УДК 539.165,539.122,539.1.074.55,539.123,539.166

ИССЛЕДОВАНИЕ ДВОЙНОГО БЕТА-РАСПАДА ⁵⁸Ni

© 2018 г. Н. И. Рухадзе^{1,*}, В. Б. Бруданин¹, А. А. Клименко¹, Ф. Пикмаль², Е. Н. Рухадзе³, Ю. А. Шитов¹, И. Штекл³, Г. Варот²

¹Объединенный институт ядерных исследований, Дубна, Россия

²Моданская подземная лаборатория, Модан, Франция

 3 Институт экспериментальной и прикладной физики. Чешский технический университет в Праге,

Республика Чехия

*E-mail: rukhadze@jinr.ru

Исследование процессов двойного бета-распада (β +*EC*, *EC*/*EC*) ⁵⁸Ni проведено в Моданской подземной лаборатории (LSM, Франция, 4800 м водного эквивалента) с использованием ультранизкофонового HPGe-детектора Obelix с чувствительным объемом 600 см³ и образца природного никеля с массой ~21.7 кг, содержащего ~68% ⁵⁸Ni. Из предварительной обработки экспериментальных данных, накопленных за ~144 сут, получены новые экспериментальные ограничения на $2\nu\beta^+EC$ -распад ⁵⁸Ni на основное 0⁺ и на возбужденное 2⁺₁, 811 кэВ состояния ⁵⁸Fe, и $2\nu EC/EC$ -распад ⁵⁸Ni на возбужденные состояния 2⁺₁, 811 кэB, 2⁺₂, 1675 кэВ ⁵⁸Fe. Они равны – $T_{1/2}(\beta^+EC, 0 \rightarrow 0^+) > 1.7 \cdot 10^{22}$ лет; $T_{1/2}(\beta^+EC, 0 \rightarrow 2^+_1) > 2.3 \cdot 10^{22}$ лет, $T_{1/2}(EC/EC, 0 \rightarrow 2^+_1) > 3.3 \cdot 10^{22}$ лет, $T_{1/2}(EC/EC, 0 \rightarrow 2^+_2) >$ > 3.4 · 10²² лет. Для резонансного безнейтринного радиационного *EC/EC*-распад с энергией 1918.3 кэВ получено экспериментальное ограничение $T_{1/2}(0\nu EC/EC - \text{res},1918$ кэВ) > 4.1 · 10²² лет. Все пределы получены на 90% уровне достоверности.

DOI: 10.7868/S0367676518060200

ВВЕДЕНИЕ

Исследование безнейтринного двойного бета-распада ($\beta^{-}\beta^{-}, \beta^{+}\beta^{+}, \beta^{+}EC, EC/EC$) имеет большое значение в физике частиц и ядерной физике как действенный инструмент для изучения свойств нейтрино и слабого взаимодействия. Изучение безнейтринного двойного бета-распада (0vββ) позволит прояснить природу нейтрино (майорановское или дираковское), абсолютное значение массы нейтрино, иерархию нейтринных масс (нормальная, инвертированная, квазивырожденная) и возможное нарушение закона сохранения лептонного заряда [1]. Двойной бета-распад ($\beta\beta$) с испусканием двух нейтрино (2vββ) — это разрешенный в рамках стандартной модели (СМ) процесс второго порядка. Изучение 2vßβ-распада дает возможность экспериментально определять ядерные матричные элементы (ЯМЭ) для процессов двойного бета-распада. Это приводит к развитию теоретических моделей расчета ЯМЭ как для 2νββ-, так и для 0vββ-распадов.

Двойной бета-распад может происходить как путем переходов на основное состояние, так и на различные возбужденные состояния дочернего ядра. В настоящее время $2\nu\beta\beta$ -распад на основное состояние дочерних ядер зарегистрирован для 11 ядер (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Хе, ¹⁵⁰Nd, ²³⁸U) [2] и 2v*EC/EC*-распад ¹³⁰Ва был зарегистрирован в геохимическом эксперименте [3]. Изучение переходов на возбужденные состояния дочерних ядер позволяет получить дополнительную информацию о двойном бета-распаде. Меньшие энергии переходов приводят к существенно подавленным вероятностям $\beta\beta$ -распада на возбужденные состояния по сравнению с переходами на основное состояние. Такие процессы сопровождаются испусканием γ -квантов при разрядке возбужденных состояний, и при использовании низкофоновых высокоэффективных HPGe-детекторов 2v $\beta\beta$ -распад на возбужденные состояния дочерних ядер может быть зарегистрирован для некоторых ядер (например, для ¹⁰⁰Мо, ⁹⁶Zr, ¹⁵⁰Nd).

 $2v2\beta^{-}$ -распад на возбужденные состояния дочерних ядер был уже зарегистрирован в распаде ¹⁰⁰Mo – ¹⁰⁰Ru (0⁺₁, 1130.3 кэВ) в нескольких экспериментах, в том числе измерения, проведенные в Моданской подземной лаборатории (LSM, Модан, Франция, 4800 м водного эквивалента) с использованием HPGe-спектрометра «Obelix» [4]) и в распаде ¹⁵⁰Nd–¹⁵⁰Sm (0⁺₁, 740.4 кэВ). Нужно отметить, что энергетический спектр, полученный при измерении $2v2\beta^{-}$ -распада ¹⁰⁰Mo на возбужденные состояния ¹⁰⁰Ru с помощью детектора Obelix, содержал два четко видимых пика,

Рис. 1. Схема двойного бета-распада ⁵⁸ Ni \rightarrow ⁵⁸ Fe. Штриховой стрелкой показан возможный радиационный 0v*EC/EC*-распад ⁵⁸Ni с энергией 1918.3 кэB.

соответствующих гамма-переходам, сопровождающим этот распад [4]. Это позволило нам получить наиболее точное значение для периода полураспада этого редкого процесса. Основываясь на результатах этого эксперимента [4], который показал высокую чувствительность спектрометра Obelix в исследованиях таких редких процессов, было проведено аналогичное исследование двойного бета-распада ⁵⁸Ni на возбужденные состояния ⁵⁸Fe (рис. 1) в LSM (Модан, Франция) с использованием детектора Obelix.

1. УСЛОВИЯ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

Исследование процессов двойного бета-распада $(\beta^+ EC, EC/EC)^{58}$ Ni проводилось в Моданской подземной лаборатории (LSM, Франция) на глубине 4800 м водного эквивалента с использованием ультранизкофонового детектора из сверхчистого германия (HPGe) Obelix с чувствительным объемом 600 см³ и эффективностью ~160% [5, 6]. Энергетическое разрешение детектора Obelix составляет ~1.2 кэВ на ү-линии 122 кэВ (⁵⁷Со) и ~2 кэВ на у-линии 1332 кэВ (⁶⁰Со). Детекторная часть криостата окружена пассивной защитой из нескольких слоев археологического свинца толщиной ~12 см (активность $< 60 \text{ мБк} \cdot \text{кг}^{-1}$) и низкоактивного свинца (активность 5-20 Бк · кг⁻¹) общей толщиной ~20 см, и помещена внутри герметичного стального кожуха. Для предотвращения скопления газа радона (²²²Rn) около детектора внутренняя часть пассивной защиты продувается воздухом с пониженным содержанием радона (концентрация ²²²Rn в этом воздухе составляет ~15 мБк \cdot м⁻³) от установленной в LSM системы очистки воздуха от радона. Измеряемый образец из природного никеля, содержащий ~68% ⁵⁸Ni, был изготовлен в форме сосуда Маринелли в 2014 г. Он имеет вид цилиндра с наружным диаметром 192 мм и высотой 130 мм и внутренним отверстием с диаметром

126 мм и глубиной 106 мм. Общая масса образца составляет ~21.7 кг. Для размещения образца на детекторе Obelix был удален первый внутренний слой свинцовой защиты толщиной ~3.6 см [5, 6].

2. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Для проведения исследований двойного бета-распада ⁵⁸Ni было проведено три серии измерений в период с 2014 по 2017 г. Низкофоновые измерения такого рода основываются на сравнении измерений образцов и фона спектрометра. Интегральная скорость счета фона детектора была в 2014 г. 73 отсчетов \cdot кг⁻¹ \cdot сут⁻¹ в энергетическом диапазоне 40–3000 кэВ и 95 отсчетов \cdot кг⁻¹ \cdot сут⁻¹ в 2017 г. перед началом основной экспозиции измерений ⁵⁸Ni. Увеличение фона детектора было вызвано космогенными изотопами. наработанными в кристалле германия во время его нахождения на поверхности Земли (в конце 2016 г. детектор был отремонтирован фирмой Канберра). Объектами наблюдения и анализа в исследованиях двойного бета-распада ⁵⁸Ni (рис. 1) были у-кванты с энергиями 511, 811, 864, 1675 и 1918.3 кэВ. В⁺ЕС-распад ⁵⁸Ni сопровождается испусканием позитрона, который затем (после аннигиляции с электроном) образует два коррелированных гамма-кванта с энергиями по 511 кэВ. $\beta^+ EC$ -распад ⁵⁸Ni на первое 2_1^+ , 811 кэВ возбужденное состояние ⁵⁸Fe сопровождается испусканием дополнительного гамма-кванта с энергией 811 кэВ. *ЕС/ЕС*-распад ⁵⁸Ni

Рис. 2. Энергетический спектр, полученный при измерении образца из природного никеля массой ~21.7 кг на детекторе Obelix в течение ~143.8 сут.

на первое 2_1^+ , 811 кэВ и второе 2_2^+ , 1675 кэВ возбужденные состояния ⁵⁸Fe сопровождается испусканием γ -квантов с энергиями 811 кэВ и 1675 кэВ (или 811 + 864 кэВ) соответственно. Исследование резонансного безнейтринного радиационного *EC/EC*-распада ⁵⁸Ni \rightarrow ⁵⁸Fe основано на поиске в измеряемом спектре γ -квантов с энергией 1918.3 кэВ. Все эти γ -кванты могут быть с высокой эффективностью зарегистрированы детектором Obelix.

Измерения образца никеля, проведенные в 2014 ($T_{\rm изм} = 47.5$ сут) и 2015 гг. ($T_{\rm изм} = 19$ сут) показали повышенный уровень радиоактивности короткоживущих космогенных изотопов в образце никеля. Средние значения активностей космогенных изотопов составляли в 2014 г. – ⁵⁷Со ($T_{1/2} =$ = 271.8 сут) = 5.0 мБк · кг⁻¹, ⁵⁸Со ($T_{1/2} = 70.9$ сут) = = 3.8 мБк · кг⁻¹, ⁵⁶Со ($T_{1/2} = 77.3$ сут) = = 2.3 мБк · кг⁻¹, ⁵⁴Мп ($T_{1/2} = 312.3$ сут) = = 0.7 мБ · кг⁻¹. Чтобы снизить уровень повышенной радиоактивности (особенно ⁵⁸Со), образец выдерживался в условиях подземной лаборатории до 2017 г., когда уровень активности ⁵⁸Со стал незначительным. Основное измерение образца никеля началось в апреле 2017 г. и продолжается до настоящего времени. Общее время измерений на настоящий момент составляет 3452 ч (примерно 143.8 сут) – см. энергетический спектр на рис. 2.

Обработка измеренного спектра основана на поиске возможных пиков в областях интереса 511, 811, 864, 1675 и 1918.3 кэВ. Основные области интереса и результаты поиска указанных пиков показаны на рис. 3–5. Эффективность детектора Obelix для регистрации γ-квантов, вылетающих из образца природного никеля, рассчитывалась с помощью

Рис. 3. Фитирование участка спектра природного никеля для поиска возможного пика с энергией 810.8 кэВ.

Рис. 4. Фитирование участка спектра природного никеля для поиска возможных пиков с энергиями 864 кэВ (а) и 1674.7 кэВ (б).

симуляций, проведенных на основе пакета ROOT-VMC-GEANT4 DPGE в диапазоне 0.05–5 МэВ. После этого расчетная эффективность проверялась с помощью измерений низкоактивного образца, изготовленного в сосуде Маринелли на основе порошка окиси лантана (La₂O₃). Природный La в этом порошке содержит 0.0888 \pm 0.0007% ¹³⁸La с периодом полураспада $T_{1/2} = (1.02 \pm 0.01) \cdot 10^{11}$ лет, который характеризуется испусканием γ -квантов с энергиями 788.7 кэВ и 1435.8 кэВ. Этот метод калибровки детектора по эффективности при низкофоновых измерениях детально описан в работе [5].

Предварительная обработка данных, полученных при измерении образца никеля на спектрометре Obelix в течение 143.8 сут, показала отсутствие искомых пиков в областях интереса (рис. 3–5). Для нахождения пределов изучаемых ветвей распада ⁵⁸Ni было подсчитано количество исключенных событий

Рис. 5. Фитирование участка спектра природного никеля для поиска возможного пика с энергией 1918.3 кэВ.

для всех возможных гамма-переходов в распаде ⁵⁸Ni → 58 Fe. Для распада на первое 2_1^+ , 811 кэВ возбужденное состояние ⁵⁸Fe (γ-пик 811 кэВ) число исключенных событий за время измерения (143.8 сут) составило 18 событий (рис. 3). Для распада на второе 2_2^+ , 1675 кэВ возбужденное состояние ⁵⁸Fe число исключенных событий составило 11 и для γ-пика 864 кэВ (рис. 4a), и для γ-пика 1675 кэВ (рис. 4б). Для возможного γ-пика с энергией 1918.3 кэВ (безнейтринный резонансный двойной электронный захват) число исключенных событий составило 12.3 (рис. 5). На основе полученных данных для числа исключенных событий (пределы обнаружения пиков) определены новые ограничения на $\beta^+ EC^-$, EC/EC-распады ⁵⁸Ni (на 90% уровне достоверности) — (данные приведены в таблице),

улучшающие существующие экспериментальные пределы (последняя колонка в таблице) более чем на порядок. Теоретические предсказания для периодов полураспада $2\nu\beta^+EC$ -, $2\nu EC/EC$ - и $0\nu EC/EC$ -радиационного распадов ⁵⁸Ni находятся в пределах — $T_{1/2}(2\beta^+EC, 0 \to 0^+) = 1.9 \cdot 10^{24} - 8.6 \cdot 10^{25}$ лет [10, 11], — $T_{1/2}(2\nu EC/EC, 0 \to 0^+) = 3.9 \cdot 10^{23} - 2.8 \cdot 10^{25}$ лет [10, 11], $T_{1/2}(0\nu EC / EC - \text{res}, 0 \to 0^+) = 2 \cdot 10^{35} - 3 \cdot 10^{36}$ лет [9].

ЗАКЛЮЧЕНИЕ

Проведено исследование двойного бета-распада ⁵⁸Ni на спектрометре Obelix, позволившее улучшить экспериментальные ограничения на $2\nu\beta^+EC$ -, $2\nu EC/EC$ - и $0\nu EC/EC$ -распады ⁵⁸Ni более чем на порядок. Измерения образца природного никеля на спектрометре Obelix в Моданской подземной лаборатории продолжаются, и мы надеемся еще улучшить наши экспериментальные пределы (приведенные в таблице), которые теперь являются самыми лучшими для двойного бета-распада ⁵⁸Ni.

По завершению измерений никеля планируется провести исследования двойного бета-распада ⁷⁴Se, ⁸²Se, ⁹⁶Zr и ¹⁵⁰Nd на возбужденные состояния дочерних ядер. Эти исследования будут, как и исследование распада ⁵⁸Ni, проводиться в Моданской подземной лаборатории (4800 м водного эквивалента) с использованием детекторов Obelix и Idefix. Idefix — это новый коаксиальный HPGe детектор Р-типа в ультранизкофоновом криостате U-типа с чувствительным объемом и основными характеристиками, аналогичными детектору Obelix. Idefix, как и Obelix, изготовлен фирмой Канберра.

Мода распада	Конечное состояние или энергия перехода, кэВ	Новое значение предела для <i>T</i> _{1/2} распада, настоящая работа	Предыдущие значения пределов для <i>T_{l/2} распада,</i> ссылка на работы
$2\nu\beta^+EC$	Основное сост.	1.7 · 10 ²² лет (90% У.Д.)	7.0 · 10 ²⁰ лет (68% У.Д.) [7]
$2\nu\beta^+EC$	811	2.3 · 10 ²² лет (90% У.Д.)	4.0 · 10 ²⁰ лет (68% У.Д.) [7]
$2\nu EC/EC$	811	3.3 · 10 ²² лет (90% У.Д.)	4.0 · 10 ¹⁹ лет (90% У.Д.) [8]
2vEC/EC	1675	3.4 · 10 ²² лет (90% У.Д.)	4.0 · 10 ¹⁹ лет (90% У.Д.) [8]
0vEC/EC - res	1918.3	3.3 · 10 ²² лет (90% У.Д.)	2.1 · 10 ²¹ лет (90% У.Д.) [9]

Новые ограничения на двойной бета-распад 58 Ni, полученные из измерений природного никеля с массой ~21.7 кг на детекторе Obelix в течение 143.8 сут

Авторы благодарят персонал LSM за техническую поддержку и помощь в проведении измерений. Настоящая работа выполнена в рамках соглашения LEA–JOULE и договора о сотрудничестве между IN2P3 (Франция) и JINR (ОИЯИ, Россия) № 15-93 и частично поддержана грантами ERDF сг.02.1.01/0.0/0.0/16_013/0001733 и РФФИ № 18-02-00732.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Haxton W.C., Stephenson G.S.* // Prog. Part. Nucl. Phys. 1984. V. 12. P. 409.
- 2. Barabash A.S. // AIP Conf. Proc. 2013. V. 1572. P. 11.
- Meshik A.P., Hohenberg C.M., Pravdivtseva O.V. et al. // Phys. Rev. C. 2001. V. 64. P. 035205.

- 4. Arnold R., Augier C., Barabash A.S. et al. (The NEMO-3 collaboration) // Nucl. Phys. A. 2014. V. 925. P. 25.
- 5. Brudanin V.B., Egorov V.G., Hodák R. et al. // JINST. 2017. V. 12. P. 02004.
- 6. *Рухадзе Н.И., Бруданин В.Б., Бриансон Ш., и др. //* Изв. РАН. Сер. физ. 2013. Т. 77. С. 424; *Rukhadze N.I., Brudanin V.B., Briancon Ch. et al. //* Bull. Russ. Acad. Sci. Phys. 2013. V. 77. P. 379.
- Vasil'ev S.I., Klimenko A.A., Osetrov S.B. et al. // JETP Lett. 1993. V. 57. P. 631.
- Bellotti E., Fiorini E., Liguori C. et al. // Lett. Nuovo Cim. 1982. V. 33. P. 273.
- Lehnert B., Degering D., Frotscher A. et al. // J. Phys. G: Nucl. Part. Phys. 2016. V. 43. P. 065201.
- Tretyak V.I., Zdesenko Yu.G. // At. Data and Nucl. Data Tables. 1995. V. 61. P. 43.
- 11. Tretyak V.I., Zdesenko Yu.G. // At. Data and Nucl. Data Tables. 2002. V. 80. P. 83.