN-взаимодействия, близкой к квадрату волновой функции дейтрона с реалистическим NNпотенциалом, а параметр  $C_A$  плавно зависит от массового числа А. Экспериментальные данные об импульсном распределении  $n_{cm}(\vec{k}_{cm})$ , хорошо аппроксимируются трехмерным симметричным гауссианом с параметром  $\sigma = 140-160 \text{ M} \cdot \text{B} \cdot \text{c}^{-1}$ ([3]). Следует отметить, что, в отличие от реакций квазиупругого выбивания дейтронов (p, pd) [4], разрешение по энергии возбуждения остаточного ядра Е\* в этих экспериментах не позволяло отделить переходы на уровни с разрушенной и неразрушенной s-оболочкой, так как фактически энергия возбуждения находилась в интервале  $E^* =$  $= 0 - 30 \text{ M} \Rightarrow \text{B}.$ 

Новый эксперимент по исследованию КНК в ядре <sup>12</sup>С выполнен на BM@N [5], и его результаты в настоящее время находятся в стадии обработки. Отличительной особенностью этого эксперимента является инверсная кинематика, в которой пучок ядер <sup>12</sup>С с импульсом 4 ГэВ  $\cdot$  с<sup>-1</sup> на нуклон падает на жидкую водородную мишень, что позволяет более надежно регистрировать ядерные фрагменты в конечном состоянии. Все три вылетающих нук-

лона в конечном состоянии этой реакции также регистрируются, при этом выбираются такие кинематические условия, когда выбиваемый из КНК-пары протон имеет достаточно большой начальный импульс в системе центра масс (СЦМ) пары >250 МэВ  $\cdot$  с<sup>-1</sup>, который приблизительно равен импульсу нуклона отдачи с противоположным знаком. Кроме того, с целью подавления эффектов схода с массовой поверхности в *pp*-рассеянии выбирается большой угол рассеяния внешнего протона на протоне из КНК в системе центра масс *pp*-па-

## ры, $\theta_{cm}^{pp} \sim 90^{\circ} \pm 30^{\circ}$ .

Цель данной статьи дать разработку математического формализма для анализа обсуждаемой реакции  ${}^{12}C + p \rightarrow p + p + N + {}^{10}A$  в простейшей модели импульсного приближения, отвечающей полюсным диаграммам (рис. 1). Для расчета амплитуды вероятности нахождения в ядре A NNпары в заданном состоянии внутреннего движения при определенном внутреннем состоянии остаточного ядра A - 2 и определенном состоянии относительного движения центров масс пары и ядра A - 2 используется трансляционно-инвариантная модель оболочек (ТИМО) [6] с промежуточной связью [7]. Как известно [8], эта модель позволяет успешно описывать данные по реакциям квазиупругого выбивания кластеров и передачи кластеров. Учет короткодействующего характера корреляций в квазидейтронной NN-паре при больших значениях относительного импульса q<sub>rel</sub> осуществляется путем замены оболочечной функции NN-пары на реалистическую волновую функцию дейтрона. Далее, если не оговорено особо, под (NN)-кластером при больших внутренних импульсах q<sub>rel</sub> понимается дейтрон. При больших значениях импульса *p*, нуклона отдачи, что соответствует большим значениям  $q_{rel} \sim p_r$ , важен учет релятивистских эффектов. Для этого в данной работе при расчете матричного элемента процесса  $p + \langle NN \rangle \rightarrow p + N + N$  используется динамика светового фронта. Поскольку выбивание нуклонных кластеров из внутренних оболочек подавлено взаимодействием в конечном состоянии. в данной работе мы ограничиваемся рассмотрением переходов на состояния ядра-остатка с неразрушенной sоболочкой и, соответственно, с небольшими энергиями возбуждения этого ядра  $E^* \leq 5 \text{ M} \Rightarrow \text{B}.$ 

#### ЭЛЕМЕНТЫ ФОРМАЛИЗМА

Матричный элемент перехода, соответствующий фейнмановской диаграмме (рис. 1*a*), включает произведение трех множителей,

$$M_{fi} = M(A \to B + \langle NN \rangle) \times \\ \times \frac{1}{p_{\langle NN \rangle}^2 - m_{\langle NN \rangle}^2 + i\varepsilon} M(p \langle NN \rangle \to pNN), \qquad (1)$$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 4 2020



**Рис.** 1. Полюсные механизмы реакции  $p + A \rightarrow p + p + N + B$  (*a*) и процесса  $p + \langle NN \rangle \rightarrow p + N + N$  (*б*).

каждый из которых является релятивистским инвариантом и поэтому может быть вычислен в любой системе отсчета; здесь  $M(A \rightarrow B + \langle NN \rangle)$  – амплитуда виртуального распада ядра A на  $\langle NN \rangle$ -пару и ядро B в заданных внутренних состояниях и определенном состоянии относительного движения их центров масс;  $(p_{\langle NN \rangle}^2 - m_{\langle NN \rangle}^2 + i\epsilon)^{-1}$  – пропагатор NN-пары;  $p_{\langle NN \rangle}$  ( $m_{\langle NN \rangle}$ ) – 4-импульс (масса)  $\langle NN \rangle$ -пары,  $M(p \langle NN \rangle \rightarrow pNN)$  – амплитуда процесса выбивания нуклона из NN-пары внешним протоном. Амплитуда  $M(A \rightarrow B + \langle NN \rangle$  в системе покоя ядра A может быть представлена в виде

$$M(A \to B + x) = -S_A^x \left( \epsilon_A^{B + \langle NN \rangle} + p_B^2 / 2\mu \right) \times \\ \times \Phi_{\nu \Lambda M_\Lambda}(\vec{k}_{cm}) \sqrt{2m_A 2m_B 2m_{\langle NN \rangle}},$$
(2)

где  $S_A^x$  — спектроскопический фактор кластера x ( $x = \langle NN \rangle$ ) в ядре A,

$$S_{A}^{x} = {\binom{A}{x}}^{1/2} \left\langle \psi_{A} \middle| \psi_{B} \Phi_{v\Lambda} (\vec{R}_{A-x} - \vec{R}_{x}) \psi_{x} \right\rangle, \qquad (3)$$

являющийся интегралом перекрывания полностью антисимметричной внутренней волновой функции ядра  $A, \Psi_A$ , и произведения внутренних волновых функций кластера *x*,  $\Psi_x$ , ядра-остатка *B*,  $\Psi_B$ , и волновой функции относительного движения центров масс кластера и ядра-остатка,  $\Phi_{v\Lambda} \left( \vec{R}_{A-x} - \vec{R}_x \right)$ . Комбинаторный фактор в выражении (3) учитывает тождественность нуклонов в формализме изоспина. В выражении (2)  $\Phi_{v\Lambda M_{\Lambda}}(\vec{k}_{cm})$ есть волновая функция относительного движения в канале  $B + \langle NN \rangle$  в импульсном представлении в состоянии с числом осцилляторных квантов V, орбитальным моментом  $\Lambda$  и его проекцией  $M_{\Lambda}$ ;  $\vec{k}_{cm}$  — относительный импульс,  $\varepsilon_A^{B+\langle NN \rangle}$  — энергия связи,  $\mu$  — приведенная масса в канале  $B + \langle NN \rangle$ ;  $m_j$  — масса ядра (кластера) j ( $j = A, B, \langle NN \rangle$ ). Пропагатор *NN*-пары также вычисляется в системе покоя ядра *A*, при этом в выражении (1) он компенсируется с точностью до константы  $2m_{\langle NN \rangle}$ множителем  $\varepsilon_A^{B+\langle NN \rangle} + p_B^2/2\mu$  из выражения (2).

Используя модель ТИМО [6] для ядерных волновых функций  $\Psi_A$ ,  $\Psi_B$ ,  $\Psi_x$ , получаем следующее выражение для амплитуды перехода (1):

$$\begin{split} M_{fi}(pA \to ppNB) &= \binom{A}{2}^{1/2} \sum_{M_{J_x}, J, M, M_\Lambda} \sum_{\alpha_i, \alpha_f, N, \Lambda, L_0} \alpha_i^{AJ_i T_i} \alpha_f^{A-2J_f T_f} \times \\ &\times \langle A\alpha_i | A - 2\alpha_f, N\Lambda; x \rangle (\Lambda M_\Lambda J_x M_x | \overline{JM}) (J_f M_f \overline{JM} | J_i M_i) \times \\ &\times (T_f M_{T_f} T_x M_{T_i} | T_i M_{T_i}) U (\Lambda L_x \overline{JS}_x; L_0 J_x) \begin{cases} L_f & S_f & J_f \\ L_0 & S_x & J \\ L_i & S_i & J_i \end{cases} \times \\ &\times [(2L_i + 1)(2S_i + 1)(2J_f + 1)(2\overline{J} + 1)]^{1/2} \Phi_{N\Lambda M_\Lambda}(\vec{k}_{cm}) \times \\ &\times \langle \vec{p}_1 \sigma_1, \vec{p}_2 \sigma_2, \vec{p}_r \sigma_r | \hat{M}(p \langle NN \rangle \to p_1 p_2 p_r) | \vec{p} \sigma_p, -\vec{p}_B M_x \rangle. \end{split}$$

Здесь использованы стандартные обозначения для коэффициентов Клебша–Гордана, коэффициентов Рака и 9*j*-символов группы вращений, а также генеалогические коэффициенты ТИМО  $\langle A\alpha_i | A - 2\alpha_f, N\Lambda; x \rangle$  и коэффициенты промежуточной связи для волновой функции начального  $(\alpha_i^{AJ,T_i})$  и конечного  $(\alpha_f^{A-2J_fT_f})$  ядер;  $L_j$ ,  $S_j$ ,  $J_j$ ,  $T_j$  – орбитальный момент, спин, полный угловой момент и изоспин ядра (кластера) *j* соответственно,  $(j = i \ для \ начального ядра A, j = f \ для \ ядра-остатка B, j = x \ для \ кластера x$ ). Схема векторной связи угловых моментов в генеалогических коэф-фициентах в (4) имеет вид

$$\vec{\Lambda} + \vec{L}_x = \vec{L}_0, \quad \vec{L}_f + \vec{L}_0 = L_i, \quad \vec{S}_f + \vec{S}_x = \vec{S}_i, \\ \vec{T}_f + \vec{T}_x = \vec{T}_i.$$

Коэффициенты Рака и 9*j*-символы в выражении (4) осуществляют переход к схеме связи  $\vec{L}_f$  + + $\vec{S}_f = \vec{J}_f$ ,  $\vec{L}_0 + \vec{S}_x = \vec{J}$ ,  $\vec{L}_i + \vec{S}_i = \vec{J}_i$ ,  $\vec{J}_f + \vec{J} = \vec{J}_i$ .

Матричный элемент перехода  $p\langle NN \rangle \rightarrow pNN$ , соответствующий фейнмановской диаграмме на рис. 1*6*, в системе бесконечного импульса *NN*-пары, что эквивалентно использованию динамики светового фронта, в бесспиновом приближении имеет вид [9]:

$$M_{fi}(p\langle NN \rangle \to ppN) =$$
  
=  $\frac{\Psi_d^{\text{LFD}}(\vec{k}_\perp, \xi)}{1 - \xi} M_{fi}(pN \to pN),$  (5)

где переменные светового фронта  $\xi$  и  $\vec{k}_{\perp}$  определены через импульсы конечных частиц следующими соотношениями:

$$\xi = \frac{p_r^+}{p_r^+ + p_N^+}, \quad \vec{k}_\perp = \xi \vec{p}_{r\perp} - (1 - \xi) \vec{p}_{N\perp}, \tag{6}$$

при этом в вершине  $\langle NN \rangle \to p_r + p_N$  сохраняются "плюс"-компонента  $p_{\langle NN \rangle}^+ = p_N^+ + p_r^+$  и поперечная компонента  $\vec{p}_{\langle NN \rangle \perp} = \vec{p}_{N\perp} + \vec{p}_{r\perp}$  импульса, при этом ось *OZ* направлена по импульсу начального протона в системе покоя центра масс *NN*-пары [9]. Для дейтронного кластера  $\langle NN \rangle = d$  релятивистская волновая функция  $\psi_d^{LFD}(\vec{k}_{\perp},\xi) \equiv \psi_d^{LFD}(\vec{q})$ связана с нерелятивистской функцией дейтрона  $\phi_d^{nr}(\vec{q})$  соотношением  $\psi_d^{LFD}(\vec{q}) = \sqrt{\epsilon(\vec{q})}\phi_d^{nr}(\vec{q})$ , где  $\epsilon(\vec{q}) = \sqrt{m_N^2 + \vec{q}^2}$ . Модуль внутреннего импульса  $\vec{q}$ определяется квадратом инвариантной массы *pN*системы, образующейся при виртуальном распаде  $\langle NN \rangle \to N + p_r, \ M_{pN}^2 = \frac{m_N^2 + \vec{p}_{N\perp}^2}{\xi(1-\xi)},$  и связан с ней условием  $M_{pN} = 2\epsilon(\vec{q})$ , что дает  $\vec{q}^2 = M_{pN}^2 / 4 - m_N^2$ . Волновые функции  $\phi_d^{nr}(\vec{q})$  и  $\Phi_{v \wedge M_s}(\vec{k}_B)$  нормированы условиями:

$$\int \left| \phi_d^{nr}(\vec{q}) \right|^2 \frac{d^3 q}{(2\pi)^3} = 1, \quad \int \left| \Phi_{\nu \Lambda M_\Lambda}(\vec{k}) \right|^2 \frac{d^3 k}{(2\pi)^3} = 1.$$
(7)

Связь матричных элементов переходов  $M_{fi}$  в выражениях (1), (4, 5) с соответствующими инвариантными сечениями реакций  $a + b \rightarrow 1 + 2 + \cdots n$ дается выражением

$$d\sigma = (2\pi)^4 \delta^{(4)} (P_i - P_f) \frac{1}{4I} |M_{fi}|^2 \Pi_j \frac{d^3 p_j}{2E_j (2\pi)^3}, \quad (8)$$

где  $I = \sqrt{(p_a p_b)^2 - m_a^2 m_b^2}$  — потоковый фактор,  $p_i(m_i) - 4$ -импульс (масса) частицы *j*; произведение по индексу *j* в правой части выражения (8) проводится по значениям  $j = 1, \dots, n$ . Распределение по импульсу ядра-остатка  $\vec{p}_B$  и нуклона отдачи  $\vec{p}_r$  может быть записано в виде

$$d\sigma = (2\pi)^{-8} \frac{1}{4I} |M_{f\bar{i}}|^2 \frac{d^3 p_r}{2E_r} \frac{d^3 p_B}{2E_B} \frac{q_{12}}{4\sqrt{s_{12}}} d\Omega_{\bar{q}_{12}}, \qquad (9)$$

где  $\vec{q}_{12}$  – относительный импульс пары нуклонов  $p_1$  и  $p_2$ ,  $s_{12} = (p_1 + p_2)^2$  –квадрат инвариантной массы этой пары,  $E_r(E_B)$  – энергия нуклона  $p_r$ (ядра-остатка *B*);  $d\Omega_{\vec{q}_{12}}$  – элемент телесного угла в направлении импульса  $\vec{q}_{12}$ .

## ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Численные оценки выполнены здесь для реакции  ${}^{12}C(p, ppn){}^{10}B$  при энергии протона 4 ГэВ в системе покоя <sup>12</sup>С с образованием ядра-остатка <sup>10</sup>В в состояниях с небольшой энергией возбуждения  $E^* \leq 5 \text{ МэВ}$ , полным угловым моментом  $J_f$  и изоспином  $T_f$ . Рассмотрены переходы на состояния с  $T_f = 0$  и  $T_f = 1$ , приведенные в табл. 1. В волновую функцию основного состояния ядра <sup>12</sup>С конфигурация <sup>11</sup>S со схемой Юнга [444] входит с амплитудой  $\alpha_i^{T_i=0} = 0.840$ , а конфигурация <sup>13</sup>P [444] — с амплитудой  $\alpha_i^{T_i=0} J_i=0 = 0.492$  [7]. Для приводимых здесь оценок мы используем только доминирующую конфигурацию <sup>11</sup>S [444]. При малых значениях импульса ядра-остатка (в системе покоя начального ядра <sup>12</sup>С имеем  $\vec{k}_{cm} = \vec{p}_B$ ) наибольшее сечение взаимодействия соответствует переходам на уровни  $E^* = 2.15$  и 0.717 МэВ с  $T_f = 0$ , допускающим значение орбитального момента  $\Lambda = 0$ , при этом переход на уровень 1.74 МэВ с  $T_f = 1$  подавлен примерно на порядок изоспиновым фактором. Переходы на остальные рассмотренные

| <i>Е<sub>В</sub></i> (МэВ) | $T_{f}$ | $J_{f}$ | Λ    |
|----------------------------|---------|---------|------|
| 0                          | 0       | 3       | 2    |
| 0.717                      | 0       | 1       | 0, 2 |
| 2.15                       | 0       | 1       | 0, 2 |
| 3.58                       | 0       | 2       | 2    |
| 5.92                       | 0       | 2       | 2    |
| 1.74                       | 1       | 0       | 0    |
| 5.17                       | 1       | 2       | 2    |

**Таблица 1.** Нижняя часть спектра уровней ядра <sup>10</sup>В

уровни с  $\Lambda$  =2 подавлены на несколько порядков величины, но при увеличении импульса ядраостатка вклады этих уровней увеличиваются и при импульсе  $p_B \sim 0.3 \ \Gamma \Rightarrow B \cdot c^{-1}$  становятся сравнимы с вкладами остальных уровней. Этот результат следует из того, что осцилляторные волфункции относительного движения новые  $\Phi_{v\Lambda M_{\Lambda}}(\vec{p}_B)$  для квантовых чисел v $\Lambda = 22$  и 20 различаются поведением при малых p<sub>B</sub>: состояние  $v\Lambda = 20$  имеет максимум, а состояние  $v\Lambda = 22$  подавлено как  $\sim p_B^2$ .

Влияние релятивистских эффектов в процессе выбивания протона из КНК-пары видно на рис. 2 и 3. На рис. 2 приведен относительный импульс, вычисленный по нерелятивистским правилам (q<sub>nr</sub>, штриховая кривая) и по правилам динамики светового фронта ( $q_{\rm LFD}$ , сплошная линия) в зави-

 $q_{rel}$ , ГэВ · с<sup>-1</sup>



Рис. 2. Нерелятивистский (штриховая линия) и релятивистский (сплошная) относительные импульсы q<sub>rel</sub> в КНК-паре в зависимости от импульса нуклона отдачи в СЦМ пары  $p_r$ .



**Рис. 3.** Отношение R из выражения (10) для разных потенциалов *NN*-взаимодействия в зависимости от импульса нуклона отдачи в СЦМ пары  $p_r$ : парижский [10] (штриховая), боннский [11] (штрих-пунктир), CD Bonn [12] (сплошная).

симости от импульса нуклона-отдачи в лабораторной системе  $p_r$ . Видно, что при малых значениях импульса нуклона отдачи  $p_r \le 0.2$  ГэВ · с<sup>-1</sup> разница между релятивистским и нерелятивистским расчетами пренебрежимо мала, но с ростом импульса  $p_r$  различие существенно возрастает. Так, при  $p_r \approx q_{nr} = 0.8$  ГэВ · с<sup>-1</sup> имеем  $q_{\rm LFD} = 0.6$  ГэВ · с<sup>-1</sup>, R = 2.8, а при  $p_r \approx q_{nr} = 1$  ГэВ · с<sup>-1</sup> –  $q_{\rm LFD} = 0.7$  ГэВ · · с<sup>-1</sup>,  $R \approx 10^2$ ; здесь R – отношение квадрата волновой функции дейтрона при  $q_{\rm LFD}$  и  $q_{nr}$ , определенное следующим соотношением

$$R = \frac{u^2(q_{\rm LFD}) + w^2(q_{\rm LFD})}{u^2(q_{\rm nr}) + w^2(q_{\rm nr})}.$$
 (10)

Здесь u(w) - S(D)-компонента волновой функции дейтрона,  $\vec{q}_{nr} = (\vec{p}_N - \vec{p}_r)/2 = -\vec{p}_r - \vec{p}_B/2$  – нерелятивистский относительный импульс, где  $\vec{p}_k$  (k = r, N, B) – 3-импульс нуклона (ядра) в системе покоя исходного ядра. Расчет величины R выполнен для волновых функций дейтрона с разными моделями для NN-потенциала – парижским [10], боннским [11] и CD Bonn [12] и приведен на рис. 3. Из рисунка следует, что при значениях импульса нуклона отдачи  $p_r$  меньше 0.4 ГэВ · с<sup>-1</sup> отношение R близко к единице, что указывает на незначительное влияние релятивистских эффектов в этой области, но при  $p_r > 0.5-1.0$  ГэВ · с<sup>-1</sup> R быстро возрастает с ростом  $p_r$ , достигая на грани-



**Рис. 4.** Число событий в реакции (в относительных единицах) в зависимости от угла вылета рассеянного нуклона  $\theta_1$  для парижского [10] (штриховая линия) и CD Bonn [12] (сплошная) потенциалов *NN*-взаимодействия при разных значениях модуля импульса нуклона отдачи  $p_r$ : 1 - 0.4, 2 - 0.5, 3 - 0.6, 4 - 0.8, 5 - 1.0 ГэВ · c<sup>-1</sup>.

це этого интервала значений  $\sim 10-10^2$ , и существенно зависит от типа потенциала *NN*-взаимодействия.

На рис. 4 приведены результаты расчета числа событий  $N(p_r, \theta_1)$  (в относительных единицах) для перехода на уровень 0.717 МэВ в зависимости от угла вылета рассеянного нуклона  $\theta_1$  при разных значениях импульса нуклона-спектатора  $p_r =$  $= 0.5 - 1.0 \ \Gamma \Rightarrow B \cdot c^{-1}$  для парижского (штриховая линия) и CD Bonn (сплошная) потенциалов NN-взаимодействия. Углы вылета нуклона-спектатора *p*, и ядра-остатка в системе покоя ядра-мишени равны  $\theta_r = 6^\circ, \ \varphi_r = 0, \ \theta_B = 36^\circ, \ \varphi_B = 180^\circ \text{ cootBetterbeh-}$ но; импульс ядра-остатка *p*<sub>B</sub> положен равным 1 МэВ  $\cdot$  с<sup>-1</sup>. Переходу на этот уровень соответствует S-волновая функция относительного движения центров масс NN-пары и ядра-остатка с квантовыми числами  $v\Lambda = 20$ . Уменьшение скорости счета с ростом угла  $\theta_1$  связано с ростом угла рассеяния ней вершине полюсной диаграммы на рис. 1а от  $\approx 30^{\circ}$  до ≈90° и, соответственно, с уменьшением сечения свободного *pp*-рассеяния, которое берется из экспериментальных данных [13]. Из рисунка видно, что при больших импульсах  $p_r > 0.7 \ \Gamma \Rightarrow \mathbf{B} \cdot \mathbf{c}^{-1}$ результат существенно зависит от типа NN-потенциала, изменяясь примерно в 2 раза при переходе от парижского потенциала [10] к модели CD Bonn [11]. Кроме того, при больших импульсах

585

 $p_r = 0.8 - 1.0 \ \Gamma \ni B \cdot c^{-1}$ , что эквивалентно большим значениям относительного импульса нуклонов в *NN*-паре  $q_{\rm LFD} \sim 0.6 - 0.7 \ \Gamma \ni B \cdot c^{-1}$ , величина сечения свободного *pp*-рассеяния существенно зависит от способа вывода амплитуды на массовую поверхность. А именно, угол *pp*-рассеяния  $\theta_{cm}^{pp}$  при заданной инвариантной массе  $\sqrt{s}$  можно вычислить либо по квадрату переданного 4-импульса  $t = (p - p_1)^2$ , либо по  $\overline{t} = (p_N - p_2)^2$ . Для рассеяния вне массовой поверхности эти значения различны, и различие тем больше, чем больше внутренний импульс  $q_{\rm LFD}$ . При  $p_r =$  $= 0.8 - 1.0 \ \Gamma \ni B \cdot c^{-1}$  это приводит к различию в дифференциальном сечении *pp*-рассеяния с фактором ~2.

## ЗАКЛЮЧЕНИЕ

В приближении плоских волн в работе развит формализм для расчета сечения реакции  ${}^{12}C + p \rightarrow$  $\rightarrow p + p + N + {}^{10}A$  в предположении механизма квазиупругого выбивания нуклона протоном из коррелированной двухнуклонной пары. Развитый формализм может быть использован для описания реакций типа  ${}^{12}C(p, 3N){}^{10}A$ . Численные оценки показывают, что релятивистские эффекты во внутреннем движении нуклонов в коррелированной NN-паре становятся существенными при импульсе нуклона-отдачи (нуклона-спектатора)  $p_r \ge 0.5 \ \Gamma \ni B \cdot c^{-1}$ . При таких значениях импульса р, становится существенной зависимость сечения процесса от типа потенциала NN-взаимодействия на малых расстояниях. При этом в расчет вероятности подпроцесса  $p + \langle NN \rangle \rightarrow p + N + N$ при  $q_{rel} \ge 0.6 \ \Gamma \ni \mathbf{B} \cdot \mathbf{c}^{-1}$  вносится неопределенность с фактором ~2, если квадрат амплитуды pN-рассеяния вне массовой поверхности заменяется в импульсном приближении дифференциальным сечением свободного упругого *pN*-рассеяния. Таким образом, получение данных о распределении по внутреннему импульсу  $q_{rel}$  в КНК-парах при больших импульсах  $q_{rel} \ge 0.6 \ \Gamma \Rightarrow B \cdot c^{-1}$  является очень важной задачей, но представляет серьезную проблему даже в случае простейшего полюсного механизма реакции.

Автор признателен М. Пацюк и Э. Пиасецкому за обсуждение работы. Работа выполнена при частичной поддержке РФФИ (проект № 18-02-40046).

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Hen O., Miller G.A., Piasetzky E., Weinstein L.B.* // Rev. Mod. Phys. 2017. V. 89. Art. № 045002.
- 2. *Duer M., Schmidt A., Pybus J.R. et al.* // Phys. Rev. Lett. 2019. V. 122. Art. № 172502.
- 3. *Cohen E.O., Hen O., Piasetzky E. et al.* // Phys. Rev. Lett. 2018. V. 121. Art. № 092501.
- Ero J., Fodor Z., Koncz Z. et al. // Nucl. Phys. A. 1981.
  V. 372. P. 317.
- http://bmnshift.jinr.ru/wiki/lib/exe/fetch.php?media=proposal\_bmn\_dubna\_final.pdf.
- 6. *Неудачин В.Г., Смирнов Ю.Ф.* Нуклонные ассоциации в легких ядрах. М.: Наука, 1969. 414 с.
- 7. *Бояркина А.Н.* Структура ядер 1р-оболочки. М.: МГУ, 1973. 62 с.
- Жусупов М.А., Узиков Ю.Н. // ЭЧАЯ. 1987. Т. 18. № 2. С. 323; Zhusupov M. A., Uzikov Yu.N. // Sov. J. Part. Nucl. 1987. V. 18. № 2. Р. 136.
- Узиков Ю.Н. // ЯФ. 1992. Т. 55. № 9. С. 2374; Uzikov Yu.N. // Sov. J. Nucl. Phys. 1992. V. 55. № 9. P. 1319.
- Lacombe M., Loiseau B., Mau R.V. et al. // Phys. Rev. C. 1980. V. 21. P. 861.
- Machleidt R., Holinde K., Elster C. // Phys. Rep. 1987. V. 149. P. 1.
- Machleidt R. // Phys. Rev. C. 2001. V. 63. Art. № 024001.
- 13. *Kammerud R.C., Brabson B.B., Crittenden R.R. et al.* // Phys. Rev. D. 1971. V. 4. № 5. P. 1309.