= ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ПРАВИЛО СУММ ГОТТФРИДА В КХД-НЕСИНГЛЕТНОМ АНАЛИЗЕ ДАННЫХ ПО ГНР

© 2018 г. А. В. Котиков*, В. Г. Кривохижин, Б. Г. Шайхатденов

Объединенный институт ядерных исследований, Дубна, Россия *E-mail: kotikov@theor.jinr.ru Поступила в редакцию 30.10.2017 г.

Данные для структурной функции F_2 , полученные в экспериментах с фиксированной мишенью, проанализированы в приближении валентных кварков с точностью до второго порядка по константе взаимодействия, при этом партонные функции распределения параметризованы с использованием правила сумм Готтфрида. Для константы сильного взаимодействия получено значение $\alpha_s(M_Z^2) = 0.1180 \pm 0.0020$ (полная эксп. ошибка), что находится в прекрасном согласии со средним мировым значением $\alpha_s^{\rm PDG}(M_Z^2) = 0.1181 \pm 0.0011$. Также получен результат для второго момента разности между *u*- *u d*-кварковыми распределениями $\langle x \rangle_{u-d} = 0.187 \pm 0.021$, хорошо согласующийся с недавним значением, полученным в расчетах на решетке $\langle x \rangle_{u-d}^{\rm LATTICE} = 0.208 \pm 0.024$.

DOI: 10.7868/S0044002718020113

1. ВВЕДЕНИЕ

Глубоконеупругое лептон-адронное рассеяние (ГНР) – это основной процесс для изучения свойств партонных функций распределения (ПФР), которые являются универсальными в используемой схеме вычислений и могут быть применены в последующих анализах различных процессов.

Распределение валентных кварков¹⁾ является самым простым из-за отсутствия вклада глюонов в его эволюцию. При использовании других ПФР существуют сильные корреляции между значениями константы сильного взаимодействия $\alpha_s(M_Z^2)$ и глюонной плотности, выделяемых из экспериментальных данных. Поэтому НС-приближение очень хорошо подходит для оценки константы сильной связи.

Современный уровень анализа обычно основан на учете первых трех порядков теории возмущений (ТВ) (так называемое next-to-next-to-leading-order (NNLO) приближение). Первый HC-анализ на NNLO-уровне [1] показал небольшое снижение средних значений $\alpha_s \left(M_Z^2\right)$ по отношению к полученным в соответствующем next-to-leading-order (NLO) анализе, где были учтены только первые два порядка ТВ. Аналогичное поведение было обнаружено и в других анализах (см., например, недавний обзор [2]).

Отметим, что NNLO-анализ в [1] содержал лишь данные Коллаборации BCDMS, которые, как правило, приводят к заниженным значениям константы сильной связи, что иногда называется эффектом BCDMS. Как недавно было показано в [3, 4], BCDMS-данные [5–7] могут быть ответственными за большие различия как в результатах для сечений, так и в величинах извлеченных параметров, полученных в различных исследованиях с использованием ПФР-групп ABM [8] и JR [9], с одной стороны, и ПФР-групп CTEQ [10], NN21 [11] и MSTW [12], с другой²⁾. Действительно, результаты в [8, 9] были получены путем фитирования в основном данных процесса ГНР, в то время как другие группы [10–12] использовали в своих анализах также экспериментальные данные иных процессов (см. [14] и приведенные там ссылки).

В работе [15] было показано, что данные Коллаборации BCDMS были получены с большими систематическими ошибками в некоторых областях кинематических переменных, которые, предположительно, могут отвечать за эффективное снижение величины $\alpha_s (M_Z^2)$ (см. [3, 4, 15–18]).

Цель настоящей работы состоит в том, чтобы наложить дополнительные ограничения на ПФР с помощью правила сумм Готтфрида [19] и определить значения константы сильной связи и второго момента Меллина $\langle x \rangle_{u-d}$. Последняя величина представляет особый интерес для исследователей, работающих в рамках решеточной КХД.

Заметим, что без использования правила сумм Готтфрида результаты фитов, выполненных

¹⁾ Часто его называют несинглетным приближением (HC).

²⁾ Низкие значения $\alpha_s(M_Z^2)$ в [8, 9] могут быть также частично объяснены [13] как результат использования схемы с фиксированным числом ароматов.

в нашей предыдущей статье [3], приводили к очень большой погрешности при оценке значения второго момента Меллина. В настоящей работе мы включим это правило сумм явно в параметризацию плотностей партонов (см. разд. 2.1 ниже), чтобы уменьшить эту погрешность.

2. МЕТОД ИССЛЕДОВАНИЯ

Как мы уже упоминали во Введении, одной из наиболее удобных величин для аккуратного извлечения $\alpha_s(M_Z^2)$ является Q^2 -эволюция валентной части структурной функции (СФ) F_2 ГНР. Такой процесс определения константы сильной связи свободен от каких-либо корреляций с глюонной плотностью. Поэтому в нашем анализе сконцентрируемся на изучении этой валентной части.

Так как мы ограничиваем наш анализ только большими значениями переменной Бьеркена x, экспериментальные данные для полной структурной функции $F_2(x, Q^2)$ могут быть рассмотрены при работе с HC-приближением. В этом наше исследование следует оригинальному анализу Коллаборации BCDMS, сделанному в [20], где было показано, что HC-аппроксимация справедлива при больших значениях x (см. также предыдущее изучение плотности глюонов в [21]) при исследовании так называемого наклона СФ F_2 , т.е. $d \ln F_2(x, Q^2)/d \ln Q^2$.

Теоретически это можно объяснить следующим образом. Исследование Q^2 -эволюции СФ F_2 с целью извлечения (нормировки) константы сильного взаимодействия основано на уравнении Докшицера–Грибова–Липатова–Алтарелли–Паризи (ДГЛАП) [22], где наклоны ПФР, $d \ln f_a(x, Q^2)/d \ln Q^2$, (a = q, g), связаны с интегралами плотностей партонов, которые учитываются вместе с соответствующими ядрами $P_{ab}(x)$ (a, b = q, g). Ведущий вклад в СФ F_2 обеспечивается плотностью кварков $f_q(x, Q^2)$, тогда как глюонное распределение дает прямой вклад только в следующем за лидирующим порядке.

В ведущем порядке ТВ глюоны дают вклад в СФ F_2 только через эволюцию кварковых распределений. В согласии с предсказаниями правил кваркового счета [23] при больших значениях x глюонная плотность существенно мягче, чем кварковая, $f_g(x,Q^2)/f_q(x,Q^2) \sim (1-x)$. Более того, она дает вклад в величину наклона распределения кварков $d \ln f_q(x,Q^2)/d \ln Q^2$ вместе с ядром $P_{qg}(x)$, что приводит к дополнительному подавлению $\sim (1-x)$ для больших значений x. Конечно, это незначительный вклад по сравнению с соответствующим кварковым, поскольку последний более жесткий и, более того, усиливается с ядром $P_{qg}(x)$,

имеющим поведение $\sim \ln(1-x)$ при больших значениях *x*.

За пределами ведущего порядка теории возмушения плотность глюонов дает вклад непосредственно в СФ F_2 , но с подавляющим фактором ~α, по сравнению с кварковым вкладом. Более того, существует еще и дополнительное подавление относительного вклада плотности глюонов. Действительно, заметим, что вклад плотности кварков в СФ F_2 умножается на коэффициентные функции, при больших значениях х растущие как $\sim \alpha_s \ln^2(1-x)$ и $\sim \alpha_s^2 \ln^4(1-x)$ [24] в NLO и NNLO соответственно, в то время как коэффициенты перед плотностью глюонов имеют следующий вид: ~ $(1-x)\alpha_s \ln(1-x)$ и ~ $(1-x)\alpha_s^2 \ln^3(1-x)$ (см. [25]). Эти асимптотические выражения дают наглядное объяснение наблюдаемой близости результатов для значений констант сильной связи, полученных в рамках НС-подхода и полного анализа, проведенных в NLO-приближении (см. [16,20,21]). Более того, их вид позволяет ожидать подобного поведения вкладов плотностей глюонов и кварков в NLO и NNLO при достаточно больших значениях х. Тем не менее такие спекулятивные соображения должны быть проверены соответствующими численными исследованиями. Мы планируем проанализировать их в наших последующих работах с помощью ПФР, сгенерированных из кодов, созданных группами [8-12].

Итак, структурная функция $F_2(x, Q^2)$ ГНР исследуется путем анализа экспериментальных данных [5–7, 26–28] Коллабораций SLAC, NMC и BCDMS в NNLO-приближении в рамках безмассовой КХД. Как и в наших предыдущих работах, функция $F_2(x, Q^2)$ представлена как сумма вкладов ведущего (второго) и четвертого твистов:

$$F_{2}(x,Q^{2}) = F_{2}^{p\text{QCD}}(x,Q^{2}) \left(1 + \frac{\tilde{h}_{4}(x)}{Q^{2}}\right), \quad (1)$$

где $F_2^{pQCD}(x,Q^2)$ обозначает вклад второго твиста с включенной поправкой за счет массы мишени. Вторым слагаемым $\sim \tilde{h}_4(x)$ представлена ненулевая поправка за счет четвертого твиста. Более подробная информация о деталях анализа экспериментальных данных может быть найдена в работах [16, 18].

2.1. Партонные плотности

Моменты $\mathbf{f}_i(n, Q^2)$ ПФР (i = NS, q, g) при некотором значении Q_0^2 являются исходными данными в нашем анализе. При накладывании ограничения $x \ge 0.25$ должна быть учтена только НС-партонная плотность и мы используем следующие параметризации ее нормировки: для дейтронной $ilde{\mathbf{f}}_{\mathrm{D}}(x,Q^2)$, углеродной $ilde{\mathbf{f}}_{\mathrm{C}}(x,Q^2)$ и протонной $ilde{\mathbf{f}}_{\mathrm{H}}(x,Q^2)$ плотностей:

$$\mathbf{f}(n,Q^2) = \int_0^1 dx x^{n-2} \tilde{\mathbf{f}}(x,Q^2), \qquad (2)$$

где $A(Q^2)$, $\lambda(Q^2)$, $b(Q^2)$ и $d(Q^2)$ – некоторые коэффициентные функции. Нормировочная константа $N_{\rm H}$ имеет вид

$$N_{\rm H} = \int_{0}^{1} \frac{dx}{x} x^{\lambda_{\rm H}(Q^2)} [1 - x]^{b_{\rm H}(Q^2)} \Big[1 + d_{\rm H}(Q^2) x \Big] = (3)$$
$$= \frac{\Gamma(\lambda_{\rm H}(Q^2)) \Gamma(1 + b_{\rm H}(Q^2))}{\Gamma(1 + \lambda_{\rm H} + b_{\rm H}(Q^2))} \times \Big[1 + d_{\rm H}(Q^2) \frac{\lambda_{\rm H}(Q^2)}{1 + \lambda_{\rm H} + b_{\rm H}(Q^2)} \Big],$$

а фактор I_2 связан с правилом сумм Готтфрида I_G [19] (см. также обзор [29]) следующим образом:

$$I_{\rm G}(Q^2) = C_{\rm NS}(a_s(Q^2))I_2(Q^2) =$$
(4)
= $(1 + B_{\rm G}a_s^2(Q^2))I_2(Q^2), a_s(Q^2) = \frac{\alpha_s(Q^2)}{4\pi},$

где [30-32]

$$B_{\rm G} \equiv B_{\rm NS}^{(2)}(n=1) \approx -0.615732.$$
 (5)

Как видно из формул (2), правило сумм Готтфрида непосредственно включено в нормировку плотностей партонов. Здесь мы придерживаемся стандартного приближения, что плотности дейтрона и углерода содержат только синглетные части, а разница дейтронной и протонной плотностей является чисто несинглетной.

Заметим, что результат (5) не может быть получен непосредственно в стандартных вычислениях меллиновских моментов СФ F_2 с помощью оптической теоремы и результатов для сечения рассеяния вперед (см., например, обзор [33] и обсуждения в нем). Такой стандартный подход

ЯДЕРНАЯ ФИЗИКА том 81 № 2 2018

обеспечивает вычисление только четных моментов Меллина. Величина $B_{\rm G}$ в (5) получается из аналитического продолжения [32, 34] результатов для четных моментов Меллина или через интегралы соответствующих ядер расщепления в *x*-пространстве, полученных в свою очередь из четных моментов Меллина и некоторых дополнительных свойств симметрии [30, 31]. Оба подхода приводят к одинаковым результатам.

Правило сумм Готтфрида I_G имеет вид:

$$I_{\rm G}(Q^2) = 1 - 2 \int_0^1 \frac{dx}{x} \left(\mathbf{f}_{\overline{d}}(x, Q^2) - \mathbf{f}_{\overline{u}}(x, Q^2) \right).$$
(6)

Экспериментально при $Q_c^2 = 4 \ \Gamma \Im B^2$ было получено (см. [35])

$$I_{\rm G}(Q_c^2) = 0.705 \pm 0.078,$$
 (7)

следовательно, существует достаточно большой вклад от второго слагаемого правой части (6), т.е. от асимметричного моря.

2.2. Процедура фитирования

Как и во всех предыдущих наших работах по данной теме, мы используем метод полиномов Якоби (см., например, [36–38]). Из КХД-выражения для моментов Меллина $M_n^{pQCD}(Q^2)$ (см., например, [18]) СФ $F_2^{pQCD}(x,Q^2)$ реконструируются с помощью метода разложения по полиномам Якоби:

$$F_2^{p ext{QCD}}ig(x, Q^2ig) = x^a (1-x)^b \sum_{n=0}^{N_{ ext{max}}} \Theta_n^{a,b}(x) imes \ imes \sum_{j=0}^n c_j^{(n)}(a,b) M_{j+2}^{p ext{QCD}}ig(Q^2ig),$$

где $\Theta_n^{a,b}$ – полиномы Якоби, а a, b – параметры, определяемые из фитов экспериментальных данных, на которые накладывается требование минимальной погрешности при реконструкции структурных функций. Как обычно, используется пакет MINUIT [39] для минимизации значения χ^2 в описании двух переменных, а именно самой СФ F_2 и ее логарифмического "наклона" $d \ln F_2(x, Q^2)/d \ln \ln (Q^2/\Lambda^2)$. Разложение на твисты считается применимым выше $Q^2 \sim 1$ ГэВ², поэтому нами введено глобальное ограничение $Q^2 \geq 1$ ГэВ² для всего анализа.

Как уже было найдено в [18, 37], результаты HC-анализов независимы от значения $N_{\rm max}$, если $N_{\rm max} \ge 8$. Таким образом, в настоящей работе мы берем $N_{\rm max} = 8$.

Для различных экспериментов мы используем свободную нормировку данных. В качестве эталонного набора используются наиболее стабильные данные Коллаборации BCDMS при рассеянии на дейтроне для значения начальной энергии пучка $E_0 = 200$ ГэВ. Если другие наборы данных принимаются в качестве эталонных, изменение конечных результатов оказывается незначительным. В случае фиксированной нормировки для каждого набора данных фиты, как правило, дают немного худшее значение χ^2 .

3. Q^2 -ЗАВИСИМОСТЬ МОМЕНТОВ СФ F_2

 Q^2 -зависимость части моментов С Φ , содержащей только твист-2,

$$M_n(Q^2) = \int_0^1 x^{n-2} F_2(x, Q^2) dx,$$
 (8)

имеет следующий вид:

$$M_n^{\rm NS}(Q^2) = R_n^{\rm NS} \times \tilde{M}_n^{\rm NS}(Q^2), \qquad (9)$$

где R_n^{NS} — нормировочная константа, а величина \tilde{M} , рассчитываемая в рамках TB, содержит произведение коэффициентной функции $C_{NS}(n, a_s(Q^2))$ и "ренормгрупповой экспоненты" $h^{NS}(n, Q^2)$:

$$\tilde{M}_n^{\rm NS}(Q^2) = C_{\rm NS}(n, a_s(Q^2))h^{\rm NS}(n, Q^2), \quad (10)$$

с

$$C_{\rm NS}(n, a_s(Q^2)) = 1 + a_s(Q^2) B_{\rm NS}^{(1)}(n) + (11) + a_s^2(Q^2) B_{\rm NS}^{(2)}(n) + \mathcal{O}(a_s^3(Q^2))$$

И

$$h^{\rm NS}(n,Q^2) = a_s(Q^2)^{\frac{\gamma_{\rm NS}^{(0)}(n)}{2\beta_0}} \times$$
(12)

$$\times \Big[1 + a_s(Q^2) Z_{\rm NS}^{(1)}(n) + a_s^2(Q^2) Z_{\rm NS}^{(2)}(n) + \mathcal{O}(a_s^3(Q^2)) \Big],$$

где

$$Z_{\rm NS}^{(1)}(n) = \frac{1}{2\beta_0} \Big[\gamma_{\rm NS}^{(1)}(n) - \gamma_{\rm NS}^{(0)}(n) b_1 \Big], \ b_i = \frac{\beta_i}{\beta_0}, \quad (13)$$

$$Z_{\rm NS}^{(2)}(n) = \frac{1}{4\beta_0} \Big[\gamma_{\rm NS}^{(2)}(n) - \gamma_{\rm NS}^{(1)}(n) b_1 + + \gamma_{\rm NS}^{(0)}(n) (b_1^2 - b_2) \Big] + \frac{1}{2} \Big(Z_{\rm NS}^{(1)}(n) \Big)^2.$$

Здесь $\gamma_{NS}^{(k)}(n)$ – коэффициенты перед степенями a_s в разложении аномальной размерности $\gamma_{NS}(n, a_s)$.

Эволюция моментов $M_n(f,Q^2)$ внутри интервала с одинаковым значением f активных кварков имеет простой вид [17]:

$$\frac{M_n(f,Q_1^2)}{M_n(f,Q_2^2)} = \frac{\tilde{M}_n(f,Q_1^2)}{\tilde{M}_n(f,Q_2^2)}.$$
(14)

4. ПОРОГИ РОЖДЕНИЯ КВАРКОВ

Следуя [17], на пороге рождения кварка сорта $f, Q^2 = Q_f^2, C\Phi F_2(x,Q^2)$ (1) и все ее моменты (8) демонстрируют гладкое поведение в НС-приближении (здесь фактор f обозначает область с f-активными кварками):

$$M_n(f, Q_f^2) = M_n(f - 1, Q_f^2).$$
 (15)

Как результат, получаем связь между нормировками $R_n(f)$ при разных значениях f (в этом разделе индекс NS опустим для упрощения восприятия формул):

$$\frac{R_n(f)}{R_n(f-1)} = \frac{\tilde{M}_n(f-1,Q_f^2)}{\tilde{M}_n(f,Q_f^2)}.$$
 (16)

Таким образом, если Q^2 и Q_0^2 – такие величины, которые соответствуют интервалам с различными значениями активных кварков, например, f = 4 и f = 5, то соответственно эволюция моментов СФ от Q_0^2 к Q^2 должна содержать следующий фактор:

$$\frac{M_n(f=4,Q^2)}{M_n(f=4,Q_{f=5}^2)} \frac{M_n(f=5,Q_{f=5}^2)}{M_n(f=5,Q_0^2)},$$
 (17)

который согласно (15) будет выглядеть как

$$\frac{M_n(f=4,Q^2)}{M_n(f=5,Q_0^2)} = \frac{\tilde{M}_n(f=4,Q^2)}{\tilde{M}_n(f=5,Q_0^2)} \frac{R_n(f=4)}{R_n(f=5)},$$
 (18)

а константа сильного взаимодействия приобретает дополнительные члены (см. [40] и ссылки в ней)

$$\frac{a_s(f-1,Q_f^2)}{a_s(f,Q_f^2)} = 1 - \frac{2}{3}l_f a_s(f,Q_f^2) + (19) + \frac{4}{3}(l_f^2 - \frac{57}{2}l_f + \frac{11}{2})a_s^2(f,Q_f^2),$$

ЯДЕРНАЯ ФИЗИКА том 81 № 2 2018

$$\frac{a_s(f,Q_f^2)}{a_s(f-1,Q_f^2)} = 1 + \frac{2}{3}l_f a_s(f-1,Q_f^2) + (20) + \frac{4}{3}\left(l_f^2 + \frac{57}{2}l_f - \frac{11}{2}\right)a_s^2(f-1,Q_f^2)$$

с

$$l_f = \ln\left(Q_f^2/m_f^2\right),\tag{21}$$

где m_f обозначает массу кварка сорта f. Аналогично, если значения Q^2 и Q_0^2 относятся к интервалам с f = 3 и f = 5, тогда эволюция M_n от Q_0^2 к Q^2 должна содержать следующий фактор:

$$\frac{M_n(f=3,Q^2)}{M_n(f=3,Q_{f=4}^2)}\frac{M_n(f=4,Q_{f=4}^2)}{M_n(f=4,Q_{f=5}^2)}\frac{M_n(f=5,Q_{f=5}^2)}{M_n(f=5,Q_0^2)},$$
(22)

который согласно (15) упрощается как

$$\frac{M_n(f=3,Q^2)}{M_n(f=5,Q_0^2)} = \frac{\tilde{M}_n(f=3,Q^2)}{\tilde{M}_n(f=5,Q_0^2)} \frac{R_n(f=3)}{R_n(f=5)}.$$
 (23)

Другими словами, значения моментов на самих порогах вклада не дают, так как всегда сокращаются согласно (15)³⁾.

Таким образом, если значение $Q^2(Q_0^2)$ принадлежит интервалу с числом $f(f_0)$ активных кварков, то эволюция оказывается очень простой:

$$\frac{M_n(f,Q^2)}{M_n(f_0,Q_0^2)} = \frac{\tilde{M}_n(f,Q^2)}{\tilde{M}_n(f_0,Q_0^2)} \frac{R_n(f)}{R_n(f_0)}.$$
 (24)

Возвращаясь к правилу сумм Готтфрида, получаем, что $I_G(f,Q^2) \equiv M_{n=1}(f,Q^2)$ является глад-ким в точке $Q^2 = Q_f^2$:

$$I_{\mathcal{G}}\left(f, \mathcal{Q}_{f}^{2}\right) = I_{\mathcal{G}}\left(f - 1, \mathcal{Q}_{f}^{2}\right),\tag{25}$$

и эволюция имеет вид (если значение Q^2 (Q_0^2) принадлежит интервалу с числом $f(f_0)$ активных кварков)

$$\frac{I_{\rm G}(f,Q^2)}{I_{\rm G}(f_0,Q_0^2)} = \frac{\tilde{M}_{n=1}(f,Q^2)}{\tilde{M}_{n=1}(f_0,Q_0^2)} \frac{R_{n=1}(f)}{R_{n=1}(f_0)}.$$
 (26)

Заметим, что значение \tilde{M}_n упрощается при n = 1, так как $B_{NS}^{(1)}(n = 1) = 0$ и $\gamma_{NS}^{(0)}(n = 1) = 0$.

Действительно.

$$C_{\rm NS}(n=1, a_s(Q^2)) = 1 + a_s^2(Q^2)B_{\rm G} + \mathcal{O}(a_s^3(Q^2))$$
(27)

$$h^{\rm NS}(n,Q^2) = 1 + a_s(Q^2)d_1 +$$
(28)
+ $\frac{1}{2}a_s^2(Q^2)[d_2 + (d_1 - b_1)d_1],$
 $b_1 = \frac{\beta_1}{\beta_0}, \quad d_i = \frac{\gamma_{\rm NS}^{(i)}(n=1)}{2\beta_0},$

c ([32, 41])

$$\gamma_{\rm NS}^{(1)}(n=1) = \frac{8}{9} [13 + 8\zeta_3 - 12\zeta_2] \approx 7.28158, \quad (29)$$

$$\gamma_{\rm NS}^{(2)}(n=1) \approx 161.713785 - 2.429260f$$

(см. также уравнения (4) и (5)).

Заметим, что $I_2(Q^2)$ может быть получен для лю-бого значения Q^2 путем обращения уравнения (4):

$$I_2(Q^2) = \frac{I_G(Q^2)}{1 + B_G a_s^2(Q^2)},$$
(30)

где *B*_G дается в (5).

5. РЕЗУЛЬТАТЫ

Поскольку анализ основан на рассмотрении распределений валентных кварков и не связан с глюонами, мы накладываем ограничение на переменную Бьеркена $x \ge 0.25$, что эффективно исключает область, где плотность глюонов ненулевая. Так как разложение по твистам применимо только при значениях Q^2 , больших чем ~1 ГэВ², ограничение $O^2 > 1$ ГэВ² накладывается на все данные.

В качестве стартовой взята точка эволюции при $Q_0^2 = 90 \ \Gamma \ni B^2$. Это значение Q_0^2 близко к среднему значению Q^2 анализируемых экспериментальных данных. Пороги рождения тяжелых кварков взяты при $Q_f^2 = m_f^2$ с $m_c = 1.27$ ГэВ и $m_b = 4.28$ ГэВ (см. [42]).

5.1. Партонные функции распределения, константа сильного взаимодействия и поправки за счет высших твистов

Как и в работах [16, 17], данные с большими систематическими ошибками исключены из рассмотрения путем введения некоторых ограничений на кинематическую переменную Ү. Последние введены для $x \ge 0.25$ и $N_{Y_{\text{cut}}} = 5$ (см. табл. 1 в [16, 17]). Таким образом, полный набор данных состоит из 756 точек.

³⁾Это утверждение верно только формально, поскольку нормировка $R_n(f)$ переопределяется значениями моментов на порогах (см. (16)). Таким образом, значения моментов на порогах дают вклад через нормировку $R_n(f)$.

x	$\lambda_{\rm H}=0.5$	Произвольное λ_{H}
0.275	-0.167 ± 0.011	-0.167 ± 0.013
0.35	-0.205 ± 0.007	-0.205 ± 0.007
0.45	-0.161 ± 0.020	-0.162 ± 0.020
0.55	-0.137 ± 0.040	-0.138 ± 0.040
0.65	-0.129 ± 0.072	-0.132 ± 0.074
0.75	-0.148 ± 0.117	-0.148 ± 0.121

Таблица 1. Значения параметра $\tilde{h}_4(x)$

В результате анализа получены следующие значения параметров для ПФР (2) при $Q_0^2 = 90$ ГэВ²: 1) в случае фиксированного значения $\lambda_{\rm H}(Q^2) = 0.5$:

$$\begin{split} A(\mathrm{D}_2) &= 2.362 \pm 0.068, \\ A(\mathrm{C}) &= 3.301 \pm 0.065, \\ b(\mathrm{H}_2) &= 4.256 \pm 0.059, \\ b(\mathrm{D}_2) &= 4.228 \pm 0.022, \\ b(\mathrm{C}) &= 4.224 \pm 0.041, \\ d(H_2) &= 12.16 \pm 2.35, \\ d(\mathrm{D}_2) &= 3.956 \pm 0.258, \\ d(\mathrm{C}) &= 1.990 \pm 0.252; \end{split}$$

2) в случае произвольного значения $\lambda_{\mathrm{H}}(Q^2)$:

$$\begin{split} \lambda_{\rm H} &= 0.742 \pm 0.043, \\ A({\rm D}_2) &= 2.362 \pm 0.070, \\ A({\rm C}) &= 3.294 \pm 0.054, \\ b({\rm H}_2) &= 4.314 \pm 0.065, \\ b({\rm D}_2) &= 4.228 \pm 0.023, \\ b({\rm C}) &= 4.226 \pm 0.041, \\ d({\rm H}_2) &= 3.979 \pm 0.941, \\ d({\rm D}_2) &= 3.957 \pm 0.266, \\ d({\rm C}) &= 2.001 \pm 0.248. \end{split}$$

Как видно, эти результаты очень близки к полученным в [17].

Значения параметров поправки за счет твиста-4 представлены в табл. 1. Хорошо видно, что они практически совпадают и, более того, очень близки к полученным в [17].

Итак, проведя анализ, основанный на несинглетной эволюции, экспериментальных данных Коллабораций SLAC, NMC и BCDMS для СФ *F*₂ при фиксированном значении $\lambda_{H}=0.5,$ мы получаем (с $\chi^{2}/dof=1.03)$

$$\alpha_s \left(M_Z^2 \right) = 0.11795 + \tag{31}$$

+ $\left\{ \begin{array}{l} \pm 0.0004 \text{ (стат.)} \pm 0.0018 \text{ (сист.)} \pm 0.0006 \text{ (норм.)}, \\ \pm 0.0019 \text{ (полная эксп. ошибка)}. \end{array} \right.$

При произвольном $\lambda_{\rm H}(Q^2)$ был получен следующий результат (с $\chi^2/{
m dof}=0.88$):

$$\alpha_s \left(M_Z^2 \right) = 0.11798 + \tag{32}$$

 $+ egin{cases} \pm 0.0003 \mbox{ (стат.)} \pm 0.0019 \mbox{ (сист.)} \pm 0.0005 \mbox{ (норм.)}, \ \pm 0.0020 \mbox{ (полная эксп. ошибка)}. \end{cases}$

Видно, что в пределах ошибок значения константы связи сильного взаимодействия $\alpha_s(M_Z^2)$ практически одинаковы в случаях с фиксированным и произвольным значениями $\lambda_{\rm H}$.

5.2. Второй момент n=2

Второй момент n = 2, характеризующий разницу валентных частей распределений *u*- и *d*-кварков, активно изучается также в решеточных моделях. Следуя [43–45], оценим его значения.

Разница распределений валентных *u*- и *d*-кварков может быть извлечена при больших значениях *x* напрямую из HC-плотностей партонов в протоне и дейтроне:

$$\tilde{\mathbf{f}}_{u}^{v}(x,Q^{2}) - \tilde{\mathbf{f}}_{d}^{v}(x,Q^{2}) \approx \tilde{\mathbf{f}}_{H}(x,Q^{2}) - \tilde{\mathbf{f}}_{D}(x,Q^{2}), \quad (33)$$

так как здесь вклад морских кварков и антикварков пренебрежим. Действительно, в согласии с правилами кваркового счета [23] при больших значениях x плотность морских кварков подавлена дополнительными факторами, $\sim (1 - x)$ и $\sim (1 - x)^2$ по сравнению с глюонами и валентными кварками

Таблица 2. Разность $\mathbf{f}_{u}^{v}(2,Q^{2}) - \mathbf{f}_{d}^{v}(2,Q^{2})$

Q^2 , ГэВ ²	$\lambda_{\rm H}=0.5$	Произвольное λ _Н
90	0.110 ± 0.012	0.115 ± 0.013
4	0.139 ± 0.016	0.145 ± 0.016
2	0.150 ± 0.017	0.157 ± 0.017
1	0.179 ± 0.020	0.187 ± 0.021

Результаты вычислений на решетке для второго момента в зависимости от массы пиона m_{π} , взятые из работы [46]; ККS – наши данные для $\langle x \rangle_{u-d} \equiv \mathbf{f}_{u}^{v}(2, Q^{2}) - \mathbf{f}_{d}^{v}(2, Q^{2})$, полученные при $Q^{2} = 1$ ГэВ².

соответственно. Видно, что вклад морских кварков и антикварков еще менее важен, чем вызванный глюонами, и оба этих вклада являются пренебрежимыми при больших значениях *х*.

Таким образом, используя результаты, приведенные в (31) и (32), получаем для разности вторых моментов $\mathbf{f}_{u}^{v}(2,Q^{2}) - \mathbf{f}_{d}^{v}(2,Q^{2})$ значения, которые приведены в табл. 2.

Следуя [3], хотелось бы отметить, что результаты, полученные на решетке, строго непертурбативные, и поэтому корректнее сравнивать их с нашим результатом, полученным при $Q^2 = 1 \ \Gamma \ni B^2$, что соответствует в настоящем анализе границе между пертурбативным и непертурбативным режимами КХД. Сравнение наших результатов (при $Q^2 = 1 \ \Gamma \ni B^2$) с полученными в рамках решеточной КХД показано на рисунке. Точки, полученные на решетке, взяты из недавней работы [46].

Хорошо видно, что результат анализа с произвольным значением $\lambda_{\rm H}$ практически совпадает с представленным в [3]. Однако полученные здесь результаты демонстрируют значительно меньшие неопределенности, что является прямым следствием использования в анализе новой формы (2) и (3), принятой для параметризации ПФР.

6. ЗАКЛЮЧЕНИЕ

В настоящей работе метод, основанный на разложении моментов структурных функций нуклона по полиномам Якоби и разработанный в [36,37], был использован для анализа Q^2 -эволюции структурной функции F_2 ГНР путем фитирования данных, полученных в экспериментах с фиксированной мишенью и удовлетворяющих ограничению $x \ge 0.25$. Одним из результатов анализа стало значение константы сильного взаимодействия, полученное в точке нормировки.

Результаты, полученные в данной работе, вполне согласуются с результатами, найденными в наших предыдущих работах [17, 3]. Кроме того, они практически совпадают для обоих рассмотренных случаев (с фиксированной $\lambda_{\rm H} = 0.5$ и произвольной $\lambda_{\rm H}$), так как их средние значения совпадают, а полученная разница содержится лишь в ошибках. Для $\lambda_{\rm H} = 0.5$ получаем

$$lpha_sig(M_Z^2ig)=0.1180\pm 0.0019$$
 (полная эксп. ошибка).

(34)

При произвольных значениях λ_H имеем

$$lpha_sig(M_Z^2ig)=0.1180\pm 0.0020$$
 (полная эксп. ошибка). (35)

Наш результат практически совпадает также с центральным средним мировым значением

$$\alpha_s(M_Z^2)|_{\text{среднее мировое}} = 0.1181 \pm 0.0011,$$
 (36)

представленным в [42].

Для результатов второго момента $\langle x \rangle_{u-d}$ наблюдается хорошее согласие с недавним результатом, полученным в КХД на решетке [46] (см. рисунок).

В качестве следующих шагов наших исследований мы планируем выполнить N³LO-анализ при больших значениях х. Для этого будем использовать известные трехпетлевые результаты для коэффициентных функций [47], а также четырехпетлевые поправки для нескольких первых моментов аномальных размерностей (см. работы [48, 49] и обсуждения в них). Знание нескольких первых моментов аномальных размерностей достаточно для проведения анализа такого типа. В некотором смысле такое исследование будет похоже на первый NNLO-анализ, выполненный в [1]. Отметим, что несколько N³LO-анализов уже было проведено в работах [44, 50], где авторы предположили, что четырехпетлевые аномальные размерности, полностью неизвестные в то время, дают пренебрежимо малый вклад.

Мы также планируем исследовать влияние некоторых пересуммирований в рамках ТВ, к которым приводит применение метода эффективных зарядов Грюнберга [51] (как это уже было сделано в [52] в NLO-приближении), а также использование "замороженной" и аналитической модификаций константы сильной связи (см. [53] и ссылки). Заметим, что такие пересуммирования и применение эффективных констант сильного взаимодействия, имеющих хорошее инфракрасное поведение, часто приводят к значительному улучшению согласия между экспериментальными данными и теоретическими предсказаниями (см. [52, 54] и [53, 55] соответственно и ссылки, и обсуждения в них). Мы надеемся, что аналогичные свойства будут подтверждены и в ходе предстоящих исследований.

Работа выполнена при поддержке гранта РФФИ № 16-02-00790-а.

СПИСОК ЛИТЕРАТУРЫ

- G. Parente, A. V. Kotikov, and V. G. Krivokhizhin, Phys. Lett. B 333, 190 (1994).
- A. Accardi, S. Alekhin, J. Blümlein, M.V. Garzelli, K. Lipka, W. Melnitchouk, S. Moch, J. F. Owens, R. Plačakytė, E. Reya, N. Sato, A. Vogt, and O. Zenaiev, Eur. Phys. J. C 76, 471 (2016).
- A. V. Kotikov, V. G. Krivokhizhin, and B. G. Shaikhatdenov, J. Phys. G 42, 095004 (2015).

- A. V. Kotikov, V. G. Krivokhizhin, B. G. Shaikhatdenov, Письма в ЖЭТФ 101, 155 (2015) [JETP Lett. 101, 141 (2015)].
- BCDMS Collab. (A. C. Benvenuti *et al.*), Phys. Lett. B 223, 485 (1989).
- BCDMS Collab. (A. C. Benvenuti *et al.*), Phys. Lett. B 237, 599 (1990).
- BCDMS Collab. (A. C. Benvenuti *et al.*), Phys. Lett. B 195, 91 (1987).
- S. Alekhin, J. Blümlein, and S. Moch, Phys. Rev. D 89, 054028 (2014).
- 9. P. Jimenez-Delgado and E. Reya, Phys. Rev. D 89, 074049 (2014).
- J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, and C.-P. Yuan, Phys. Rev. D 89, 033009 (2014).
- 11. NNPDF Collab. (R. D. Ball *et al.*), Nucl. Phys. B **867**, 244 (2013).
- A. D. Martin, A. J. Th. M. Mathijssen, W. J. Stirling, R. S. Thorne, B. J. A. Watt, and G. Watt, Eur. Phys. J. C 73, 2318 (2013); L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Eur. Phys. J. C 75, 204 (2015).
- 13. R. S. Thorne, Eur. Phys. J. C 74, 2958 (2014).
- 14. G. Watt, JHEP 1109, 069 (2011).
- V. Genchev et al., in Proceedings of the VII International Seminar on High Energy Physics Problems, Dubna, 1988, Vol. 2, p. 6.
- V. G. Krivokhizhin, A. V. Kotikov, *A*Φ **68**, 1935 (2005) [Phys. Atom. Nucl. **68**, 1873 (2005)].
- B. G. Shaikhatdenov, A. V. Kotikov, V. G. Krivokhizhin, and G. Parente, Phys. Rev. D 81, 034008, 079904 (Erratum) (2010).
- 18. В. Г. Кривохижин, А. В. Котиков, ЭЧАЯ **40**, 226 (2009) [Phys. Part. Nucl. **40**, 1059 (2009)].
- 19. K. Gottfried, Phys. Rev. Lett. 18, 1174 (1967).
- 20. BCDMS Collab. (A. C. Benvenuti *et al.*), Phys. Lett. B **223**, 490 (1989).
- BCDMS Collab. (A. C. Benvenuti *et al.*), Phys. Lett. B 195, 97 (1987); J. J. Aubert *et al.* (European Muon Collab.), Nucl. Phys. B 259, 189 (1985); 272, 158 (1986); H. Abramowicz *et al.* (CDHS Collab.), Z. Phys. C 17, 283 (1983); F. Bergsma *et al.* [CHARM Collab.], Phys. Lett. B 123, 269 (1983); 153, 111 (1985).
- 22. В. Н. Грибов, Л. Н. Липатов, ЯФ 15, 781, 1218 (1972) [Sov. J. Nucl. Phys. 15, 438, 675 (1972)]; Л. Н. Липатов, ЯФ 20, 181 (1975) [Sov. J. Nucl. Phys. 20, 94 (1975)]; G. Altarelli and G. Parisi, Nucl. Phys. В 126, 298 (1977); Ю. Л. Докшицер, ЖЭТФ 73, 1216 (1977) [Sov. Phys. JETP 46, 641 (1977)].
- V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze, Lett. Nuovo Cimento 7, 719 (1973); S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973);
 S. J. Brodsky, J. Ellis, E. Gardi, M. Karliner, and M. A. Samuel, Phys. Rev. D 56, 6980 (1997).
- 24. W. L. van Neerven and A. Vogt, Nucl. Phys. B 568, 263 (2000).
- 25. W. L. van Neerven and A. Vogt, Nucl. Phys. B 568, 345 (2000).

- L. W. Whitlow, E. M. Riordan, S. Dasu, S. Rock, and A. Bodek, Phys. Lett. B 282, 475 (1992).
- L. W. Whitlow, PhD Thesis (Standford University, 1990); SLAC Report № 357.
- New Muon Collab. (M. Arneodo *et al.*), Nucl. Phys. B 483, 3 (1997).
- 29. S. Kumano, Phys. Rept. 303, 183 (1998).
- D. A. Ross and C. T. Sachrajda, Nucl. Phys. B 149, 497 (1979); G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys. B 175, 27 (1980).
- 31. A. L. Kataev and G. Parente, Phys. Lett. B 566, 120 (2003).
- 32. A. V. Kotikov and V. N. Velizhanin, hep-ph/0501274.
- 33. А. В. Котиков, ЭЧАЯ **38**, 5 (2007) [Phys. Part. Nucl. **38**, 1, 828 (Erratum) (2007)].
- 34. D. I. Kazakov and A. V. Kotikov, Nucl. Phys. B 307, 721 (1988); Nucl. Phys. B 345, 299 (Erratum) (1990);
 A. В. Котиков, ЯФ 57, 142 (1994) [Phys. Atom. Nucl. 57, 133 (1994)].
- M. Arneodo *et al.* (New Muon Collab.), Phys. Rev. D 50, R1 (R) (1994).
- G. Parisi and N. Sourlas, Nucl. Phys. B 151, 421 (1979);
 I. S. Barker, C. S. Langensiepen, and G. Shaw, Nucl. Phys. B 186, 61 (1981). I.S. Barker, B. R. Martin, and G. Shaw, Z. Phys. C 19, 147 (1983); I. S. Barker and B. R. Martin, Z. Phys. C 24, 255 (1984).
- V. G. Krivokhizhin, S. P. Kurlovich, R. Lednicky, S. Nemecek, V. V. Sanadze, I. A. Savin, A. V. Sidorov, and N. B. Skachkov, Z. Phys. C 48, 347 (1990);
 V. G. Krivokhizhin, S. P. Kurlovich, V. V. Sanadze, I. A. Savin, A.V. Sidorov, and N. B. Skachkov, Z. Phys. C 36, 51 (1987).
- A. L. Kataev, A. V. Kotikov, G. Parente, and A. V. Sidorov, Phys. Lett. B 388, 179 (1996); Phys. Lett. B 417, 374 (1998); A. L. Kataev, G. Parente, and A. V. Sidorov, Nucl. Phys. B 573, 405 (2000).
- F. James and M. Ross, *MINUIT*, CERN Computer Center Library, D 505 (Geneve, 1987).
- B. A. Kniehl, A. V. Kotikov, A. I. Onishchenko, and O. L. Veretin, Phys. Rev. Lett. 97, 042001 (2006).
- D. J. Broadhurst, A. L. Kataev, and C. J. Maxwell, Phys. Lett. B 590, 76 (2004).
- 42. C. Patrignani *et al.* (Particle Data Group), Chin. Phys. C **40**, 100001 (2016).

- 43. S. Alekhin, J. Blümlein, and S. Moch, Phys. Rev. D 86, 054009 (2012).
- 44. J. Blümlein, H. Böttcher, and A. Guffanti, Nucl. Phys. B 774, 182 (2007).
- S. Alekhin, J. Blümlein, L. Caminada, K. Lipka, K. Lohwasser, S. Moch, R. Petti, and R. Plačakytė, Phys. Rev. D 91, 094002 (2015).
- A. Abdel-Rehim, C. Alexandrou, M. Constantinou, P. Dimopoulos, R. Frezzotti, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, B. Kostrzewa, G. Koutsou, M. Mangin-Brinet, M. Oehm, G. C. Rossi, C. Urbach, and U. Wenger, Phys. Rev. D 92, 114513 (2015); 93, 039904 (Erratum) (2016).
- 47. J. A. M. Vermaseren, A. Vogt, and S. Moch, Nucl. Phys. B 724, 3 (2005).
- V. N. Velizhanin, arXiv: 1411.1331 [hep-ph]; Nucl. Phys. B 860, 288 (2012).
- P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Nucl. Part. Phys. Proc. 261–262, 3 (2015); J. Davies, A. Vogt, B. Ruijl, T. Ueda, and J. A. M. Vermaseren, Nucl. Phys. B 915, 335 (2017).
- 50. A. L. Kataev, G. Parente, A. V. Sidorov, ЭЧАЯ **34**, 43 (2003) [Phys. Part. Nucl. **34**, 20 (2003); **38**, 827 (Erratum) (2007)].
- G. Grunberg, Phys. Lett. B 95, 70 (1980); 110, 501 (Erratum) (1982); Phys. Rev. D 29, 2315 (1984).
- A. V. Kotikov, G. Parente, and J. Sánchez Guillen, Z. Phys. C 58, 465 (1993).
- A. V. Kotikov, V. G. Krivokhizhin, and B. G. Shaikhatdenov, *A*Φ **75**, 543 (2012) [Phys. Atom. Nucl. **75**, 507 (2012)].
- 54. A. V. Kotikov, Phys. Lett. В **338**, 349 (1994); A. B. Котиков, Б. Г. Шайхатденов, ЯФ **78**, 563 (2015) [Phys. Atom. Nucl. **78**, 525 (2015)].
- G. Cvetič, A. Yu. Illarionov, B. A. Kniehl, and A. V. Kotikov, Phys. Lett. B 679, 350 (2009); A. V. Kotikov, A. V. Lipatov, and N. P. Zotov, ЖЭΤΦ 128, 938 (2005)
 [J. Exp. Theor. Phys. 101, 811 (2005)]; A. V. Kotikov and B. G. Shaikhatdenov, ЭЧАЯ 44, 1049 (2013) [Phys. Part. Nucl. 44, 543 (2013)]; arXiv: 1606.07888 [hep-ph]. C. Ayala, G. Cvetic, A. V. Kotikov, and B. G. Shaikhatdenov, arXiv: 1708.06284 [hep-ph].

GOTTFRIED SUM RULE IN QCD NS ANALYSIS OF DIS FIXED TARGET DATA

A. V. Kotikov, V. G. Krivokhizhin, B. G. Shaikhatdenov

Deep inelastic scattering data on F_2 structure function obtained in the fixed-target experiments were analyzed in the valence quark approximation with a next-to-next-to-leading-order accuracy. Parton distribution functions are parametrized by using information from the Gottfried sum rule. The strong coupling constant is found to be $\alpha_s(M_Z^2) = 0.1180 \pm 0.0020$ (total exp. error), which coincides very well with the average world value $\alpha_s^{PDG}(M_Z^2) = 0.1181 \pm 0.0011$ updated recently in a PDG report. The result for the second moment of the difference in *u* and *d* quark distributions $\langle x \rangle_{u-d} = 0.187 \pm 0.021$ is seen to be well compatible with the latest LATTICE result $\langle x \rangle_{u-d}^{LATTICE} = 0.208 \pm 0.024$.