УДК 539.164

ВЛИЯНИЕ КОРИОЛИСОВА ВЗАИМОДЕЙСТВИЯ НА РАСПАДНЫЕ СВОЙСТВА ИЗОТОНОВ С *N* = 149 И *N* = 153

© 2018 г. М. Л. Маркова¹, Т. М. Шнейдман^{2,4,*} Н. В. Антоненко², Т. Ю. Третьякова³.

¹Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова, Москва

²Объединенный институт ядерных исследований, Дубна

³Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына

Московский государственный университет имени М.В. Ломоносова, Москва

 $^4 \Phi$ едеральное государственное автономное образовательное учреждение высшего образования

Казанский (Приволжский) федеральный университет, Казань

*E-mail: shneyd@theor.jinr.ru

Работа посвящена описанию квазинейтронной структуры ядер для двух цепочек четно-нечетных изотонов N = 149 (²⁴³Pu, ²⁴⁵Cm, ²⁴⁷Cf, ²⁴⁹Fm, ²⁵¹No и ²⁵³Rf) и N = 153 (²⁴⁷Pu, ²⁴⁹Cm, ²⁵¹Cf, ²⁵³Fm, ²⁵⁵No и ²⁵⁷Rf). Расчет одночастичных спектров энергий был произведен в рамках двухцентровой оболочечной модели ядер (ДЦОМ). Минимизация потенциальной энергии исследуемых ядер по коллективным координатам приводит к нахождению основных состояний с последующим описанием низколежащих квазинейтронных состояний. Учет поправки Кориолиса к полному гамильтониану системы позволяет учесть смешивание полученных в ДЦОМ волновых функций по квантовому числу *K*. В исследуемых изотопах учтен также эффект блокировки уровней и рассчитаны вероятности *E*2-переходов в основные состояния и соответствующие времена жизни квазинейтронных уровней.

DOI: 10.7868/S0367676518060170

ВВЕДЕНИЕ

Спектроскопические исследования нечетных изотопов актинидов и трансактинидов по сей день не теряют своей актуальности. Задача по-прежнему остается весьма сложной из-за трудности идентификации новых изотопов тяжелых и сверхтяжелых ядер [1]. Постоянный рост экспериментальной информации и повышение точности полученных данных стимулируют развитие современных теоретических подходов к описанию структуры тяжелых ядер. Сравнение теоретических расчетов с экспериментальными данными по одноквазичастичным состояниям в нечетных изотопах тяжелых ядер позволяет уточнить параметры модели и сделать определенные предположения о квантовых числах экспериментальных уровней. При описании атомных ядер с нечетным значением массового числа А удобно использовать для описания низколежащих возбужденных уровней формальное разбиение ядра на валентную частицу и четно-четный инертный остов, позволяющее упростить форму полного гамильтониана системы и избежать учета частично-дырочных возбуждений. В области тяжелых и сверхтяжелых деформированных ядер объектами исследований при изучении структуры квазинейтронных спектров являются

цепочки изотонов, в частности цепочки с N = 149и N = 153, включающие ядра ^{243,247} Pu , ^{245,249} Cm , ^{247,251} Cf, ^{249,253} Fm, ^{251,255} No и ^{253,257} Rf [2].

Одной из интереснейших деталей энергетических спектров этих ядер являются изомерные состояния, играющие особую роль в продвижении к острову стабильности, позволяя применить технику высокочувствительной спектроскопии для исследования переходов из этих состояний в основные и возбужденные состояния более легких ядер посредством α-распада. Значительные времена жизни изомерных состояний по отношению к α-переходам в основное состояние обусловлены, как правило, высокой степенью запрета данного перехода и/или малой энергией перехода. Для теоретического выявления изомерных состояний в тяжелых деформированных ядрах заметную роль играет смешивание волновых функций основных и возбужденных состояний по проекции K полного момента ядра J на ось симметрии за счет вращения [3]. Подобное смешивание обеспечивается за счет так называемой поправки Кориолиса в полном гамильтониане системы и может значительно повлиять на времена жизни изомерных состояний. Поэтому корректный учет взаимодействия Кориолиса при описании

квазичастичных (в частности квазинейтронных) спектров тяжелых и сверхтяжелых ядер оказывается важным для интерпретации экспериментальных данных.

В настояший момент для большинства выбранных изотонов доступны экспериментальные данные по возбужденным состояниям. Спектроскопическая информация для ²⁴⁵Cm получена на основе изучения α -распада ²⁴⁹Cf, β -распада ²⁴⁵Am и ²⁴⁵Bk и в реакциях однонуклонных передач 246 Cm (*d*,*t*) и 244 Cm (*d*,*p*) [4, 5]. Для изотонов ²⁴⁷ Сf и ²⁴⁹ Fm экспериментальные спектры получены в реакциях α -распада ²⁵¹ Fm [6] и ²⁵³ No [7, 8] соответственно. Для 251 No, помимо данных α -распада ²⁵⁵ Rf [9], получена существенная информация по распаду возбужденных состояний, образованных в реакции 208 Pb(48 Ca, 3n) 251 No [10]. Эксперимент указывает на появление долгоживу-щего изомерного состояния ^{251m} No со спин-четностью $1/2^+$ и временем жизни порядка 1.02 с [10], тогда как о появлении подобного состояния в ²⁵³Rf не представляется возможным судить ввиду отсутствия экспериментальных данных [11]. На протяжении всей цепочки время жизни изомерного состояния изменяется в значительных пределах от десятых миллисекунд в 245 Cm до секунд в 251 No.

Для изотонов N = 153 экспериментальные данные также получены на основе реакции α -распада [11]. Для ²⁴⁹ Cm, расположенного вблизи долгоживущего изотопа ²⁴⁸ Cm, значительная часть экспериментальной информации получена при изучении реакций срыва на мишени ²⁴⁸ Cm [7, 12]. В случае изотопа ²⁵¹ Cf также информативным стало изучение реакции ²⁵⁰ Cf (*d*, *p*) ²⁵¹ Cf [13], уточненные данные для ²⁵³ Fm получены из ε -захвата ²⁵³ Md [14]. В данном случае изомерным является состояние 7/2⁺ с экспериментальным временем жизни, варьирующимся от 38 нс до 23 мкс для изотопов ²⁵¹ Cf и ²⁴⁹ Cm соответственно [2].

1. МОДЕЛЬ РОТОР-ПЛЮС-ЧАСТИЦА ДЛЯ ДЕФОРМИРОВАННЫХ ЯДЕР

При описании выбранных изотонов использована модель частица-плюс-ротор, разработанная для вращающихся деформированных ядер. В рамках данной модели ядро разбивается на инертный четно-четный остов и валентную частицу (или группу частиц), в данном случае — нейтрон [15]. Полный момент ядра записывается в виде:

$$\vec{I} = \vec{R} + \vec{J}_{\Pi O \Pi H} = \vec{R} + \vec{J}_{OCTOB} + + \vec{J}_{\Psi A CT} = \vec{R} + \vec{J}_{\Psi A CT} = \vec{R} + \vec{J},$$
(1)

где \vec{R} — момент вращения ядра, спин четно-четного остова \vec{J}_{octob} во внутренней системе координат равен нулю, и угловой момент валентной частицы \vec{J}_{vact} определяет полный угловой момент системы. В этом случае полный гамильтониан ядра $H_{полн}$ можно представить в виде:

$$H_{\text{полн}} = H_{\text{валент}} + H_{\text{остов}} =$$

= $H_{\text{валент}} + H_{\text{вращ}} + H_{\text{кор}},$ (2)

где $H_{\text{валент}}$ отвечает микроскопическому описанию валентной частицы, $H_{\text{остов}}$ распадается на вращательное слагаемое (\Im – момент инерции ядра):

$$H_{\rm вращ} = \frac{1}{2\Im} (I^2 - I_3^2), \tag{3}$$

и добавку, отражающую взаимодействие Кориолиса, обобщающую степени свободы как остова, так и валентного нейтрона:

$$H_{\rm kop} = -\frac{1}{2\Im}(I_+J_- + I_-J_+). \tag{4}$$

Волновая функция системы, удовлетворяющая симметрии относительно поворота на угол π вокруг оси, перпендикулярной оси симметрии, может быть представлена в виде:

$$|\Psi_{M}^{I}\rangle = \sqrt{\frac{2I+1}{16\pi^{2}}} \sum_{K} \alpha_{MK}^{I} \left(\Phi_{K} D_{MK}^{I}(\Omega) + (-1)^{I+K} \Phi_{-K} D_{M-K}^{I}(\Omega) \right),$$
 (5)

где Φ_K отвечает описанию валентной частицы и зависит от ее координат, а *D*-функции Вигнера зависят от углов Эйлера перехода из жестко связанной с ядром системы координат в лабораторную систему.

Ненулевые матричные элементы полного гамильтониана системы с учетом поправки на взаимодействие Кориолиса будут иметь следующий вид:

$$H_{K_{i}K_{j}} = \varepsilon^{I} + \frac{1}{2\Im}(I(I+1) - \frac{1}{4}) - \frac{1}{2\Im}(-1)^{I+1/2}(I+1/2)\langle \Phi_{1/2} | J_{+} | \Phi_{-1/2} \rangle$$
(6)

при $K_i = K_j = 1/2$, где ε^I – одночастичные энергии, а также:

$$H_{K_{i}K_{j}} = -\frac{1}{2\Im} \cdot \frac{1}{2} \sqrt{(I+K+1)(I-K)} \times \left(\left\langle \Phi_{K} \mid J_{+} \mid \Phi_{K+1} \right\rangle + \left\langle \Phi_{-K-1} \mid J_{+} \mid \Phi_{-K} \right\rangle \right)$$
(7)

при $K_i + 1 = K_j$. Параметр развязывания $a = -\langle \Phi_{1/2} | J_+ | \Phi_{-1/2} \rangle$ определяет смещение уровней с K = 1/2.

2. ДВУХЦЕНТРОВАЯ ОБОЛОЧЕЧНАЯ МОДЕЛЬ ЯДРА

Непосредственно для микроскопического описания величин, связанных с выделением валентного нейтрона в ядре, используется двухцентровая оболочечная модель ядра [16]. Ранее модель успешно использовалась для описания квазичастичной структуры тяжелых и сверхтяжелых ядер [17-20]. В рамках данной модели ядро рассматривается в виде двух симметричных (с массовыми числами, равными соответственно A/2) или асимметричных фрагментов, для которых посредством набора коллективных координат задаются относительное удлинение, деформации отдельных фрагментов, параметр шейки, расположенной между фрагментами, и описывается переход нуклонов через шейку. В данной работе рассмотрены зеркально симметричные формы ядра, максимально близкие к основному состоянию. В этом случае для описания формы ядра можно ограничиться величиной относительного удлинения $\lambda = \frac{l}{2R_0}$, отражающего отношение длины ядра вдоль оси симметрии к диаметру ядра в состоянии сферы, а также параметрами $\beta_1 = \beta_2 = \frac{a'}{b}$, отражающими отношение полуосей эллипсоидов, описывающих отдельные фрагменты. Центры фрагментов, в свою очередь, находятся на расстоянии $z = z_1 - z_2$, и при уменьшении данного расстояния до нуля модель переходит в нильссоновскую модель ядра.

Полный одночастичный гамильтониан данной модели зависит от координат валентного нейтрона, его орбитального момента, спина и представлен в виде:

$$H_{\text{ДЦОМ}} = -\frac{\hbar^2 \nabla^2}{2m_n} + V(\rho, z) + V_{\vec{l}s}(\vec{r}, \vec{p}, \vec{s}) + V_{l^2}(\vec{r}, \vec{l}),$$
(8)

при этом одночастичный потенциал $V(\rho, z)$ вблизи основного состояния представлен комбинацией осцилляторных потенциалов со смещенными на величины z_1 и z_2 центрами.

Расчет в рамках данной модели включает также определение потенциальной поверхности (зависимости потенциальной энергии ядра от коллективных координат). Потенциальная энергия состоит из потенциальной энергии жидкой капли, учитывающей макроскопическую структуру ядра, а также оболочечной и парной поправок к ней, введение которых позволяет, в свою очередь, ввести в рассмотрение микроскопическую структуру ядра (макроскопический-микроскопический подход):

$$W(\lambda,\beta) = W_{_{\mathrm{ЖK}}}(\lambda,\beta) + W_{_{\mathrm{O}\overline{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{Y}}}(\lambda,\beta) + W_{_{\mathrm{\Pi}\mathrm{D}\mathrm{P}\mathrm{H}}}(\lambda,\beta),(9)$$

при этом минимизация по коллективным координатам λ и β позволяет определить их равновесные значения, отвечающие основному состоянию, для которого производится расчет одночастичных спектров. Для перехода к квазичастичному (квазинейтронному) спектру используется соотношение в рамках теории Бардина–Купера–Шриффера [21], связывающее квазичастичную энергию *i*-го состояния с его одночастичной энергией, посредством также рассчитанных в ДЦОМ значений параметра щели Δ_n и энергий Ферми E_F :

$$\varepsilon_Q^I = \sqrt{(\varepsilon_Q^I - E_F)^2 + \Delta_n^2}.$$
 (10)

Полученные при равновесных значениях коллективных координат одночастичные и квазичастичные энергии и волновые функции основных и возбужденных состояний ядер были использованы в качестве базовых энергий и функций для дальнейшего учета поправки на взаимодействие Кориолиса, вызывающее смешивание базовых волновых функций ядра по проекции момента *K*.

3. ПРОВЕДЕННЫЕ РАСЧЕТЫ

В данной работе были проведены расчеты одночастичных спектров и соответствующих волновых функций основных и возбужденных состояний для изотонов цепочки N = 149 и N = 153: ^{243,247} Pu, ^{245,249} Cm, ^{247,251} Cf, ^{249,253} Fm, ^{251,255} No и ^{253,257} Rf. Для каждого изотопа была определена зависимость потенциальной энергии ядра и оболочечной поправки от параметра деформации В, причем минимумы в данных зависимостях отвечают близким значениям β_{min} . Для изотонов обеих цепочек, помимо минимизации потенциальной энергии по параметру деформации, была также проведена минимизация по параметру удлинения λ (см. рис. 1 и 2). При оцененных равновесных значениях β_{min} и λ_{тіп} были определены одночастичные спектры и построены соответствующие квазинейтронные спектры с учетом рассчитанных в ДЦОМ значений параметров щели Δ_n и энергий Ферми E_F .

Для дальнейшего учета взаимодействия Кориолиса на основании экспериментальных спектров соседних четно-четных ядер были приблизительно оценены моменты инерции исследуемых ядер [9]. В силу близких структур и деформаций исследуемых в каждой цепочке ядер параметры распаривания имеют близкие значения в пределах этих цепочек, указывающие на смещение уровней с K = 1/2вниз по шкале энергии (см. табл. 1). Однако даже в случае самого сильного смещения его значение составляет порядка 10 кэВ и слабо влияет на внешний вид спектров. Несмотря на это, учет эффекта Кориолиса приводит к значительному смешиванию волновых функций по проекции полного момента *K*. МАРКОВА и др.

Рис. 1. Зависимости оболоченных поправок к полной потенциальной энергии ядер от параметров деформации для изотонов цепочки N = 149 (²⁴³Pu, ²⁴⁵Cm, ²⁴⁷Cf, ²⁴⁹Fm, ²⁵¹No и ²⁵³Rf).

Рис. 2. Зависимости оболочечных поправок к полной потенциальной энергии ядер от параметров деформации для изотонов цепочки N = 153 (²⁴⁷Pu, ²⁴⁹Cm, ²⁵¹Cf, ²⁵³Fm, ²⁵⁵No и ²⁵⁷Rf).

770

<i>N</i> = 149							
²⁴³ Pu	²⁴⁵ Cm	²⁴⁷ Cf	²⁴⁹ Fm	²⁵¹ No	²⁵³ Rf		
1.690	1.687	1.682	1.677	1.683	1.684		
N = 153							
²⁴⁷ Pu	²⁴⁹ Cm	²⁵¹ Cf	²⁵³ Fm	²⁵⁵ No	²⁵⁷ Rf		
1.665	1.685	1.686	1.684	1.686	1.687		

Таблица 1. Параметры развязывания для исследуемых изотонов цепочек N = 149 и N = 153

Параметр развязывания, $a = - \left< \Phi_{1/2} \mid J_+ \mid \Phi_{-1/2} \right>$

Учет влияния парного взаимодействия на вид квазинейтронных спектров был проведен посредством рассмотрения эффекта блокировки [15] для каждого изотопа. Для более корректного согласования расчетов в рамках теории БКШ с базовыми расчетами в ДЦОМ константу G_n , описывающую парные взаимодействия нейтронов монопольного типа, можно подобрать таким образом, что рассчитанные значения Δ_n в ДЦОМ и Δ_n^{BCS} будут практически совпадать [22]:

$$G_n = \frac{1}{A} \left(19.2 - 7.4 \frac{A - 2Z}{A} \right). \tag{11}$$

Квазинейтронные спектры с учетом эффекта блокировки приведены на рис. 1 для цепочки N = 149 и рис. 2 для цепочки N = 153. На основании полученных спектров можно оценить

вероятности электрического квадрупольного E2-перехода B(E2) связывающего возбужденные состояния с основным, а также времена жизни соответствующих возбужденных состояний по отношению к данному переходу [15] (в секундах):

$$T(E2) = (1.223 \cdot 10^9 \Delta E^5 B(E2))^{-1}.$$
 (12)

Оцененные вероятности переходов и времена жизни состояний $1/2^+$ для цепочки N = 149 и $7/2^+$ для цепочки N = 153 приведены в табл. 2, 3.

4. ОСНОВНЫЕ ВЫВОДЫ И ЗАКЛЮЧЕНИЕ

Оцененные значения времен жизни состояния $1/2^+$ в изотонах цепочки N = 149, полученные с помощью спектров и волновых функций в рамках ДЦОМ, свидетельствуют о возможности быстрого $(10^{-9} c) E2$ -перехода из состояния $1/2^+$ в нижележащее возбужденное состояние 5/2⁺. Учет кориолисова взаимодействия не приводит к заметному смещению уровней и, как следствие, изменению ΔE , и смешивание волновых функций в значительной степени не повлияет на вероятность данного перехода и, соответственно, на время жизни состояния. Однако учет эффекта блокировки приводит изменению порядка уровней $1/2^+$ и $5/2^+$ таким образом, что E2-переход из $1/2^+$ в $5/2^+$ становится невозможен (см. рис. 3), и состояния $1/2^+$ становятся во всех ядрах цепочки формально изомерными. Учет кориолисова взаимодействия в данном случае приводит к появлению в волновой функции основного состояния 7/2⁺ примесей волновых функций с K = 5/2 (порядка 3%), которые делают *E*2-переход из 1/2⁺ в основное состояние возможным. Для цепочки N = 153 учет эффекта блокировки не

Изотон	ДЦОМ		ДЦОМ+Кориолис		ДЦОМ+Кориолис+ Блокировка	
	<i>B</i> (<i>E</i> 2)	T(E2)	<i>B</i> (<i>E</i> 2)	<i>T</i> (<i>E</i> 2)	<i>B</i> (<i>E</i> 2)	T(E2)
²⁴³ Pu	10.940	$7.818 \cdot 10^{-10}$	11.574	$6.985 \cdot 10^{-10}$	0.369	$1.227 \cdot 10^{-5}$
²⁴⁵ Cm	11.005	$1.904 \cdot 10^{-9}$	11.646	$1.066 \cdot 10^{-9}$	0.346	$1.152 \cdot 10^{-5}$
²⁴⁷ Cf	11.086	$2.375 \cdot 10^{-9}$	10.535	$2.630 \cdot 10^{-9}$	0.303	$1.495 \cdot 10^{-5}$
²⁴⁹ Fm	11.165	$3.888 \cdot 10^{-9}$	10.344	$4.524 \cdot 10^{-9}$	0.327	$1.288 \cdot 10^{-5}$
²⁵¹ No	11.096	$2.306 \cdot 10^{-9}$	11.710	$2.071 \cdot 10^{-9}$	0.353	$1.643 \cdot 10^{-5}$
²⁵³ Rf	11.016	$7.292 \cdot 10^{-10}$	10.451	$1.455 \cdot 10^{-9}$	0.345	$2.664 \cdot 10^{-5}$

Таблица 2. Модули вероятностей *E*2-переходов B(E2) ($e^2 \cdot \phi M^4$) из возбужденного состояния $1/2^+$ и соответствующие ему времена жизни (в с) для изотонов цепочки N = 149

Таблица 3. Модули вероятностей *E*2-переходов B(E2) ($e^2 \cdot \phi M^4$) из возбужденного состояния 7/2⁺ и соответствующие ему времена жизни (в с) для изотонов цепочки N = 153

Изотон	ДЦОМ+I	Кориолис	ДЦОМ+ Кориолис+ Блокировка		
	<i>B</i> (<i>E</i> 2)	T(E2)	<i>B</i> (<i>E</i> 2)	T(E2)	
²⁴⁷ Pu	0.356	0.522	0.356	0.041	
²⁴⁹ Cm	0.364	1.480	0.364	0.508	
²⁵¹ Cf	0.237	0.645	0.237	0.284	
²⁵³ Fm	0.265	0.217	0.265	0.074	
²⁵⁵ No	0.226	0.186	0.226	0.313	
²⁵⁷ Rf	0.346	0.051	0.346	0.043	

приводит к изменению порядка уровней, поэтому *E*2-переход из $7/2^+$ в основное состояние $1/2^+$ невозможен. Учет же поправки Кориолиса приводит к появлению существенного вклада K = 5 / 2(порядка 5%) в распадающееся состояние, за счет которого в основном Е2-переход становится снова возможным (рис. 4). Значения времен жизни состояний $1/2^+$ и $7/2^+$ в цепочках N = 149 и N = 153соответственно изменяются незначительно по мере продвижения по цепочке от изотопов Ри до изотопов Rf и не отражают появление выделенных изомерных состояний в ²⁵¹No и ²⁴⁹Cm [2]. По видимости, дальнейшее уточнение модельного описания должно включать также учет связи одночастичных степеней свободы нечетной частицы с квадрупольными колебаниями поверхности ядра. Несмотря на то что все времена жизни состояния $7/2^+$ в цепочке изотонов N = 153 значительно превышают соответствующие экспериментальные значения, данное состояние расположено близко к основному состоянию на протяжении всей цепочки, и, как следствие, даже для ядерного кора, жесткого по отношению к модам квадрупольных колебаний, смешивание уровня 7/2⁺ с основным состоянием будет значительным, что приведет к резкому увеличению B(E2) и соответствующему уменьшению его времени жизни. В данной цепочке наблюдается также резкое увеличение времени жизни при переходе от ²⁴⁷ Ри к ²⁴⁹ Ст (см. табл. 3), что качественно также может наблюдаться в эксперименте при отдельном выделении изотопа ²⁴⁹ Cm в рассматриваемой цепочке по длительности жизни изомерного состояния $7/2^+$.

Рис. 3. Квазинейтронные спектры с учетом эффекта блокировки для изотонов цепочки $N = 149^{243}$ Pu, ²⁴⁵Cm, ²⁴⁷Cf, ²⁴⁹Fm, ²⁵¹No и ²⁵³Rf.

Рис. 4. Квазинейтронные спектры с учетом эффекта блокировки для изотонов цепочки $N = 153^{247}$ Pu, ²⁴⁹Cm, ²⁵¹Cf, ²⁵³Fm, ²⁵⁵No и ²⁵⁷Rf.

СПИСОК ЛИТЕРАТУРЫ

- Hofmann S., Munzenberg G. // Rev. Mod. Phys. 2000.
 V. 72. P. 733.
- 2. *Herzberg R.-D., Greenlees P.T.* // Progress in Particle and Nucl. Physics. 2008. V. 61. P. 674.
- Kondev F.G., Dracoulis G.D., Kibedi T. // At. Data and Nucl. Data Tabl. 2015. V. 103–104. P. 50.
- Browne E., Tuli J.K. // Nucl. Data Sheets. 2011. V. 112. P. 447.
- Ahmad I., Greene J.P., Kondev F.G., Zhu S. // Phys. Rev. C. 2015. V. 91. P. 044310.
- 6. Nesaraja C.D. // Nucl. Data Sheets. 2015. V. 125. P. 395.
- Khalifeh Abusaleem // Nucl. Data Sheets. 2011. V. 112. P. 2129.

- Heβberger F.P., Antalic S., Ackermann D. // Eur. Phys. J. A. 2012. V. 48. P. 75.
- Browne E., Tuli J.K. // Nucl. Data Sheets. 2013. V. 114. P. 1041.
- 10. *Heβberger F.P., Hofmann S., Ackermann D. et al.* // Eur. Phys. J. A. 2006. V. 30. P. 561.
- 11. National Nucl. Data Center. Brookhaven. Evaluated Nucl. Struc. Data File. http://www.nndc.bnl.gov/
- Ahmad I., Back B.B., Chasman R.R. et al. // Nucl. Phys. A. 1999. V. 646. P. 175.
- Ahmad I., Chasman R.R., Friedman A.M. et. al. // Phys. Lett. B. 1990. V. 251. P. 338.
- 14. *Antalic S., Heβberger F. P., Ackermann D. et al.* // Eur. Phys. J. A. 2011. V. 47. P. 62.

- 15. *Ring P., Schuck P.* The Nuclear Many-Body Problem. V. 1. Berlin: Springer-Verlag, 1995.
- 16. Maruhn J., Greiner W. // Z. Physik. 1972. V. 251. P. 431.
- 17. Kuzmina A.N., Adamian G.G., Antonenko N.V. // Phys. Rev. C. 2012. V. 85. P. 027308.
- Bezbakh A.N., Shneidman T.M., Adamian G.G. et al. // Eur. Phys. J. A. 2014. V. 50. P. 97.
- 19. Bezbakh A.N., Kartavenko V.G., Adamian G.G. et al. // Phys. Rev. C. 2015. V. 92. P. 014329.
- Bezbakh A.N., Shneidman T.M., Adamian G.G. // Eur. Phys. J. A. 2016. V. 52. P. 353.
- 21. *Soloviev V.G.* Theory of Complex Nuclei. Oxford: Pergamon Press, 1976.
- 22. *Nilsson S.G., Ragnarsson I.* Shapes and Shells in Nuclear Structure. Cambridge: Cambridge Univ. Press, 1995.