УДК 539.172.17,621.384.8

ОПТИМИЗАЦИЯ ТВЕРДОТЕЛЬНОГО ISOL-МЕТОДА ДЛЯ СЕПАРАЦИИ ЛЕТУЧИХ ПРОДУКТОВ РЕАКЦИЙ ПОЛНОГО СЛИЯНИЯ

© 2020 г. А. М. Родин¹, В. Ю. Веденеев¹, А. В. Гуляев¹, М. Голик², Д. Камас^{1, 3}, Я. Климан³, А. Б. Комаров¹, Л. Крупа^{1, 2}, А. С. Новоселов¹, А. Опихал^{1, 4}, Й. Пехоушек⁴, А. В. Подшибякин¹, В. С. Саламатин¹, С. В. Степанцов¹, Е. В. Чернышева^{1, *}, С. А. Юхимчук¹

¹ Международная межправительственная организация Объединенный институт ядерных исследований, Лаборатория ядерных реакций имени Г.Н. Флерова, Дубна, Россия

 2 Чешский технический университет, Институт экспериментальной и прикладной физики, Прага, Чехия

³Физический институт Словацкой академии Наук, Братислава, Словакия

⁴Университет имени Палацки, Оломоуц, Чехия

*E-mail: ElenaChernysheva@jinr.ru

Поступила в редакцию 30.10.2019 г.

После доработки 25.11.2019 г. Принята к публикации 27.12.2019 г.

принята к пуоликации 27.12.2019 г.

На масс-сепараторе MASHA были выполнены эксперименты по измерению эффективности сепарации испарительных остатков, образованных в реакциях полного слияния с тяжелыми ионами. Для повышения эффективности сепарации была разработана новая конструкция горячей ловушки, основанная на использовании тонкой бумаги из графитовых нанотрубок и графена, предназначенная для синтеза ядер при высокой интенсивности первичного пучка. С целью непрерывного контроля в течение эксперимента эффективности сепарации установки в промежуточной фокальной плоскости использовался 16-стриповый кремниевый детектор.

DOI: 10.31857/S0367676520040237

введение

В экспериментах по синтезу сверхтяжелых ядер и изучению их свойств широко применяются кинематические сепараторы, работающие как фильтры скоростей и позволяющие выделять продукты реакций с высокой надежностью и эффективностью. Однако они не позволяют проводить прямую идентификацию масс сверхтяжелых ядер. Идентификация изотопов в таких установках осуществляется по косвенным параметрам: энергии α-распада (для α-радиоактивных изотопов), функции возбуждения (зависимость сечения образования изотопа от энергии возбуждения компаунд ядра), периоду полураспада. Проведенные в ЛЯР ОИЯИ (Дубна) эксперименты показали, что изотопы сверхтяжелых ядер с Z = 112 и 114 имеют достаточно большие времена жизни: 3.8 с для ²⁸³Сп, 29 с для ²⁸⁵Сп и 2.6 с для ²⁸⁹Fl [1]. Кроме того, эти элементы обладают повышенной летучестью. Это означает, что для их исследования может быть применен ISOL-метод¹ сепарации продуктов реакций. Для этой цели в ЛЯР ОИЯИ был разработан масс-сепаратор MASHA [3], позволяющий измерять массы сверхтяжелых ядер и исследовать их α -распады или спонтанное деление. Масс-сепаратор MASHA использует метод ISOL для синтеза и выделения радиоактивных ядер в сочетании с классическим методом масс-спектрометрии, что позволяет проводить идентификацию масс от A = 1 до A = 450 а.е.м.

Ключевыми параметрами в экспериментах с короткоживущими сверхтяжелыми ядрами, имеющими крайне низкие сечения образования, являются эффективность и время сепарации. Необходимое время сепарации установки должно быть порядка ~1 с, а полная эффективность сепарации (включающая в себя эффективность экстракции из горячей ловушки, эффективность ионизации в источнике ионов на основе электронного циклотронного резонанса и эффективность регистрации детекторов) должна быть высокой (≥10%). Это налагает специальные требования к конструкции горячей ловушки. поскольку эффективность экстракции нуклидов зависит от ее свойств. На установке MASHA в качестве материала горячей ловушки используется терморасширенный графит, являющийся фактически полиграфенной структурой, что максимально отвечает требованиям, сформулированным на стадии создания системы сепарации.

¹ Isotope Separation On Line, метод впервые реализован в 1951 г. [2].

Рис. 1. Схема масс-спектрометра MASHA: D1, D2, D3a, D3b – дипольные магниты, Q1–Q3 – квадрупольные линзы, S1, S2 – секступольные линзы, F1 – промежуточная фокальная плоскость, F2 – основная фокальная плоскость, *I* – пучок ионов, 2 – горячая ловушка, 3 – источник ионов на основе электронного циклотронного резонанса, 4 – 192-стриповый кремниевый детектор.

МАСС-СЕПАРАТОР СВЕРХТЯЖЕЛЫХ АТОМОВ МАЅНА

Схема установки MASHA показана на рис. 1. Масс-сепаратор включает в себя мишенный узел с горячей ловушкой, источник ионов на основе электронного циклотронного резонанса (ЭЦРисточник [4]), магнитооптическую систему и систему регистрации. Магнитооптическая анализирующая система масс-спектрометра [5] выполнена на основе дипольных магнитов D1, D2, D3a, D3b, квадрупольных линз Q1–Q3 и секступольных линз S1, S2. Радиоактивные продукты ядерных реакций регистрируются в основной фокальной плоскости масс-спектрометра F2 кремниевым стриповым детектором типа "колодец".

Пучок тяжелых ионов проходит через систему диагностики, позволяющую контролировать положение пучка относительно оси ионопровода, и попадает на мишень. Вылетающие из мишени продукты ядерных реакций проходят разделительную фольгу и останавливаются в нагретом до температуры 1800-2000 К поглотителе, сделанном из терморасширенного графита. Далее продукты реакций диффундируют в виде атомов из графитового поглотителя в вакуумный объем горячей ловушки и затем по трубопроводу двигаются в ЭЦР-источник, где ионизируются до зарядности Q = +1. Эффективность ионизации для инертных газов достигает 90%. Затем однозарядные ионы ускоряются трехэлектродной системой и формируются в пучок, который далее анализируется магнитооптической системой.

В фокальной плоскости масс-сепаратора F2 установлен кремниевый детектор типа "колодец", регистрирующий распады продуктов ядерных реакций. Фронтальная часть детектора расположена по нормали к направлению пучка и состоит из 192 стрипов с шагом структуры 1.25 мм. Вокруг фронтальной части детектора для увеличения геометрической эффективности регистрации распадов продуктов реакций установлены боковые стриповые детекторы, так что при α -распаде ядра в центре фронтальной части детектора регистрируется не менее 90% испускаемых α -частиц. Энергетическое разрешение детекторов при регистрации α -частиц составляет ≈ 25 кэВ. Массовое разрешение масс-спектрометра составляет $M/\Delta M = 1300$.

В течение эксперимента используется автоматизированная система управления работой установки [6], выполненная на основе пакета Lab-VIEW. Система с расположенного в измерительном центре удаленного компьютера управляет элементами масс-спектрометра, вакуумной системой, ЭЦР-источником и горячей ловушкой. В программе сбора и накопления данных анализируются двумерные спектры зависимости энергии распадов от номера стрипа детектора основной фокальной плоскости F2, что позволяет, таким образом, идентифицировать изотопы, образованные в реакциях с тяжелыми ионами.

ЭКСПЕРИМЕНТЫ ПО ИЗУЧЕНИЮ СЕПАРАЦИИ ТЯЖЕЛЫХ И СВЕРХТЯЖЕЛЫХ ЯДЕР

Поскольку элемент Коперниций (Cn, Z = 112) является химическим аналогом ртути, а радон благородным инертным газом, были проведены тестовые эксперименты по изучению сепарации изотопов ртути и радона, образованных в *xn*-каналах реакций полного слияния ⁴⁰Ar + ¹⁴⁴Sm и ⁴⁰Ar + ¹⁶⁶Er [1, 7]. Эксперименты выполнялись на ускорителе У-400М ЛЯР ОИЯИ при токах пучка ⁴⁰Аг до 0.3 част · мкА и энергии пучка ~7 МэВ/нуклон. Для выбора требуемой энергии пучка на мишени перед ней устанавливались поглотители из никелевых фольг различной толщины. Фольги размещались на поворотном механизме, который позволял устанавливать их в угловом диапазоне от 0° до 60°, что давало возможность увеличивать эффективную толщину поглотителя и плавно варьировать энергию пучка на мишени. Толщина никелевой фольги выбиралась таким образом, чтобы изменяя угол поворота фольги можно было охватить весь диапазон необходимых энергий.

В этих экспериментах были измерены функции возбуждения *хn*-каналов реакций, а также были определены полная эффективность и время сепарации установки для короткоживущих изотопов ртути и радона. Время сепарации установки с горячей ловушкой из терморасширенного графита составило 1.8 с.

В 2015 г. был проведен первый эксперимент по измерению массы сверхтяжелого нуклида ²⁸³Cn, образующегося в результате α -распада ядра ²⁸⁷Fl, полученного в 3n-канале реакции полного слияния ${}^{48}Ca + {}^{242}Pu \rightarrow {}^{290}Fl^*$. В этом случае в детекторе фокальной плоскости должна быть зарегистрирована последовательная цепочка из α-распада и спонтанного деления. Эксперимент выполнялся на циклотроне У-400М ЛЯР ОИЯИ. Интенсивность пучка ионов ⁴⁸Са была ~5-10 электрических мкА, а энергия – 7.2 МэВ/нуклон. В эксперименте использовалась вращающаяся мишень вместо стационарной, что давало возможность уменьшить тепловую нагрузку на материал мишени и подложки, возникающую за счет потерь энергии пучка. Для понижения энергии пучка в центре мишени до необходимой величины для максимума Зл-канала реакции на диск вращающейся мишени устанавливался алюминиевый поглотитель.

При выполнении эксперимента особое внимание уделялось контролю эффективности сепарации установки и надежности работы всей системы. Для этой цели была изготовлена мишень из плутония 242 Pu (0.49 мг · см⁻²), которая имела ~1% примеси изотопов неодима ^{nat}Nd. В течение эксперимента для тестирования полной эффективности сепарации установки в фокальной плоскости спектрометра F2 ежедневно измерялся выход изотопов ртути, образованных в хл-каналах реакции ${}^{48}Ca + {}^{nat}Nd$ на примесных атомах неодима в мишени. Эти измерения показали, что при интенсивности пучка ионов ⁴⁸Са более 5 мкА эффективность регистрации изотопов ртути (и, следовательно, эффективность сепарации установки) снижалась почти в 6 раз в течение нескольких дней, что было связано с разрушением структуры горячей ловушки из-за радиационных и тепловых повреждений. Этот эффект является следствием большой объемной плотности мощности, выделяющейся в материале ловушки (графите) при торможении в ней пучка ионов. Так для пучка ионов ⁴⁸Са с энергией 5 МэВ/нуклон пробег в графите составляет около 90 мкм. При интенсивности $3 \cdot 10^{12}$ с⁻¹ и размере пятна на графите 1.6 см² объемная плотность мощности, выделяющаяся в материале горячей ловушки, составляет 8.5 кВт · см⁻³. Эта величина более чем в 4 раза превышает объемную плотность мощности, выделяющуюся в графите за счет пропускания через него постоянного тока, равного 190 А.

Таким образом, для выполнения долговременных экспериментов по измерению масс сверхтяжелых элементов в условиях больших токов пучка ионов требовались существенные изменения в конструкции горячей ловушки.

МОДЕРНИЗАЦИЯ МАСС-СЕПАРАТОРА МАЅНА

Для повышения эффективности сепарации и повышения быстродействия установки была проведена модернизация основных узлов масс-спектрометра: 1) разработаны новые конструкции горячей ловушки, ЭЦР-ионного источника и вакуумных камер; 2) предусмотрена возможность нагрева транспортной системы, разрядной камеры ЭЦРисточника и горячей ловушки до температуры 300°С; 3) для постоянного контроля эффективности сепарации установки в течение длительных экспериментов в промежуточной фокальной плоскости F1 был установлен дополнительный стриповый детектор.

В новой конструкции горячей ловушки перед графитовым нагревателем на расстоянии 2 мм по оси пучка закреплен тонкий поглотитель из графена толщиной 1.2 мг · см⁻², в котором тормозятся продукты ядерных реакций. Пучок ионов проходит через графен и тормозится в материале нагревателя. Графен нагревается за счет инфракрасного излучения, исходящего из графитового нагревателя, через который пропускается постоянный ток до 200 А. Такая конструкция позволяет примерно в пять раз снизить тепловую и радиационную нагрузку на материал поглотителя горячей ловушки (в данном случае – графен). Кроме того, исследовались свойства различных материалов для использования их в качестве тонкого поглотителя горячей ловушки. На рис. 2 показана зависимость эффективности сепарации от времени измерения для новой конструкции горячей ловушки с тонким поглотителем в форме бумаги из нанотрубок толщиной 2 мг · см⁻². Интенсивность пучка ионов ⁴⁰Ar с энергией 190 МэВ была 0.3 част. · мкА и выделение мощности составляло 12 Вт. При использовании новой ловушки эффективность се-

Рис. 2. Зависимость эффективности регистрации изотопов ртути в фокальной плоскости масс-сепаратора от времени облучения пучком ⁴⁸Са интенсивностью 0.5 част·мкА $(2.5 \cdot 10^{12} \text{ c}^{-1})$: 1 - для новой конструкции горячей ловушки с тонким поглотителем из графитовых нанотрубочек; 2 - для конструкции горячей ловушки с толстым графитовым поглотителем.

парации оставалась стабильной в течение 85 ч при токе пучка ионов 40 Ar ≤ 0.5 част. · мкА. В эксперименте с предыдущей конструкцией ловушки эффективность сепарации установки снижалась в 6 раз в течение того же времени. Таким образом, использование бумаги из нанотрубок в качестве материала поглотителя горячей ловушки выглядит очень перспективным для проведения долговременных экспериментов с малыми (порядка нескольких пикобарн) сечениями реакций. Кроме того, измерения показали, что полное время сепарации установки в новой конструкции ловушки не превышает 1 с. Это почти вдвое меньше, чем в случае толстой графитовой ловушки, применявшейся в предыдущих экспериментах.

На первом этапе для оптимизации режима работы ЭЦР-источника ионов использовались калиброванные течи благородных газов. На стадии подготовки эксперимента по массовой идентификации изотопа ²⁸³Сп оптимизация системы сепарации и ионизации осуществлялась по парам ртути, а также по короткоживущим изотопам ртути, образующимся в реакции ⁴⁰Ar + ¹⁴⁴Sm. Ртуть способна образовывать со многими металлами устойчивые сплавы (амальгамы, интерметаллиды) как в жидком, так и в твердом состоянии при нормальных условиях. Это обстоятельство приводит к снижению эффективности сепарации для короткоживущих изотопов ртути. Для того, чтобы устранить образование амальгам внутренние стен-

Рис. 3. Сравнение падения тока ртути для двух разрядных камер источника ионов: кривая *1* – для камеры из нержавеющей стали без покрытия; кривая *2* – для камеры с покрытием нитрида титана. Кривая *3* – падение тока инертного газа (криптона) в камере, покрытой нитридом титана.

ки разрядной камеры источника ионов необходимо покрыть химически инертным слоем. В качестве такового был выбран нитрид титана (TiN).

С целью изучения влияния свойств покрытия внутренних стенок разрядной камеры ЭЦР-источника на эффективность сепарации ртути были выполнены специальные измерения [8]. Первое измерение выполнялось с использованием вакуумной камеры, изготовленной из нержавеющей стали без химически инертного покрытия, второе – с камерой, на внутреннюю поверхность которой был напылен нитрид титана толщиной 6 мкм. Пары ртути подавались непосредственно в ионный источник через пьезовентиль, где атомы ртути ионизовывались и далее анализировались по массе. В фокальной плоскости массовый спектр в виде постоянного тока измерялся с помощью 192-ламельной системы. На рис. 3 показаны результаты измерений времен формирования пучка ртути. После оптимизации настройки источника ионов, когда сумма токов изотопов в фокальной плоскости достигала максимального значения, подача газа через пьезовентиль отключалась за время $\Delta \tau \leq 0.5$ с. Падение тока в фокальной плоскости в этом случае было связано со временем жизни атомов на поверхности разрядной камеры источника ионов. В эксперименте с непокрытыми стенками источника ионов общая интенсивность ртути уменьшилась на 18% в течение первых 4 с сразу после закрытия пьезовентиля (кривая 1 на рис. 3), в камере, покрытой нитридом титана TiN, эта интенсивность уменьшалась на 36% (кривая 2). В измерениях с инертным газом (криптоном) в камере с покрытием нитрида титана ток за это время падал на 67%. Было обнаружено, что величина падения тока в фокальной плоскости для трех измерений соответствует максимальной эффективности сепарации, когда времена жизни изотопов превышают 4 с.

Также была разработана система, обеспечивающая постоянный контроль эффективности сепарации установки в течение эксперимента. Для этого в промежуточную фокальную плоскость спектрометра F1 (рис. 1) был установлен дополнительный 16-стриповый детектор для непрерывного контроля интенсивности выходов изотопов ртути 185 Hg, образующихся в реакции 48 Ca + nat Nd. Для отработки системы контроля эффективности сепарации был проведен эксперимент со специально разработанной конструкцией вращающейся мишени. Она состоит из 6 идентичных секторов, на три из которых были нанесены слои ¹⁴⁴Sm, а на другие три – слои ¹⁶⁶ Er. Магнитооптическая система масс-сепаратора была настроена таким образом, что изотопы ртути, синтезированные в реакции 40 Ar + 144 Sm, регистрировались 16-стриповым детектором в промежуточной плоскости F1, а изотопы радона, полученные в реакции 40 Ar + 166 Er, - 192-стриповым детектором типа "колодец" в основной фокальной плоскости F2. На рис. 4а показано двухмерное распределение (M, E_{α}) продуктов α -распада *хи*-каналов реакции 40 Ar + 166 Er, измеренных в фокальной плоскости F2, на рис. 46 – энергетический спектр α -распадов продуктов реакции ⁴⁰Ar + ¹⁴⁴Sm с первого стрипа детектора промежуточной плоскости F1. Таким образом, показана возможность одновременного измерения продуктов двух ядерных реакций слияния для контроля состояния системы мишень – горячая ловушка – ЭЦР ионный источник, что в дальнейшем будет использовано для контроля эффективности сепарации при проведении экспериментов по синтезу сверхтяжелых ядер и измерению их масс.

Также была осуществлена модернизация, внедрение и тестирование новой системы сбора данных и диагностики пучка с использованием высокоскоростных дигитайзеров, и высокоскоростных цифровых модулей ввода/вывода на основе стандартов РХІ и РХІе от ХІА, компаний "Agilent Technologies" и "National Instruments". На языке С/С++ были разработаны программы сбора данных и диагностики пучка.

Для определения полной эффективности сепарации масс-сепаратора MASHA (включающей в себя эффективность экстракции из горячей ловушки, эффективность ионизации в ЭЦР-ионном источнике, эффективность транспортировки ионно-оптической системы и эффективность реги-

Рис. 4. Результаты одновременного измерения продуктов двух ядерных реакций ⁴⁰Ar + ¹⁴⁴Sm, ¹⁶⁶Er на масс-сепараторе MASHA с использованием специально сконструированной мишени: *а*) двумерный спектр энергий α-распадов в зависимости от номера стрипа для продуктов реакции ⁴⁰Ar + ¹⁶⁶Er, зарегистрированных 192-стриповым кремниевым детектором в основной фокальной плоскости масс-спектрометра F2; *б*) энергетический спектр α-распадов продуктов реакции ⁴⁰Ar + ¹⁴⁴Sm, зарегистрированных стрипом № 1 16-стрипового кремниевого детектора в промежуточной фокальной плоскости F1.

страции детекторов) были измерены полные сечения образования короткоживущих изотопов радона и ртути в реакциях полного слияния 40 Ar + 144 Sm, 40 Ar + 166 Er методом подвижных поглотителей. В режиме накопления на пучке стопка из пяти алю-

миниевых фольг находилась за мишенью, так что продукты реакции тормозились в фольгах на разной глубине в зависимости от их энергии. Затем в режиме регистрации стопка фольг раздвигалась в длину на 15 см, так что каждая фольга располагалась напротив соответствующего ей полупроводникового детектора, регистрирующего α-распады продуктов реакции. С детектора считывалась информация об энергии α-частицы и времени прихода сигнала от начала цикла измерения. Длительность режимов накопления и измерения выбиралась исходя из периодов полураспадов изучаемых изотопов. Измерения проводились циклически, пока не была накоплена необходимая для анализа спектров статистика. Идентификация нуклидов проводилась по энергии α-распадов продуктов реакции и их измеренным периодам полураспадов. В результате были получены абсолютные сечения хл-каналов вышеуказанных реакций. Эффективности сепарации масс-спектрометра для различных изотопов ртути вычислялись по отношению сечений хл-каналов реакций, полученных в детекторе фокальной плоскости масс-сепаратора, к абсолютным сечениям в тех же реакциях. Данные находятся в завершающей стадии анализа.

ЗАКЛЮЧЕНИЕ

Для измерения масс сверхтяжелых атомов в ЛЯР ОИЯИ создан масс-сепаратор MASHA, использующий твердотельный ISOL-метод синтеза и сепарации продуктов слияния и классический метод масс-спектрометрии. Для повышения эффективности сепарации испарительных остатков, полученных в реакциях полного слияния с тяжелыми ионами, была проведена модернизация установки.

Были проведены измерения полной эффективности сепарации установки в зависимости от времени эксперимента при интенсивности пучка тяжелых ионов до 0.5 част. • мкА. Было обнаружено, что снижение полной эффективности сепарации вызвано тепловым и радиационным разрушением структуры горячей ловушки.

Была разработана новая конструкция горячей ловушки, состоящая из тонкого поглотителя из графитовых нанотрубок или графена, а также графитового нагревателя. Тестовые эксперименты показали высокую стабильность эффективности сепарации для новой конструкции горячей ловушки и перспективность использования графитовых нанотрубок в качестве материала поглотителя. В промежуточной фокальной плоскости F1 был установлен дополнительный 16-стриповый детектор для постоянного контроля эффективности сепарации установки. В тестовых экспериментах с вращающейся мишенью, содержащей сектора из ¹⁴⁴Sm и ¹⁶⁶Er, одновременно измерялись выходы испарительных остатков, полученных в реакциях ⁴⁰Ar + ¹⁴⁴Sm в промежуточной фокальной плоскости F1 и ⁴⁰Ar + ¹⁶⁶Er в фокальной плоскости F2, что показало возможность одновременного измерения на масс-сепараторе двух различных ядерных реакций.

Была разработана новая конструкция ЭЦРисточника ионов, вакуумной системы и транспортного канала ионно-оптической системы. На внутреннюю поверхность вакуумных камер было нанесено химически инертное покрытие из нитрида титана.

Для увеличения быстродействия транспорта ионов в следующих экспериментах вся система будет нагрета до 300°С.

В заключение авторы считают своим приятным долгом поблагодарить коллектив сотрудников циклотрона У-400М за обеспечение работы ускорителя во время экспериментов. Авторы также благодарны дирекции Лаборатории ядерных реакций им. Г.Н. Флерова за постоянный интерес к проводимым исследованиям и всестороннюю поддержку.

СПИСОК ЛИТЕРАТУРЫ

- 1. Oganessian Yu. Ts., Abdullin F.Sh., Bailey P.D. et al. // Phys. Rev. C. 2004. V. 70. № 6. Art. № 064609.
- Kofoed-Hansen O., Nielsen K.O. // Phys. Rev. 1951.
 V. 82. P. 96.
- 3. Родин А.М., Белозеров А.В., Ванин Д.В. и др. // Приб. тех. эксп. 2014. № 4. С. 14; Rodin А.М., Belozerov A.V., Dmitriev S.N. et al. // Instr. Exp. Tech. 2014. V. 57. № 4. P. 386.
- 4. Oganessian Yu.Ts., Shchepunov V.A., Dmitriev S.N. et al. // Nucl. Instr. Meth. B. 2003. V. 204. P. 606.
- Efremov A.A., Bekhterev V.V., Bogomolov S.L. et al. // Nucl. Instr. Meth. B. 2003. V. 204. P. 368.
- Novoselov A.S., Motycak S., Rodin A.M. et al. // Phys. Part. Nucl. Let. 2016. V. 13. P. 595.
- Chernysheva E.V., Rodin A.M., Belozerov A.V. et al. // Proc. Int. Symp. on Exotic Nuclei. (Kaliningrad, 2015). P. 423.
- 8. *Vedeneev V.Yu., Rodin A.M., Krupa L. et al.* // Hyperfine Interact. 2017. V. 238. № 1. P. 19.