= ЯДРА =

ОСОБЕННОСТИ ПОЛНЫХ СЕЧЕНИЙ РЕАКЦИЙ СО СЛАБОСВЯЗАННЫМИ ЯДРАМИ ⁶Не, ⁹Li

© 2017 г. Ю. Э. Пенионжкевич^{1),2)*}, Ю. Г. Соболев¹⁾, В. В. Самарин^{1),3)}, М. А. Науменко¹⁾

Поступила в редакцию 18.01.2017 г.

Измерены энергетические зависимости полных сечений реакций ⁶He + Si и ⁹Li + Si в диапазоне энергий пучка 5–20 *A* МэВ. Получено согласие с опубликованными экспериментальными данными для реакции ⁶He + Si. Для реакции ⁹Li + Si получены новые данные в окрестности локального повышения полного сечения. Проведен теоретический анализ возможных причин появления этой особенности при столкновении ядер ⁶He и ⁹Li с ядрами Si, в том числе влияния внешних слабосвязанных нейтронов ядер-снарядов.

DOI: 10.7868/S004400271705021X

1. ВВЕДЕНИЕ

Изучение особенностей взаимодействия нейтронно-избыточных слабосвязанных ядер позволяет исследовать проявления структуры этих ядер (кластеры, нейтронное гало) [1]. Характерное для изотопов гелия и лития малое число протонов Z и нейтронов N в ядрах, а также широкий диапазон их отношения N/Z (1-3.0 и 1-2.67 для изотопов $^{4-8}$ Не и $^{6-11}$ Li соответственно) создают благоприятные условия для проверки различных микроскопических моделей ядерных реакций с ними. Одним из критериев корректности моделей служит согласие между теоретическими и экспериментальными значениями полного сечения ядерной реакции $\sigma_{R}(E)$. В работе [2] при измерении энергетической зависимости $\sigma_R(E)$ в реакции ⁶He + Si в диапазоне энергий $E = 10 - 20 A M ext{ M}$ было обнаружено локальное превышение ("бамп") величины $\sigma_R(E)$ над расчетными величинами сечения, полученными в рамках эмпирических моделей. Этот факт требовал дальнейшего экспериментального исследования и теоретического анализа с помощью микроскопических моделей. Настоящая работа является продолжением исследований в данном направлении и содержит результаты измерений энергетической зависимости сечений $\sigma_R(E)$ реакций ⁶He + Si и ⁹Li + Si с использованием трансмиссионной методики, а также результаты теоретического анализа

на основе численного решения нестационарного уравнения Шредингера для внешних слабосвязанных нейтронов ядер-снарядов ⁶Не и ⁹Li.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ ПОЛНОГО СЕЧЕНИЯ РЕАКЦИИ

Полное сечение ядерных реакций является важной измеряемой физической величиной, которая дает информацию о взаимодействии атомных ядер и особенностях их структуры. К настоящему времени опубликовано большое количество работ с результатами измерения полных сечений реакций, полученными с использованием различных экспериментальных методик. В настоящей работе использовалась трансмиссионная методика измерения полных сечений реакций. В этой методике величины полного сечения реакции σ_R определялись соотношением потока I_0 частиц, падающих на мишень, и потока I частиц, прошедших через мишень без взаимодействия:

$$I = I_0 \exp\left(-N\sigma_R\right),\tag{1}$$

где N — число ядер мишени на единицу поверхности. В экспериментах с тонкими мишенями выполняется условие $N\sigma_R \ll 1$, поэтому формула (1) может быть приведена к линейному виду

$$N\sigma_R = (I_0 - I) I_0^{-1}.$$
 (2)

При всем разнообразии экспериментальных методик все их можно разделить на две группы — трансмиссионные методы и методы аттенюации. Из выражения (2) следует, что величина σ_R может быть получена либо как результат измерения

¹⁾Объединенный институт ядерных исследований, Дубна, Россия.

²⁾Национальный исследовательский ядерный университет "МИФИ", Москва, Россия.

³⁾Государственный университет "Дубна", Дубна, Россия.

^{*}E-mail: pyuer@jinr.ru

Рис. 1. Схематические изображения многослойного $\Delta E_i - E$ Si-телескопа (*a*) и экспериментальной установки для измерения сечений реакций методикой 4π сцинтилляционного γ -спектрометра (*b*). Представлены спектры: $\Delta E_0 \cdot T_{\text{TOF}}$, используемый для идентификации частиц ⁶Не и ^{8,9}Li (*b*), и $\Delta E_0 \cdot \Delta E_2$, используемый для фокусировки частиц пучка ⁹Li на мишень (*b*). Значения энергии и времени показаны в относительных единицах (номерах каналов). Условия отбора событий потока I_0 частиц ⁹Li показаны контурами.

величин I_0 и (I_0-I) (так называемые методы трансмиссии), либо как результат измерения величин I₀ и I (так называемые методы аттенюации). Методы аттенюации предъявляют более жесткие требования к качеству пучка, особенно вторичного, получаемого из продуктов реакций фрагментации с помощью фрагмент-сепараторов. Продукты реакций фрагментации имеют широкое импульсное распределение, и для их формирования необходима специальная система коллимации, поскольку без нее сами магнитные элементы (диполи, квадруполи) являются только линейными преобразователями и, согласно теореме Лиувилля, не позволяют менять величину фазового объема. Процесс рассеяния частиц на материале коллиматоров является неустранимым источником фона для энергетических спектров частиц потоков I₀, I. Кроме того, в процессе измерения энергии частиц потока I с помощью Е-детектора из-за ядерных реакций в самом материале Е-детектора появляются дополнительные искажения в его энергетическом спектре. Все эти факторы вносят существенный вклад в систематические погрешности метода аттенюации. Методы трансмиссии менее чувствительны к качеству пучка I₀ и позволяют измерять величину сечения реакции σ_R непосредственным счетом событий реакции (I₀ – I), нормированных на величину потока I_0 . Наиболее эффективно в методе трансмиссии использование активных мишеней. В таких экспериментах мишенями являются либо тонкие полупроводниковые кремниевые и германиевые, либо сцинтилляционные ΔE -детекторы, и идентификация событий реакции ($I_0 - I$) происходит в результате анализа энергетических потерь частиц в материале детектора.

3. ПОСТАНОВКА ЭКСПЕРИМЕНТОВ С ИСПОЛЬЗОВАНИЕМ ТРАНСМИССИОННЫХ МЕТОДИК

Схема экспериментальной установки представлена на рис. 1. Установка состояла из системы полупроводниковых детекторов $\Delta E_i - E$ (i = 0 - 4) Si-телескопа [2-4] (см. рис. 1*a*), которая использовалась для измерения полного сечения $\sigma_R(E)$ реакций ^{4,6}He + Si и ^{6,7}Li + Si в диапазоне энергий $E \sim 5 - 50 A$ MэB [5], и γ -спектрометра 4π -геометрии. В данной экспериментальной установке была реализована трансмиссионная методика многослойного телескопа [2]. Один из недостатков методик многослойного телескопа заключается в невозможности идентификации каналов упругого и неупругого рассеяния. Для устранения этого недостатка в установку был включен γ -спектрометр 4π -геометрии.

Рис. 2. а — Зависимость эффективности регистрации Ω каскада γ -квантов множественностью $M_{\gamma} = 2$ CsI(Tl) γ -спектрометром MULTI в 6- и 12детекторных конфигурациях от энергии $E_{\gamma 1}$ одного из γ -квантов при фиксированной энергии второго: $E_{\gamma 2} = 0.5$ (•, •), 1.0 (•, •), 2.0 (•, □) и 3.0 МэВ (•, •). Верхнее семейство кривых соответствует 12-детекторной конфигурации, нижнее — 6детекторной. δ — Зависимость эффективности регистрации Ω каскада от множественности M_{γ} изотропного γ -излучения с энергией γ -квантов каскада $E_{\gamma} = 5.0$ (□) и 0.4 МэВ (•).

Детекторы $\Delta E_i - E$ Si-телескопа располагались вдоль оси пучка так, что только мишень ΔE_3 находилась внутри чувствительной зоны γ спектрометра, а остальные детекторы располагались снаружи (рис. 1в). Данной установкой была реализована так называемая модифицированная трансмиссионная методика для измерения полного сечения $\sigma_R(E)$ реакций ⁶He + Si и ⁹Li + Si в диапазоне энергий $E \sim 5-40~A~M$ эВ [5]. Тонкие детекторы ΔE_0 , ΔE_1 использовались для идентификации частиц пучка и определения потока Io частиц, падающих на мишень. Позиционночувствительный детектор ΔE_2 использовался в качестве так называемого активного коллиматора [6], который определял поток І0 частиц, падающих в центральную область мишени ΔE_3 . Детекторы

ЯДЕРНАЯ ФИЗИКА том 80 № 5 2017

 ΔE_4 , *E* использовались для анализа продуктов реакций, произошедших в материале мишени ΔE_3 .

Для корректной работы γ -спектрометра его эффективность регистрации Ω не должна сильно зависеть от величины множественности M_{γ} γ излучения (число ү-квантов, сопровождающих одно событие реакции) и должна быть близкой к единице. Энергетическая зависимость эффективности регистрации Ω γ-спектрометра MULTI [4, 7] каскада γ -квантов множественностью $M_{\gamma} =$ = 2 CsI(Tl) в 6- и 12-детекторных конфигурациях представлена на рис. 2а. Расчеты с помощью кода GEANT4 были проведены для каскадов изотропного излучения пар γ -квантов, в которых энергия одного из пары была постоянной и принимала значения $E_{\gamma} = 0.5, 1.0, 2.0$ и 3.0 МэВ (показаны на рис. 2а кружками, треугольниками, квадратами и звездочками соответственно), при этом энергия второго изменялась в диапазоне $E_{\gamma} = 0.5 - 3.0 \text{ МэВ.}$ Темными и светлыми точками представлены результаты расчета для 6- и 12детекторных конфигураций CsI(Tl)-спектрометра соответственно. Зависимость эффективности регистрации Ω спектрометром γ -каскада от величины его множественности M_{γ} для случаев, когда все γ кванты каскада имеют одинаковую энергию $E_\gamma =$ = 5.0 и 0.4 МэВ, представлены на рис. 26. При расчетах моделировалась изотропная эмиссия үквантов в каскаде, энергетический порог регистрации в каждом CsI(Tl)-детекторе спектрометра принимался равным величине $E_{\rm th} = 150$ кэВ. Описанная выше методика была применена в экспериментах по измерению полного сечения $\sigma_R(E)$ реакций ⁶He + Si и ⁹Li + Si в диапазоне энергий $E \sim 5-40 \ A \ M$ эВ [5]. Эксперимент проводился на ускорителе МЦ400 Лаборатории ядерных реакций ОИЯИ. Вторичный пучок продуктов реакции фрагментации пучка ${}^{11}\mathrm{B}$ с энергией $E_{\mathrm{lab}} =$ $= 32 \ A \ M$ эВ на мишени ⁹Ве формировался и очищался магнитной системой ахроматического фрагмент-сепаратора ACCULINNA [8]. На выходе фрагмент-сепаратора пучок представлял собой смесь частиц ⁶Не и ^{8,9}Li. Для уменьшения влияния эффекта наложения импульсов в ΔE_i -детекторах телескопа интенсивность пучка ограничивалась величиной $Y \sim 10^3~{
m c}^{-1}$. Энергия пучка могла варьироваться с помощью магнитной системы фрагмент-сепаратора, подбором толщин водородосодержащих пластин СН₂-поглотителей и ΔE_0 -, ΔE_1 -детекторов телескопа в пределах $E \sim$ $\sim 15{-}30~A~M$ эВ без значительной потери интенсивности У. Таким образом, частицы пучка с интенсивностью $Y \sim 10^3$ с⁻¹ проходили последовательно через тонкие пластиковые детекторы время-пролетной системы ТОГ сепаратора ACCULINNA, CH₂-поглотители, $\Delta E_i - E$ -

детекторы телескопа, в том числе и через мишень Si, являющуюся детектором. Каждое событие прохождения частицы пучка записывалось в память компьютера для последующего off-lineанализа. Идентификация частиц пучка проводилась по энергетическим потерям частиц в ΔE_0 -, ΔE_1 -детекторах телескопа и времени пролета $T_{\rm TOF}$. Пример двумерного спектра $\Delta E_0 \cdot T_{\rm TOF}$, посредством которого проводилась идентификация частиц ⁶Не и ^{8,9}Li, представлен на рис. 16. Двумерный спектр $\Delta E_0 \cdot \Delta E_2$, представленный на рис. 1*г*, позволяет отобрать из проходящих через телескоп частиц поток I_0 , направленный в центральную область кремниевого детектора ΔE_3 .

Мишень (ΔE_3 Si-детектор) располагалась в центре чувствительной зоны γ -спектрометра, в то время как все другие ΔE_i - и E-детекторы телескопа были вынесены за чувствительную зону үспектрометра. С целью уменьшения погрешности по энергии в качестве мишени в эксперименте использовались детекторы разной толщины (100, 380 или 500 мкм) в зависимости от энергии пучка. За мишенью располагались ΔE_4 - и E-детекторы телескопа в $n - \gamma$ -защите. Старт системы сбора производился для каждого события пролета частицы через ΔE_1 -детектор. Детекторы γ -спектрометра регистрировали у-кванты и нейтроны в совпадении со стартовым сигналом от ΔE_1 -детектора. Количество событий реакции $\Delta R = (I_0 - I)$ из предварительно выбранного ансамбля I_0 событий определялось из анализа энергетических потерь в ΔE_3 Si-мишени, а также анализа гамма- и нейтронного излучения, зарегистрированного спектрометром.

4. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В настоящей работе, как и в работе [5], измерения полных сечений реакций ⁹Li + Si и ⁶He + Si проводились на пучках, состоящих из смеси частиц ⁶Не и ⁹Li. Результаты измерения полных сечений реакций 9 Li + Si и 6 He + Si представлены в табл. 1 и 2 соответственно. Эти данные, а также результаты работ [2, 9-11, 13] по измерению сечений реакций 4,6 He + Si и 6,7,9 Li + Si представлены на рис. З. Для наглядности приведены также сглаживающие кривые, построенные с помощью кубических сплайнов [12]. Величины полных сечений реакции ⁶He + Si, измеренные с помощью модифицированной трансмиссионной методики многослойного телескопа, в пределах ошибок согласуются с результатами работ [2, 3] (см. рис. 3а), в которых измерения проводились посредством трансмиссионной методики многослойного телескопа. Сечение реакции с ядром ⁶Не превышает сечение реакции с ядром ⁴Не во всем исследованном диапазоне

Рис. 3. Экспериментальные (точки) и сглаженные (кривые) энергетические зависимости полных сечений реакций 4,6 He + Si (a) и 6,7,9 Li + Si (б). Темные точки — результаты измерений трансмиссионными методиками многослойного телескопа [2, 3], модифицированной трансмиссионной методикой настоящей работы и работы [5]: *a* — ⁶He + Si (▲ — настоящая работа, табл. 2, • — [2, 3]), ⁴He + Si (**♦** — [2, 3]); б — ⁹Li + + Si (▲ — настоящая работа, • — [5]), ⁷Li + Si (▼ — [2]), ⁶Li + Si (■ — [13]). Светлые точки — результаты измерений: $a - {}^{6}$ He + Si ($\circ - [9]$), 4 He + Si ($\diamond -$ [10], $\triangle -$ [9]); $\delta - {}^{9}\text{Li} + \text{Si} (\triangle -$ [9]), ${}^{7}\text{Li} + \text{Si} (\nabla -$ [9]), ⁶Li + Si (◊ — [9], □ — [11]). Кривые — результаты сглаживания сплайнами [12]: на рис. а сплошная — 6 He + Si, штриховая — 4 He + Si; на рис. б сплошная — 9 Li + Si, штриховая — 7 Li + Si, штрихпунктирная — 6 Li + Si.

Таблица 1. Полные сечения реакции ⁹Li + Si

$E \pm \Delta E$, A МэВ	$\sigma\pm\Delta\sigma$, мбн	Литература
7.0 ± 2.5	1720 ± 113	[5]
11.5 ± 1.8	2016 ± 128	[5]
14.8 ± 1.5	2045 ± 148	[5]
16.5 ± 1.4	1993 ± 73	[5]
18.2 ± 1.3	2102 ± 108	[5]
19.6 ± 1.2	2024 ± 64	[5]
21.6 ± 1.1	1979 ± 68	[5]
23.7 ± 1.0	1913 ± 57	[5]
25.8 ± 1.0	1838 ± 65	[5]
5.5 ± 0.7	1690 ± 122	Настоящая работа
10.6 ± 0.4	1970 ± 131	Настоящая работа
14.0 ± 1.4	2100 ± 82	Настоящая работа
18.2 ± 1.0	1990 ± 121	Настоящая работа
20.4 ± 0.9	2000 ± 110	Настоящая работа

энергии, что может быть объяснено большими размерами ядра ⁶Не. Проведенные в тех же условиях измерения сечения реакции ⁹Li + Si, как настоящей работы, так и работы [5], показали, что зависимость полного сечения реакции ⁹Li + Si от энергии имеет ярко выраженную особенность. Превышение сечения ядер ⁹Li по сравнению с ⁷Li наблюдается в узком диапазоне энергий 10-30 А МэВ. Анализ данного эффекта с помощью микроскопического комплексного фолдинг-потенциала [13], а также в рамках оптической модели в работе [14] не позволил удовлетворительно объяснить наблюдаемые особенности поведения полного сечения в зависимости от энергии. В настоящей работе для расчета сечения реакции оптическая модель дополнена расчетами на основе численного решения нестационарного уравнения Шредингера для внешних нейтронов ядер-снарядов.

5. ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ЭНЕРГЕТИЧЕСКИХ ЗАВИСИМОСТЕЙ ПОЛНЫХ СЕЧЕНИЙ РЕАКЦИЙ С ЯДРАМИ ^{4,6}Не И ^{6,7,9}Li

Основное отличие ядер ⁴Не и ^{6,7}Li от ядер ⁶Не и ⁹Li заключается в наличии у последних двух внешних слабосвязанных нейтронов, поэтому теоретическое описание реакций с ядрами ⁴Не и ^{6,7}Li необходимо для анализа различия в поведении полных сечений реакций, представленных на рис. 3.

ЯДЕРНАЯ ФИЗИКА том 80 № 5 2017

Таблица 2. Полные сечения реакции ⁶He + Si

$E \pm \Delta E$, A МэВ	$\sigma\pm\Delta\sigma$, мбн	Литература		
14.1 ± 1.1	1824 ± 84	[5]		
16.1 ± 1.0	1711 ± 76	[5]		
17.9 ± 0.9	1805 ± 88	[5]		
19.9 ± 0.8	1629 ± 79	[5]		
25.1 ± 0.8	1640 ± 83	[5]		
10.9 ± 0.3	1810 ± 101	Настоящая работа		
13.1 ± 0.2	1900 ± 117	Настоящая работа		
15.1 ± 0.8	1760 ± 90	Настоящая работа		

С этой целью использовались угловые распределения для упругого рассеяния ядер ⁴Не и ^{6,7}Li на ядрах ²⁸Si и на ядрах ¹²C, достаточно близких к ядру кремния и имеющих сходную α -кластерную структуру. Это позволило в рамках оптической модели [15–17] определить свойства потенциальной энергии взаимодействия ядер U(r) и учесть процессы, дающие вклад в полное сечение реакции, с помощью мнимой части потенциала W(r). Сравнение экспериментальных дифференциальных сечений упругого рассеяния ядер ^{6,7}Li на ядрах ²⁸Si [18–25] с расчетами в рамках оптической модели представлено на рис. 4*a*, 4*b*.

Потенциал взаимодействия ядер $V_{NN}(R)$ включал в себя кулоновскую $V_{\rm C}(R)$ и ядерную $V_N(R)$ части, R — расстояние между центрами ядер. Для реальной и мнимой частей потенциала $V_N(R)$ была использована форма Вудса—Саксона:

$$\operatorname{Re} \{V_N(R)\} \equiv V(R) = (3)$$

= $-V_0 [1 + \exp((R - R_V)/a_V)]^{-1}$,
$$\operatorname{Im} \{V_N(R)\} \equiv W(R) = (4)$$

= $-W_0 [1 + \exp((R - R_W)/a_W)]^{-1}$.

Для столкновений ^{6,7}Li + ²⁸Si параметры реальной части потенциала V_0 , R_V , a_V (табл. 3) были получены с помощью фитирования угловых распределений с начальным приближением в параметризации Акюза—Винтера [26]. Результаты расчета полного сечения реакций ^{6,7}Li + ²⁸Si, полученные таким образом (рис. 46, 4*г*), удовлетворительно согласуются с экспериментальными данными [2, 9, 11, 13]. Следует отметить, что в широком интервале энергий были получены постоянные значения параметров оптического потенциала. С их помощью были найдены прогнозируемые значения параметров для реакции ⁹Li + ²⁸Si.

Реакция	$E_{\rm lab},$ МэВ	<i>r</i> _{0C} , Фм	<i>V</i> ₀ , МэВ	$r_{0V}, \Phi_{\mathrm{M}}$	a_V , Фм	<i>W</i> ₀ , МэВ	r_{0W}, Φ м	a_W, Φ_M
⁶ Li + ²⁸ Si	7.5-318	1.3	19.75 (36.64)	1.245	0.63 (0.583)	120.493	0.948	0.632
7 Li + 28 Si	8-350	1.3	21.046 (38.265)	1.245	0.657 (0.589)	120.493	0.948	0.632
⁹ Li + ²⁸ Si (см. текст)	18-500	1.3	22.532 (40.968)	1.245	0.667 (0.598)	120.493	0.948	0.632

Таблица 3. Параметры оптического потенциала для упругого рассеяния ^{6,7,9}Li + ²⁸Si (в скобках указаны значения параметров Акюза–Винтера [26])

Таблица 4. Параметры оптического потенциала для упругого рассеяния ^{4,6}He + ¹²C

Реакция	$E_{ m lab},$ МэВ	$r_{0\mathrm{C}}, \Phi_{\mathrm{M}}$	<i>V</i> ₀ , МэВ	r_{0V}, Φ_{M}	a_V, Φ_M	$W_0, М$ эВ	r_{0W}, Φ_{M}	a_W , Фм
${}^{4}\text{He} + {}^{12}\text{C}$	41	1.3	28.673	1.162	0.4	15.092	1.078	0.546
${}^{4}\mathrm{He} + {}^{12}\mathrm{C}$	139	1.3	120.883	0.613	0.809	17.468	1.019	0.546
${}^{6}\mathrm{He} + {}^{12}\mathrm{C}$	5.9	1.3	33.118	1.463	0.561	12.459	0.683	1.64
${}^{6}\mathrm{He} + {}^{12}\mathrm{C}$	18	1.3	47.295	1.058	0.561	39.778	0.211	1.55
${}^{6}\mathrm{He} + {}^{12}\mathrm{C}$	30	1.3	34.81	1.112	0.561	23.074	0.683	1.418
${}^{6}\mathrm{He} + {}^{12}\mathrm{C}$	230	1.3	34.375	1.013	0.561	3.427	1.922	0.514
${}^{6}\mathrm{He} + {}^{12}\mathrm{C}$	250	1.3	47.24	0.845	0.561	3.041	1.843	0.561
${}^{6}\mathrm{He} + {}^{12}\mathrm{C}$	494	1.3	9.486	1.214	0.242	13.576	0.825	0.561

Сравнение экспериментальных дифференциальных сечений упругого рассеяния ядер ^{4,6}Не на ядрах ¹²С [27—34] с расчетами в рамках оптической модели представлены на рис. 5*a*, 5*b*. Примеры графиков потенциалов (3), (4) показаны на рис. 5*c*.

Несмотря на значительное различие значений параметров оптического потенциала, определенных для столкновения ${}^{4}\text{He} + {}^{12}\text{C}$ (табл. 4) при разных энергиях, формы потенциального барьера и графика мнимой части оказались слабо зависящими от энергии (так же как и для столкновений 6,7 Li + 28 Si). Для ядра ⁴Не это можно объяснить незначительным изменением состояний сильносвязанных нуклонов в ходе столкновения с ядроммишенью. Ядро ⁶Li можно рассматривать как систему трех тел $(\alpha + p + n)$ [35]. Сильно взаимодействующие протон и нейтрон образуют дейтронный кластер, поэтому применима и двухтельная модель с конфигурацией ($\alpha + d$), используемая, в частности, при описании реакций передач в борновском приближении искаженных волн [16, 17]. В ядре ⁷Li внешние нейтроны и протон сильно связаны в тритонный кластер, образуя конфигурацию ($\alpha + t$) [36]. При сближении ядер ^{6,7}Li с ядром ²⁸Si передаче (перераспределению) заряженных дейтронного и тритонного кластеров препятствует кулоновское отталкивание ядра-мишени. Это ограничивает изменение состояния внешних нейтронов ядер ^{6,7}Li и их влияние на потенциал взаимодействия ядер.

Анализ параметров оптического потенциала, приведенных в табл. 4, показал, что потенциальный барьер и график мнимой части для столкновения ${}^{6}\text{He} + {}^{12}\text{C}$ меняются с изменением энергии сильнее, чем для столкновения ${}^{4}\text{He} + {}^{12}\text{C}$. Для мнимой части потенциала характерна большая протяженность и достаточно медленный (экспоненциальный) спад при $E_{\rm lab}\leqslant 40~A~{
m M}
m{
m 9B},$ что приводит к бо́льшему значению сечения реакции 6 He + 12 C по сравнению с сечением реакции 4 He + + ¹²С (рис. 56). В области энергий $E_{lab} = 5-$ 10 А МэВ можно отметить также небольшое снижение высоты кулоновского барьера для ядра ⁶Не и существенное (примерно на 1 Φ м) смещение вправо по сравнению с ядром ⁴Не (рис. 5*г*). Различие реальных и мнимых частей потенциалов взаимодействия ядер ¹²С с сильносвязанным ядром ⁴Не и слабосвязанным ядром ⁶Не(рис. 5*г*)обусловлено парой внешних нейтронов последнего, плотность вероятности которых образует протяженное гало. Наличие двух внешних нейтронов, образующих слабосвязанный нейтральный кластер — динейтрон, является общим для наиболее вероятных конфигураций ядер ⁶He ($\alpha + n + n$)[1, 35–37] и ⁹Li $(\alpha + t + n + n)$ [36]. В упрощенном приближении нейтроны могут рассматриваться как движущиеся

Рис. 4. Экспериментальные угловые распределения (точки) и расчет в оптической модели NRV [17] (кривые) для упругого рассеяния на ядрах ²⁸Si: a — ядер ⁶Li с энергиями $E_{lab} = 318$ [18] (кривая 4, умноженная на 10^{-6}), 99 [19] (кривая 3, умноженная на 10^{-4}), 32 [20] (кривая 2, умноженная на 10^{-2}) и 7.5 МэВ [21] (кривая 1), a — ядер ⁷Li с $E_{lab} = 350$ [22] (кривая 4, умноженная на 10^{-6}), 178 [23] (кривая 3, умноженная на 10^{-4}), 36 [24] (кривая 2, умноженная на 10^{-2}) и 8 МэВ [25] (кривая 1). 6 и e — Полные сечения реакций ⁶Li + ²⁸Si и ⁷Li + ²⁸Si соответственно. Точки — экспериментальные данные из работ [2, 9, 11, 13]; кривые — расчет в оптической модели.

независимо в среднем поле оболочечной модели. Перераспределение внешних нейтронов между ядром-снарядом и ядром-мишенью, например нахождение с большой вероятностью между поверхностями сталкивающихся ядер, может заметно усилить взаимное притяжение ядер и привести к возрастанию полного сечения реакции. Этому может способствовать *а*-кластерная структура ядра ²⁸Si из-за образования с помощью нейтронов связей между α -кластером кремния и α -кластером (и/или тритоном) ядер⁶Не, ⁹Li с кратковременным образованием кластеров ⁹Be ($\alpha + n + \alpha$) и ¹⁰Ве ($\alpha + 2n + \alpha$) в области контакта ядер. Хотя результаты расчетов полных сечений реакции 6 He + 12 С на рис. 5 σ основаны на обработке дифференциальных сечений упругого рассеяния всего для шести энергий, результат сглаживания сплайнами [12] зависимости $\sigma_R(E_{\text{lab}})$, в целом, дает результат, подобный приведенному на рис. За для реакции ${}^{6}\text{He} + {}^{28}\text{Si}$.

Качественный характер перераспределения

ЯДЕРНАЯ ФИЗИКА том 80 № 5 2017

внешних нейтронов при сближении ядер зависит от соотношения между средними величинами скорости внешнего нейтрона $\langle v \rangle$ и относительной скорости $v_{\rm rel}$ ядер в процессе столкновения. Средняя кинетическая энергия $\langle \varepsilon \rangle$ слабосвязанных нейтронов в ядрах ⁶Не и ⁹Li приблизительно равна некоторой доле $0 < \beta < 1$ глубины $u_0 \sim \sim 30$ МэВ потенциальной ямы среднего поля. При использовании оценок $\langle \varepsilon \rangle = \beta u_0 \approx 10$ МэВ, $v_{\rm rel} \sim v_1 = \sqrt{2E_{\rm lab}/m_1}$, где $E_{\rm lab}$ — энергия ядрасная массой $m_1 = Am_0$ и массовым числом A в л.с., m_0 — атомная единица массы, получим отношение скоростей

$$\frac{v_1}{\langle v \rangle} \approx \gamma = \left(\frac{E_{\text{lab}}}{\langle \varepsilon \rangle A}\right)^{1/2}.$$
 (5)

При низких энергиях, в случае $\langle v \rangle \gg v_1$, $\gamma \ll 1$, за время пролета ядра-снаряда рядом с ядроммишенью слабосвязанные нейтроны могут, условно говоря, совершить достаточно много оборотов

Рис. 5. Экспериментальные угловые распределения (точки) и расчет в оптической модели NRV [17] (кривые) для упругого рассеяния на ядрах ¹²С: *a* — ядер ⁴Не с энергиями $E_{lab} = 139$ [27] (кривая 2, умноженная на 10^{-4}) и 41 МэВ [28] (кривая 1), *в* — ядер ⁶Не с энергиями $E_{lab} = 494$ [29] (кривая 6, умноженная на 10^{-10}), 250 [30] (кривая 5, умноженная на 10^{-8}), 230 [31] (кривая 4, умноженная на 10^{-6}), 30 [32] (кривая 3, умноженная на 10^{-4}), 18 [33] (кривая 2, умноженная на 10^{-2}) и 5.9 МэВ [34] (кривая 1). *б* — Полные сечения реакций ⁴Не + ¹²С (\triangle) и ⁶Не + ¹²С (\blacksquare), полученные в оптической модели NRV [17]; сплошная кривая — результат расчетов с интерполированными значениями параметров оптического потенциала, штриховая кривая — результат сглаживания сплайнами. *г* — Сравнение реальных (сплошные кривые) и мнимых (штрихпунктирные кривые) частей потенциалов оптической модели для реакций ⁴He + ¹²C при $E_{lab} = 41$ МэВ (тонкие кривые) и ⁶He + ¹²C при $E_{lab} = 30$ МэВ (жирные кривые).

вокруг ядерных остовов обоих ядер. При квантовом описании в адиабатическом приближении [38] за время пролета нейтрон образует одно или несколько двуцентровых ("молекулярных") состояний. В предельно неадиабатическом случае (при промежуточных энергиях), когда $\langle v \rangle \ll v_1, \gamma \gg 1$, нейтрон за время пролета не успевает передаться на ядро-мишень. Значения параметра γ могут служить для оценки степени адиабатичности столкновения.

Квантовое описание перераспределения внешних нейтронов при столкновении ядер на основе численного решения нестационарного уравнения Шредингера [39, 40] позволяет исследовать процессы, протекающие с различными характерными временами. Такой подход служит полезным дополнением к оптической модели, включающей результаты подобных процессов в зависящие от энергии полуфеноменологические мнимую и реальную части оптического потенциала. Для определения эволюции волновых функций внешних нейтронов важен достаточно реалистический выбор потенциалов их взаимодействия с ядром-мишенью и остовом ядра-снаряда, а также постановка начальных условий в поле остова.

Экспериментальное распределение электрического заряда в ядре ²⁸Si [17, 41, 42] близко к модельной функции Ферми

$$\rho_{\rm F}(r) = \rho_0 \left[1 + \exp\left((r - R_{0\rho})/a_\rho \right) \right]^{-1}, \quad (6)$$

где $R_{0\rho} = 1.027 A^{1/3} = 3.12$ Фм; A = 28; $a_{\rho} = 0.55$ Фм. Такой результат может быть объяснен двояким образом. С одной стороны, распределение (6) близко к распределению в гауссовской одно-

родной модели Хелма [43]

$$\rho_{\rm H}(r) = \int \rho_s(r')\rho_{\rm G}(\mathbf{r} - \mathbf{r}')d^3r'.$$
(7)

Выражение (7) представляет собой свертку однородного вплоть до радиуса $R'_{0\rho}$ ($R'_{0\rho} = 1.107 A^{1/3} = 3.36 \ \Phi$ м) распределения заряда $\rho_s(r)$ и гауссова распределения

$$\rho_{\rm G}(r) = \pi^{-3/2} c^{-3} \exp\left(-r^2/c^2\right) \tag{8}$$

с параметром c = 1.35 Фм, близкого к распределению электрического заряда в ядре ⁴He [17, 41, 45]. Поэтому распределение Хелма (7) для ядра ²⁸Si можно интерпретировать как однородное распределение семи а-кластеров в шаре радиуса R'_{0a} . С другой стороны, к распределениям (6), (7) близок результат усреднения распределения заряда в несферическом ядре ²⁸Si с отрицательным параметром квадрупольной деформации [17, 44, 46] по всевозможным ориентациям оси симметрии ядра. Распределение плотности вероятности протонов, найденное в сферической оболочечной модели ядра ²⁸Si, является существенно неоднородным из-за заселения состояний с ненулевым орбитальным моментом $1p_{3/2}^4, 1p_{1/2}^2, 1d_{5/2}^6$ и не согласуется с распределением (6). Расчет состояний нуклонов в оболочечной модели деформированного ядра с формой поверхности $R(\cos \theta)$ может быть выполнен с помощью кода базы знаний [17], использующего разложение по осцилляторным волновым функциям, а также методом разложения по функциям Бесселя [39]. После усреднения по изотропному распределению ориентации ядра ²⁸Si распределение электрического заряда получается близким к экспериментальному для аксиальносимметричного потенциала Вудса-Саксона

$$U(r, \cos \theta) = -\tilde{V}_0 [1 + (9) + \exp\left((r - R(\cos \theta)/\tilde{a}_V)\right]^{-1}$$

с параметрами потенциала и радиусом R_s эквивалентной сферы с тем же объемом, что и объем деформированного ядра [16]:

$$R_s = 1.25 A^{1/3} = 3.8 \, \Phi_{\rm M}, \quad A = 28,$$
 (10)
 $\tilde{a}_V = 0.7 \, \Phi_{\rm M}, \quad \tilde{V}_0 = 53.4 \, {\rm M} \Rightarrow {\rm B}$

и параметрами деформации $\beta_2 = -0.363$, $\beta_4 = 0.187$ [17, 44]. Результат усреднения потенциала (9) по изотропному распределению ориентации оси симметрии

$$\tilde{U}(r) = \int U(r, \cos \theta) d\Omega = \frac{1}{2} \int_{-1}^{1} U(r, \mu) d\mu$$
 (11)

ЯДЕРНАЯ ФИЗИКА том 80 № 5 2017

можно аппроксимировать центральным потенциалом Вудса-Саксона

$$U(r) = -U_0 \left[1 + \exp\left((r - R_U)/a_U\right)\right]^{-1}$$
(12)

с параметрами

$$R_U = 1.166A^{1/3} = 3.54 \,\, \Phi_{\rm M}, \quad A = 28, \qquad (13)$$
$$a_U = 0.8 \,\, \Phi_{\rm M}, \quad U_0 = 54 \,\, {\rm M} \Rightarrow {\rm B}.$$

Для описания воздействия ядра кремния на внешние нейтроны ядер-снарядов было использовано приближение сферически-симметричного среднего поля ядра ²⁸Si. Оно оправдано лишь на начальном этапе проникновения волновой функции нейтронов ядра-снаряда в ядро-мишень, поскольку стационарные состояния в сферическом и деформированном ядрах сильно различаются.

Для ядра ⁹Li была использована возможная конфигурация (7 Li + n + n) [36] со сферическисимметричным остовом ⁷Li, что соответствует усреднению по изотропному распределению оси симметрии двухкластерной системы ($\alpha + t$). Радиальное уравнение Шредингера для сферических ядер ^{7,9}Li и ⁶Не было решено методом из работы [47]. Для ядра ⁷Li зарядовое распределение (см. [17, 41, 48]), значения среднеквадратичного зарядового радиуса, энергий отделения протона и нейтрона могут быть получены при использовании центрального потенциала Вудса-Саксона (3) с параметрами $R_V = 1.4A^{1/3} = 2.68$ Фм, A = $=7, a_V = 0.95$ Фм, $V_0 = 48.3$ МэВ для протонов и $V_0 = 41.17$ МэВ для нейтронов, а также с безразмерной постоянной спин-орбитального взаимодействия $\lambda = 21$. Потенциал среднего поля сферического ядра ⁹Li был получен путем небольшого изменения потенциала ядра ⁷Li с учетом значений энергии отделения нейтронов и протонов. Значения параметров потенциала Вудса-Саксона составили $R_V = 1.3A^{1/3} = 2.70$ Фм, A = 9, $a_V =$ $= 0.85 \, \Phi$ м, $V_0 = 55.4 \, M$ эВ для протонов и $V_0 =$ = 34.9 МэВ для нейтронов при том же значении постоянной спин-орбитального взаимодействия $\lambda = 21.$

Примеры эволюции плотности вероятности внешних нейтронов ядра ⁹Li при его столкновении с ядром ²⁸Si показаны на рис. 6. Волновая функция $\Psi(\mathbf{r}_3, t)$ каждого из двух независимых нейтронов с радиусом-вектором \mathbf{r}_3 и начальным состоянием $1p_{3/2}$ вычислялась путем численного решения нестационарного уравнения Шредингера с учетом спин-орбитального взаимодействия в поле ядер, центры которых двигались по классическим траекториям $\mathbf{r}_1(t), \mathbf{r}_2(t)$ [39, 40]. Результаты подтверждают сделанные выше качественные выводы на основе безразмерного параметра γ для оценки степени адиабатичности столкновения.

Рис. 6. Примеры эволюции плотности вероятности внешних нейтронов ядра ⁹Li при его столкновении с ядром ²⁸Si для энергий $E_{\text{lab}} = 1.8$ ($a, \, 6, \, 6; \, \gamma = 0.42$), 7.3 ($e, \, \partial, \, e; \, \gamma = 0.85$) и 14.6 A МэВ ($\mathcal{K}, \, 3, \, u; \, \gamma = 1.2$). Ходу времени отвечает расположение слева направо.

Действительно, при медленном (адиабатическом) относительном движении сталкивающихся ядер с $\gamma = 0.42$ (рис. 6*a*, 6*b*, 6*b*) внешние нейтроны (динейтронный кластер) ядра ⁹Li проникают в ядро ²⁸Si и заселяют медленно изменяющиеся двуцентровые ("молекулярные") состояния, плотность вероятности для которых заполняет значительную часть объема ядра-мишени. При быстром (неадиабатическом) относительном движении с $\gamma = 1.2$ (рис. 6*ж*, 6*3*, 6*u*) плотность вероятности нейтронов не успевает занять все ядро-мишень и ее изменение носит более локальный характер (рис. 6ж, 6з). После разлета ядер в поверхностной области ядра-мишени остается волновой пакет, расплывающийся и вращающийся с большим угловым моментом (рис. 6и). При промежуточных скоростях (рис. 6r, 6d, 6e) наблюдается переход от адиабатического режима к неадиабатическому.

Динамическое перераспределение внешних слабосвязанных нейтронов ядер ⁶Не и ⁹Li в ходе столкновения с ядром ²⁸Si, имеющее разный характер при различных энергиях (рис. 6), может привести к зависимости от энергии ядерной части потенциала $V_N(r)$. Ее вещественную часть представим в виде, сходном с адиабатическим потенциалом взаимодействия атомов в молекуле [38]:

$$\operatorname{Re}\left\{V_N(r)\right\} \equiv V(R, E_{\text{lab}}) = V(R) +$$
(14)

 $+ \eta_1(E_{\text{lab}}) \left[\varepsilon_\alpha(R) - \varepsilon_\alpha(\infty) \right] + \eta_2(E_{\text{lab}}) \delta V_d(R, E_{\text{lab}}),$

с весами $\eta_1(E_{\text{lab}})$ и $\eta_2(E_{\text{lab}}) = 1 - \eta_1(E_{\text{lab}})$ соответственно адиабатической [$\varepsilon_{\alpha}(R) - \varepsilon_{\alpha}(\infty)$] и неадиабатической $\delta V_d(R, E_{\text{lab}})$ поправок. Не зависящую от энергии E_{lab} функцию $\bar{V}(R)$ определим как ядерную часть $V_N(R)$ потенциала взаимодействия при гипотетическом столкновении со сферическим ядром ²⁸Si и отсутствии взаимодействия внешних нейтронов ядра-снаряда с ядром-мишенью. Для столкновения ядер ^{6,7}Li с ядром ²⁸Si функция $\bar{V}(R)$ близка к вещественной части оптического потенциала в форме Вудса—Саксона (3), полученной при фитировании экспериментальных угловых распределений (табл. 3). Для ядра ⁹Li значения параметров функции $\bar{V}(R)$, полученные экстраполяцией значений для ядер ^{6,7}Li (см. табл. 3), дают

высоту барьера $V_B = 6.29$ МэВ с вершиной при $R_B = 8.87 \, \Phi$ м. Для ядра ⁶Не в функции $\bar{V}(R)$ использование параметров Акюза-Винтера [26] дает высоту барьера $V_B = 4.48$ МэВ с вершиной при $R_B = 8.37 \, \Phi$ м. В выражении (14) $\varepsilon_{\alpha}(R)$ — зависящая от расстояния *R* между центрами ядер энергия двуцентрового ("молекулярного") состояния внешнего нейтрона, соответствующего в пределе удаленных неподвижных ядер начальному состоянию в ядре-снаряде. Расчеты в двуцентровой оболочечной модели, основанные на разложении по функциям Бесселя [39], показали, что для системы⁹Li + + ²⁸Si энергия двуцентрового состояния, соответствующего начальному состоянию нейтрона в ядре ⁹Li, слабо зависит от R (рис. 7a). Причиной этого являются большие разности в энергиях начального состояния нейтрона в ядре ⁹Li и возбужденных одночастичных состояний в ядре ²⁹Si. Адиабатическая поправка $\varepsilon_{lpha}(R) - \varepsilon_{lpha}(\infty)$ на расстояниях вплоть до кулоновского барьера мала и приводит к незначительному изменению высоты V_B и положения R_B барьера, $\Delta V_B \ll 1$ МэВ, $\Delta R_B \ll 1$ Фм, адиабатического потенциала (рис. 7*a*)

$$V_{\rm ad}(R, E_{\rm lab}) = \bar{V}(R) + \varepsilon_{\alpha}(R) - \varepsilon_{\alpha}(\infty).$$
(15)

Поэтому для столкновения 9 Li + 28 Si учитывалась только неадиабатическая поправка $\delta V_d(R, E_{lab})$:

$$V_d(R, E_{\text{lab}}) = V(R) + \eta_2(E_{\text{lab}})\delta V_d(R, E_{\text{lab}}), \quad (16)$$

с функцией $\delta V_d (R(t), E_{\text{lab}})$:

$$\delta V_d \left(R(t), E_{\text{lab}} \right) =$$
(17)
=
$$\int_{\Omega} d^3 r_3 \delta \rho_1(r_3, t) U_T \left(|\mathbf{r}_3 - \mathbf{r}_2(t)| \right),$$

где $U_T(r)$ — среднее поле ядра-мишени для нейтронов; $\delta \rho_1(r_1,t) = \rho_1(r_1,t) - \rho_1^{(0)}(r_1), \rho_1(r_1,t)$ плотность вероятности внешних нейтронов ядраснаряда, $\rho_1^{(0)}(r_1)$ — аналогичная плотность, вычисленная при отсутствии взаимодействия таких нейтронов с ядром-мишенью; Ω — область между поверхностями ядер.

Смену адиабатического режима перераспределения нейтронов неадиабатическим при увеличении энергии *E*_{lab} можно задать функцией фермиевского типа

$$\eta_1(E_{\text{lab}}) = \frac{1}{1 + \exp\left[\frac{1}{\alpha E_0} \left(\left(\frac{E_{\text{lab}}}{A}\right) - \langle \varepsilon \rangle\right)\right]} \quad (18)$$

с варьируемыми параметрами $\langle \varepsilon \rangle$, $\alpha \sim 1$, определяющими среднюю точку $\bar{E}_{\text{lab}} = \langle \varepsilon \rangle A$ переходной области и ее ширину αE_0 МэВ, $E_0 = 1$ МэВ, при

ЯДЕРНАЯ ФИЗИКА том 80 № 5 2017

Рис. 7. а — Энергии двуцентровых ("молекулярных") состояний нейтрона в системе ${}^{9}\text{Li} + {}^{28}\text{Si}$ с минимальной проекцией полного углового момента на межъядерную ось $m_j = 1/2$, переходящих при увеличении межъядерного расстояния R в одноцентровые состояния $1p_{3/2}$ (Li) (сплошная кривая), $1p_{1/2}$ (Li) (штриховая) и $1d_{3/2}$ (Si) (штрихпунктирная кривая). δ — Неадиабатический ядро-ядерный потенциал (16) для системы ${}^{9}\text{Li} + {}^{28}\text{Si}$ при $E_{\text{lab}} = 6$, 11, 15 и 45 A МэВ (соответственно штриховая кривая с двумя точками, штриховая, сплошная и штрихпунктирная кривые); точечная кривая — потенциал V(R).

ЭТОМ

$$\eta_2(E_{\text{lab}}) = \frac{1}{1 + \exp\left[\frac{1}{\alpha}\left(\langle \varepsilon \rangle - \left(\frac{E_{\text{lab}}}{A}\right)\right)\right]}.$$
 (19)

В неадиабатическом режиме с $\gamma \sim 1$ (рис. 6ж, 63, 6и) повышение концентрации нейтронов между двумя ядерными остовами способно усилить их притяжение друг к другу и снизить высоту кулоновского барьера. С ростом E_{lab} при $\gamma \gg 1$ область нейтронного избытка (поток вероятности) смещается вперед от межъядерной оси и ее влияние на потенциал взаимодействия ядер V(R) ослабевает.

Рис. 8. Полные сечения реакций 4,6 Не + 28 Si (*a*) и 7,9 Li + 28 Si (*б*). Точки — экспериментальные данные с рис. 3: • — 6 Не + 28 Si и 9 Li + 28 Si, • — 4 Не + 28 Si и 7 Li + 28 Si. Кривые — результат расчетов в оптической модели с потенциалами (16), (21): *a* — для $R_a = 5.0$ Фм (сплошная) и $R_a = 4.8$ Фм (штриховая), *б* — для $R_a = 5.6$ Фм (сплошная) и $R_a = 5.6$ Фм (штриховая). Штрихпунктирная кривая — результат расчетов с потенциалами (3), (4) для реакций 4 Не + 28 Si (*a*) и 7 Li + 28 Si (*б*).

Результаты расчетов потенциала (16) при значениях параметров $\alpha = 1.8$, $\langle \varepsilon \rangle = 10$ МэВ представлены на рис. 76. Неадиабатическая поправка $\delta V_d (R, E_{\text{lab}})$ снижает высоту $V_B (E_{\text{lab}})$ и смещает вправо положение $R_B (E_{\text{lab}})$ кулоновского барьера

$$R_B(E) = R_{B,0} + \delta R_B(E).$$
(20)

Для расчетов полного сечения реакции ⁹Li + 28 Si были использованы приближение сферического ядра ²⁸Si и оптическая модель с действительной частью потенциала (16) и неадиабатической поправкой (17). Было сделано допущение, что различие в мнимых частях W(R) для реакций ⁹Li + 28 Si и ⁷Li + 28 Si сходно с различием для реакций ⁶He + 12 C и ⁴He + 12 C (рис. 5г). Мнимые части W(R) для реакций ⁷Li + 28 Si и ⁴He + 12 C имеют подобные формы и аппроксимируются объемным потенциалом Вудса–Саксона. Для реакции ⁹Li + + ²⁸Si по аналогии с реакцией ⁶He + ¹²C использовалась аппроксимация с экспоненциальным спадом:

$$W(r) = \begin{cases} -W_1, & r < R_b, \\ W_1 \exp\left(-\frac{r - R_b}{b}\right), & r \ge R_b \end{cases}$$
(21)

с радиусом R_b , возрастающим вслед за смещением положения барьера

$$R_b(E) = R_a + k\delta R_B(E).$$
(22)

Удовлетворительное согласие расчетов с экспериментальными данными по полным сечениям перечисленных реакций (рис. 8б) получено при значениях параметров $\alpha = 1.8$, $\langle \varepsilon \rangle = 10$ МэВ, $W_1 = 10$ МэВ, b = 1 Фм, k = 2, $R_a = 5.8$ Фм для реакции ⁹Li + ²⁸Si. Заметим, что канал передачи слабосвязанных нейтронов в связанные и несвязанные состояния ядра-мишени составляет малую часть (несколько процентов) полного сечения реакции при энергиях значительно выше кулоновского барьера $E_{\rm lab} > 10$ *A* МэВ.

Применение изложенного подхода к реакции ⁶He + ²⁸Si имеет отличия от реакции ⁹Li + ²⁸Si. Для изотопов гелия в работе [49] на основе численного решения задачи трех тел методом континуальных интегралов Фейнмана [50] была предложена форма среднего поля оболочечной модели с центральным максимумом, являющимся результатом усредненного действия отталкивательного кора нуклон-нуклонного взаимодействия и принципа Паули. Такой потенциал можно представить в виде суммы нескольких гауссовых экспонент [51] или двух функций типа Вудса–Саксона:

$$U(r) = -U_0 \left[1 + \exp\left((r - R_U)/a_U\right)\right]^{-1} + (23) + U_m \left[1 + \exp\left((r - R_m)/a_m\right)\right]^{-1}$$

с параметрами $U_0 = 76 \text{ M} \Rightarrow \text{B}, U_m = 62 \text{ M} \Rightarrow \text{B}, R_U =$ = 2.05 Фм, $R_m = 1.32 \text{ Фм}, a_U = a_m = 0.3 \text{ Фм}$ при значении постоянной спин-орбитального взаимодействия $\lambda_{LS} = 12.2$. Расчеты в двуцентровой оболочечной модели показали, что для системы ⁶He + ²⁸Si энергия двуцентрового состояния, соответствующего начальному состоянию нейтрона в ядре ⁶He, снижается при приближении к вершине кулоновского барьера. Причиной этого является близость энергий слабосвязанного начального состояния нейтрона в ядре ⁶He и возбужденного одночастичного состояния $1d_{3/2}$ (Si) в ядре ²⁹Si. Большая протяженность и разреженность нейтронного гало ядра ⁶He снижает величину неадиабатической поправки по сравнению с ядром

537

⁹Li. Поэтому при смене адиабатического режима неадиабатическим не происходит заметного снижения высоты барьера и расширения области действия мнимой части оптического потенциала. Различия сечений реакций ⁶He + ²⁸Si и ⁴He + $+^{28}$ Si (рис. 3a и 8a), в основном, обусловлены большими размерами ядра ⁶He, а особенность в виде локального максимума выражена менее заметно. Тем не менее приближение (16), (21) удобно для анализа экспериментальных данных и было использовано для расчетов сечения реакции ⁶He + ²⁸Si (рис. 8a). Удовлетворительное согласие расчетов с экспериментальными данными было достигнуто при меньшем по сравнению с реакцией ⁹Li + ²⁸Si значении параметра $R_a = 5.0$ Фм.

Таким образом, проведенные расчеты указали на возможную причину проявления особенности полных сечений реакций ${}^{6}\text{He} + {}^{28}\text{Si}$ и ${}^{9}\text{Li} + {}^{28}\text{Si}$ (рис. 8) при смене адиабатического перераспределения слабосвязанных нейтронов неадиабатическим. Она заключается в формировании области повышенной нейтронной плотности между поверхностями ядер в течение всего времени столкновения. Это усиливает притяжение ядер, сдвигает в сторону больших значений положение барьера *R*_{*B*} и увеличивает размер области, где с заметной вероятностью идут процессы, приводящие к выходу из упругого канала. В рамках оптической модели суммарный вклад таких процессов учитывается в мнимой части потенциала и в зависимости от энергии ее параметров — радиуса $R_W(E)$ и/или диффузности $a_W(E)$. Меньшее проявление локального максимума в энергетической зависимости сечения для ядра ⁶Не по сравнению с ⁹Li может быть объяснено большей протяженностью и разреженностью нейтронного гало ядра ⁶Не по сравнению с более компактным нейтронным слоем ("скином") ядра ⁹Li.

6. ЗАКЛЮЧЕНИЕ

Представленные в данной работе экспериментальные результаты прямого измерения полного сечения реакции ⁶He + Si в диапазоне энергий пучка 5–40 A МэВ обнаруживают хорошее согласие с известными данными. Для реакции ⁹Li + Si получены новые данные в окрестности локального повышения полного сечения. Проведен теоретический анализ возможных причин появления этой особенности при столкновении ядер ⁶He и ⁹Li с ядрами Si, в том числе влияния внешних слабосвязанных нейтронов ядер-снарядов. Предложенная в работе нестационарная модель показывает, что перераспределение внешних слабосвязанных нейтронов ядер ⁶He и ⁹Li в процессе столкновения изменяет реальную и мнимую части потенциала

ЯДЕРНАЯ ФИЗИКА том 80

№ 5

2017

взаимодействия, что может являться причиной локального повышения полного сечения реакции. Это повышение наиболее заметно в области энергий, при которых относительная скорость ядер близка по величине к средней скорости внешних нейтронов в исследуемых легких слабосвязанных ядрах.

Авторы выражают благодарность А.С. Деникину, А.В. Карпову за полезные обсуждения теоретических результатов.

Работа выполнена при поддержке Российского научного фонда (РНФ), грант № 17-12-01170.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. Э. Пенионжкевич, Р. Г. Калпакчиева, Легкие ядра у границы нейтронной стабильности (ОИЯИ, Дубна, 2016).
- Ю. Г. Соболев, А. Будзановский, Э. Бялковский и др., Изв. РАН. Сер. физ. 69, 1603 (2005) [Bull. Russ. Acad. Sci. Phys. 69, 1790 (2005)].
- В. Ю. Угрюмов, И. В. Кузнецов, Э. Бялковский и др., ЯФ 68, 17 (2005) [Phys. Atom. Nucl. 68, 16 (2005)].
- 4. Ю. Г. Соболев, М. П. Иванов, Ю. Э. Пенионжкевич, ПТЭ, № 6, 13 (2012) [Instrum. Exp. Tech. 55, 618 (2012)].
- Ю. Г. Соболев, Ю. Э. Пенионжкевич, Д. Азнабаев и др., ЭЧАЯ 48, 00 (2017) [Phys. Part. Nucl. 48, 00 (2017)].
- Ю. Г. Соболев, М. П. Иванов, Н. А. Кондратьев, Ю. Э. Пенионжкевич, ПТЭ, № 4, 5 (2011) [Instrum. Exp. Tech. 54, 449 (2011)].
- 7. I. Sivaček, Yu. G. Sobolev, A. V. Ashmanov, and N. A. Lashmanov, in *Proceedings of the International Symposium on Exotic Nuclei*, *Kazan, Sept. 2016* (World Sci., Singapore, 2017), p. 356.
- 8. A. M. Rodin, S. V. Stepantsov, D. D. Bogdanov, *et al.*, Nucl. Instrum. Methods B **204**, 114 (2003).
- R. E. Warner, R. A. Patty, P. M. Voyles, *et al.*, Phys. Rev. C 54, 1700 (1996).
- 10. R. E. Warner, F. Carstoiu, J. A. Brown, *et al.*, Phys. Rev. C **74**, 014605 (2006).
- 11. A. Ingemarsson, J. Nyberg, P. U. Renberg, *et al.*, Nucl. Phys. A **676**, 3 (2000).
- Г. И. Марчук, Методы вычислительной математики (Наука, Москва, 1980).
- К. В. Лукьянов, Е. В. Земляная, В. К. Лукьянов и др., Изв. РАН. Сер. физ. 72, 382 (2008) [Bull. Russ. Acad. Sci. Phys. 72, 356 (2008)].
- Г. Д. Кабдрахимова, Ю. Г. Соболев, И. Н. Кухтина и др., ЯФ 80, 33 (2017) [Phys. Atom. Nucl. 80, 32 (2017)].
- 15. M. S. Hussein and K. W. McVoy, Prog. Part. Nucl. Phys. **12**, 103 (1984).
- 16. В. И. Загребаев, *Ядерные реакции с тяжелыми* ионами (ОИЯИ, Дубна, 2016).

- 17. В. И. Загребаев, А. С. Деникин, А. В. Карпов, А. П. Алексеев, М. А. Науменко, В. А. Рачков, В. В. Самарин, В. В. Сайко, Сетевая база знаний NRV по ядерной физике низких энергий, URL: http://nrv.jinr.ru/
- A. Nadasen, T. Stevens, J. Farhat, *et al.*, Phys. Rev. C 47, 674 (1993).
- 19. P. Schwandt, W. W. Jacobs, M. D. Kaitchuck, *et al.*, Phys. Rev. C **24**, 1522 (1981).
- 20. N. Anantaraman, H. W. Fulbright, and P. M. Stwertka, Phys. Rev. C **22**, 501 (1980).
- 21. M. Sinha, S. Roy, P. Basu, *et al.*, EPJ Web Conf. **17**, 03004 (2011).
- A. Nadasen, J. Brusoe, J. Farhat, *et al.*, Phys. Rev. C 52, 1894 (1995).
- 23. M. Lewitowicz, C. Borcea, F. Carstoiu, *et al.*, Nucl. Phys. A **562**, 301 (1993).
- 24. P. Schumacher, N. Ueta, H. H. Duhm, *et al.*, Nucl. Phys. A **212**, 573 (1973).
- 25. A. Pakou, N. Alamanos, G. Doukelis, *et al.*, Phys. Rev. C **69**, 054602 (2004).
- 26. A. Winther, Nucl. Phys. A 572, 191 (1994).
- 27. S. M. Smith, G. Tibell, A. A. Cowley, *et al.*, Nucl. Phys. A **207**, 273 (1973).
- 28. N. Baron, R. F. Leonard, and W. M. Stewart, Phys. Rev. C 4, 1159 (1971).
- 29. J. L. Lou, Y. L. Ye, D. Y. Pang, *et al.*, Phys. Rev. C **83**, 034612 (2011).
- J. S. Al-Khalili, M. D. Cortina-Gil, P. Roussel-Chomaz, *et al.*, Phys. Lett. B 378, 45 (1996).
- V. Lapoux, N. Alamanos, F. Auger, *et al.*, Phys. Rev. C 66, 034608 (2002).
- D. Smalley, F. Sarazin, F. M. Nunes, *et al.*, Phys. Rev. C 89, 024602 (2014).
- M. Milin, S. Cherubini, T. Davinson, *et al.*, Nucl. Phys. A **730**, 285 (2004).
- 34. A. N. Ostrowski, A. C. Shotter, W. Galster, *et al.*, Phys. Rev. C **60**, 064603 (1999).

- 35. V. I. Kukulin, V. V. Krasnopol'sky, V. T. Voronchev, and P. B. Sazonov, Nucl. Phys. A **453**, 365 (1986).
- Е. Т. Ибраева, М. А. Жусупов, О. Имамбеков, С. К. Сахиев, ЭЧАЯ 42, 1600 (2011) [Phys. Part. Nucl. 42, 847 (2011)].
- 37. M. V. Zhukov, B. V. Danilin, D. V. Fedorov, *et al.*, Phys. Rept. **231**, 151 (1993).
- А. С. Давыдов, Квантовая механика (Наука, Москва, 1973).
- 39. В. В. Самарин, ЯФ 78, 133 (2015) [Phys. Atom. Nucl. 78, 128 (2015)].
- М. А. Науменко, В. В. Самарин, Ю. Э. Пенионжкевич, Н. К. Скобелев, Изв. РАН. Сер. физ. 80, 294 (2016) [Bull. Russ. Acad. Sci. Phys. 80, 264 (2016)].
- 41. H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables **36**, 495 (1987).
- 42. S. W. Brain, A. Johnston, W. A. Gillespie, *et al.*, J. Phys. G **3**, 821 (1977).
- 43. R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
- 44. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables **109-110**, 1 (2016).
- 45. I. Sick, Phys. Lett. B **116**, 212 (1982).
- 46. URL: http://cdfe.sinp.msu.ru
- 47. В. В. Самарин, Изв. РАН. Сер. физ. **78**, 1388 (2014) [Bull. Russ. Acad. Sci. Phys. **78**, 1124 (2014)].
- 48. L. R. Suelzle, M. R. Yearian, and H. Crannell, Phys. Rev. **162**, 992 (1967).
- В. В. Самарин, М. А. Науменко, Изв. РАН. Сер. физ. 80, 314 (2016) [Bull. Russ. Acad. Sci. Phys. 80, 283 (2016)].
- 50. M. A. Naumenko and V. V. Samarin, Supercomp. Front. Innov. **3**, 80 (2016); URL: http://superfri.org/superfri/article/view/102/77
- 51. H. Kanada, T. Kaneko, S. Nagata, and M. Nomoto, Prog. Theor. Phys. **61**, 1327 (1979).

PECULIARITIES IN TOTAL CROSS SECTIONS OF REACTIONS WITH WEAKLY BOUND NUCLEI ⁶He, ⁹Li

Yu. E. Penionzhkevich, Yu. G. Sobolev, V. V. Samarin, M. A. Naumenko

The energy dependence of total cross sections of reactions ${}^{6}\text{He} + \text{Si}$ and ${}^{9}\text{Li} + \text{Si}$ in the beam energy range 5–40 *A* MeV has been measured. An agreement with the published experimental data for the reaction ${}^{6}\text{He} + \text{Si}$ was obtained. For the reaction ${}^{9}\text{Li} + \text{Si}$ new data in the vicinity of the local enhancement of the total cross section was obtained. Theoretical analysis of possible reasons of appearance of this peculiarity in the collisions of nuclei ${}^{6}\text{He}$ and ${}^{9}\text{Li}$ with Si nuclei has been carried out including the influence of external neutrons of weakly bound projectile nuclei.