= ЯДРА =

ИЗОСПИН В ГАЛОИДАЛЬНЫХ ЯДРАХ. БОРРОМИЕВСКОЕ ГАЛО, ТАНГО-ГАЛО И ГАЛО-ИЗОМЕРЫ

© 2017 г. И. Н. Изосимов^{*}

Объединенный институт ядерных исследований, Дубна, Россия Поступила в редакцию 18.01.2017 г.

Показано, что волновые функции изобар-аналоговых (ИАС), дубль-аналоговых (ДИАС), конфигурационных (КС) и дубль-конфигурационных (ДКС) состояний могут одновременно содержать компоненты, соответствующие *nn*, *np* и *pp* гало. Различия в структуре гало для основного и возбужденных состояний ядра могут приводить к образованию гало-изомеров. Гало-структура как борромиевского, так и типа танго может наблюдаться для *np*-конфигураций. Обсуждается структура основных и возбужденных состояний с различным изоспином в галоидальных ядрах. Выполнен анализ приведенных вероятностей $B(M\lambda)$ и $B(E\lambda)$ γ -переходов в атомных ядрах ⁶⁻⁸Li, ⁸⁻¹⁰Be, ^{8,10,11}B, ^{10–14}C, ^{13–17}N, ^{15–17,19}O, ¹⁷F. Особое внимание уделяется случаям, когда основное состояние ядра не имеет гало-структуры, а возбужденное состояние может ее иметь.

DOI: 10.7868/S0044002717050117

1. ВВЕДЕНИЕ

В общем случае термин гало используется для описания ядерных состояний с одним или двумя валентными нуклонами, когда более 50% их волновой функции (ВФ) находится вне действия потенциала взаимодействия этих нуклонов с кором ядра, т.е. в классически запрещенной области [1-3]. Необходимыми условиями для формирования гало являются: малая энергия связи валентных нуклонов, небольшой угловой момент L = 0, 1для однонуклонного гало или гипермомент K = 0, 1 для двухнуклонного гало, невысокая плотность уровней при заданной энергии возбуждения (малое смешивание с состояниями, не имеющими галоструктуры). Наличие кулоновского барьера может приводить к подавлению образования протонного гало при Z > 10.

Нейтронные и протонные гало были изучены для ряда легких ядер [1–9]. В трехтельных системах борромиевского типа любая из трех двухчастичных подсистем не связана, в то время как вся система как целое является связанной. В аналогичных системах, где одна и только одна из двухчастичных подсистем связана, частицы в ней двигаются согласованно и образуют состояния типа танго. В результате трехчастичная система в целом может иметь гало типа танго [2]. Гало борромиевского типа хорошо изучено экспериментально и теоретически в легчайших атомных ядрах. Классическим примером такого ядра является ⁶He [5–9]. Гало типа танго хорошо известно в молекулах [2]. Галоструктура как борромиевского типа, так и типа танго может наблюдаться для *пр*-конфигураций [10, 11]. Вполне возможно, что образование гало в возбужденных состояниях ядер происходит только в небольшом энергетическом окне, и выяснить, насколько мало данное окно, можно, исследуя структуру ядер при возбуждениях вблизи энергии связи нуклонов.

Гало-структура может также наблюдаться для возбужденных состояний и резонансов как для нейтронно-избыточных, так и для протонноизбыточных ядер [2, 3, 12–20]. Следует отметить, что изоспиновая симметрия ослабляет смешивание уровней с различным изоспином и для изобараналоговых резонансов гало-структура может существовать при гораздо бо́льшей плотности уровней, чем для других возбужденных состояний ядер.

Нами обсуждается структура основных и возбужденных состояний с различным изоспином в гало-ядрах. Ставится задача показать, что различия в структуре гало для возбужденных состояний ядра (или возбужденных и основного состояний ядра) способны приводить к образованию галоизомеров [10, 11]. С этой целью выполнен анализ приведенных вероятностей $B(M\lambda)$ и $B(E\lambda)$ γ переходов в атомных ядрах ^{6–8}Li, ^{8–10}Be, ^{8,10,11}B, ^{10–14}C, ^{13–17}N, ^{15–17,19}O, ¹⁷F. Особое внимание уделяется случаям, когда основное состояние ядра не имеет структуры гало, а возбужденное состояние может ее иметь.

^{*}E-mail: izosimov@jinr.ru

Наиболее ярким примером проявления гало в изобар-аналоговых состояниях (ИАС) является ИАС-резонанс ⁶Li(0⁺) с энергией возбуждения 3.56 МэВ. Материнским состоянием для данного резонанса является основное состояние (g.s.) ядра ⁶He, и вследствие изоспиновой симметрии сильного взаимодействия это ИАС характеризуется теми же пространственными и спиновыми характеристиками, что и g.s. ядра ⁶He. Поскольку g.s. материнского ядра ⁶He имеет *nn* гало борромиевского типа, то и ИАС ⁶Li(0⁺) обязано иметь и имеет аналогичное *np* гало [12–14].

2. ИЗОБАР-АНАЛОГОВЫЕ, ДУБЛЬ-АНАЛОГОВЫЕ, КОНФИГУРАЦИОННЫЕ И ДУБЛЬ-КОНФИГУРАЦИОННЫЕ СОСТОЯНИЯ

Изобар-аналоговые (аналоговые) состояния в атомных ядрах продолжают оставаться одной из интересных проблем экспериментальных и теоретических исследований. Два основных положения определяют то, что изоспин T остается хорошим квантовым числом как в легких, так и в тяжелых ядрах: зарядовая независимость ядерных сил, действующих между нуклонами, проверена в многочисленных экспериментах и, кроме того, существует ряд факторов, ослабляющих нарушение зарядовой независимости ядерных сил за счет кулоновского взаимодействия.

В результате уровни и резонансы в атомных ядрах могут быть классифицированы (рис. 1) по величине изоспина T $(T_0, T_0 + 1, T_0 + 2, ...), T_0 \equiv T_Z = (N - Z)/2.$ Если $T = T_Z + 1, --$ это так называемые ИАС; если $T = T_Z + 2, -$ это дубль-аналоговые состояния (ДИАС) и т.д. ИАС в области непрерывного спектра проявляются как ИАС-резонансы. ИАС в ядрах с N > Z ($T_Z > 0$) формируются из материнского ядра путем замены в соседнем ядре нейтронов на протоны в том же самом пространственном и спиновом состоянии (рис. 1). Они сдвинуты по энергии относительно материнского состояния на величину $\Delta E_c - \delta$, где ΔE_c — кулоновская энергия добавленного протона, δ — разность масс нейтрона и протона. В общем случае [21, 22] структура ВФ ИАС описывается как когерентная суперпозиция (рис. 2) конфигураций типа протон-частица-нейтрон-дырка, которые входят в ВФ с одним знаком и связаны в момент $I^{\pi} = 0^+$. Соответственно, структура ДИАС определяется когерентной суперпозицией (рис. 3) возбуждений типа две протон-частицыдве нейтрон-дырки, вновь связанные в момент $I^{\pi} = 0^+.$

ЯДЕРНАЯ ФИЗИКА том 80 № 5 2017

Рис. 1. Диаграмма аналоговых (ИАС) и дубльаналоговых (ДИАС) состояний.

Структура ИАС и ИАС-спектров для ядер с N > Z может быть получена при однократном действии оператора \mathbf{T}_{-} :

$$\mathbf{T}_{-} = \sum_{i} a_{i}^{+}(p)a_{i}^{-}(n), \qquad (1)$$

а структура ДИАС и ДИАС-спектров — при двукратном действии оператора \mathbf{T}_{-} на основное и возбужденные состояния материнского ядра. Оператор \mathbf{T}_{-} понижает проекцию изоспина на единицу, не изменяя значения изоспина. При этом соответствующий нейтрон заменяется протоном в том же самом состоянии, т.е. $a_i^-(n)$ — оператор уничтожения нейтрона в состоянии *i*, а $a_i^+(p)$ оператор рождения протона в том же состоянии. Суммирование по *i* ограничено принципом Паули. Для основного состояния материнского ядра $T = T_0 + 1 \equiv T_Z$, для ИАС — $T = T_0 + 1 = T_Z +$ + 1, для ДИАС — $T = T_0 + 1 = T_Z + 2$ (рис. 1). ВФ ИАС может быть записана как

$$\Psi_{T_0+1,T_0}^{\text{HAC}} = \frac{1}{\sqrt{2(T+1)}} \cdot \mathbf{T}_{-} \Psi_{T_0+1,T_0+1}^{\text{PS}}, \quad (2)$$

где Ψ_{T_0+1,T_0+1}^{PS} — ВФ материнского состояния с $T = T_Z = T_0 + 1$. Поскольку значение изоспина для ИАС на единицу больше, чем для близлежащих состояний, ИАС резко выделяется по своим свойствам в различных экспериментах.

В случае, когда элементарные возбуждения входят в ВФ с разными знаками, образуются так называемые конфигурационные (КС) и дубльконфигурационные состояния (ДКС). В галоидальных ядрах формирование конфигурационных состояний связано с учетом возбуждений кора. Изоспин КС на единицу меньше изоспина ИАС и энергия возбуждения КС также меньше, чем энергия возбуждения ИАС. Формирование КС и ДКС ограничено принципом Паули.

Одним из наиболее хорошо изученных КС является (рис. 4) антианалоговое состояние (АИАС)

Рис. 2. Структура ВФ ИАС, полученного действием оператора **Т**₋ на ВФ материнского ядра, обладающего *nn* гало. Заштрихованные квадраты — состояния, занятые протонами, светлые квадраты — нейтронами. Темные кружки над соответствующими квадратами — нейтроны и протоны *nn* и *pn* гало, светлые кружки внутри квадратов — нейтронные дырки.

Рис. 3. Структура ВФ ДИАС, включающего *pp*, *pn*, *nn* гало, полученная действием оператора **T**_**T**_ на ВФ материнского ядра, обладающего *nn* гало. Обозначения нейтронов и протонов материнского ядра и нейтронных дырок в ДИАС те же, что и на рис. 2.

[21–24]. Поскольку, в случае наличия гало у материнского ядра, при замене нейтрона на протон в процессе формирования ИАС, ДИАС, КС, ДКС не изменяются пространственные и спиновые характеристики нуклонов, вышеупомянутые состояния также будут обладать структурой типа гало. При наличии nn у материнского ядра (рис. 2) волновые функции ИАС и КС могут включать компоненты, соответствующие как np, так и nn гало [10, 11, 23]. Соответственно, ВФ ДИАС и ДКС могут включать компоненты pp, pn и nn гало (рис. 3). ИАС, КС, ДИАС, ДКС могут проявляться как резонансы в ядерных реакциях.

Для ядер с Z > N ($T_Z < 0$) все предыдущие рассуждения остаются в силе при замене оператора \mathbf{T}_- на \mathbf{T}_+ :

$$\mathbf{T}_{+} = \sum_{i} a_{i}^{+}(n)a_{i}^{-}(p).$$
(3)

Соответствующие конфигурации для ядер с Z > N формируются при замене протона на нейтрон в том же самом пространственном и спиновом состоянии. В этих ядрах элементарные возбуждения типа протон-частица—нейтрон-дырка, связанные в момент $I^{\pi} = 0^+$, заменяются элементарными возбуждениями типа нейтрон-частица—протон-дырка, связанными в тот же нулевой момент.

Из вышеизложенного можно сделать следующие выводы. При наличии двухнуклонного гало у состояния материнского ядра ИАС, ДИАС, КС, ДКС могут иметь гало-структуру типа *nn*, *pn*, *pp*, а при наличии однонуклонного гало — галоструктуру типа *n*, *p*. При этом ИАС, ДИАС, КС, ДКС могут одновременно иметь компоненты *nn*, *pn*, *pp* гало для двухнуклонного и компоненты *n*, *p* для однонуклонного гало материнского ядра. На-конец, структура гало может быть различной для различных уровней и резонансов в атомных ядрах.

КЛАССИФИКАЦИЯ И СИСТЕМАТИКА γ-ПЕРЕХОДОВ С УЧЕТОМ ПРАВИЛ ОТБОРА ПО ИЗОСПИНУ

В зависимости от изменения изоспина состояния ядра γ -переходы могут быть классифицированы как изовекторные (ИВ) и изоскалярные (ИС) [21]. Для ИВ/ИС γ -переходов только ИВ/ИС-часть соответствующего оператора дает вклад в матричный элемент, а тем самым в полную интенсивность γ -перехода. Правила отбора по изоспину для γ -переходов следующие: $\Delta T = 0, \pm 1; \Delta T_Z = 0; \gamma$ -переходы с $\Delta T \ge 2$ вследствие запрета по изоспину значительно подавлены.

Для $\Delta T = \pm 1$ имеет место чистый ИВ γ -переход, соответствующие γ -переходы любой мультипольности с $\Delta T = \pm 1$ одинаковы по своим свойствам в сопряженных ядрах. $E1 \gamma$ -переходы должны быть одинаковы в сопряженных ядрах и для $\Delta T = 0$. Для $\Delta T = 0$ ($T \neq 0$) имеет место смешанный ИВ и ИС γ -переход, поскольку и ИВ-, и ИС-части оператора γ -перехода дают вклад в матричный элемент. Для ядер с N = Z осуществляется чистый ИС γ -переход (ИВ-часть оператора не дает вклада в матричный элемент между состояниями с T = 0).

Для $E1 \gamma$ -переходов только ИВ-часть оператора дает вклад в вероятность γ -перехода, а E1-переходы в ядрах с N = Z между состояниями с

Таблица 1. Рекомендованные [25—28] значения верхних пределов для приведенных вероятностей γ -переходов $B(E, \lambda)$ и $B(M, \lambda)$ в единицах Вайскопфа (W.u.)

$\Gamma_\gamma/\Gamma_{ m W.u.}=B(E,\lambda)/B(E,\lambda)_{ m W.u.}\;\{B(M,\lambda)/B(M,\lambda)_{ m W.u.}\},$ верхний предел										
γ -Переход	$A = 6 - 44^{\mathrm{a})}$	A = 45 - 150	A > 150							
<i>E</i> 1 (ИВ)	$0.3^{6)}$	0.01	0.01							
<i>Е</i> 2 (ИС) ^{в)}	100	300	1000							
E3	100	100	100							
E4	100	100 ^{г)}								
<i>М</i> 1 (ИВ)	10	3	2							
<i>M</i> 2(ИВ)	3	1	1							
<i>М</i> 3(ИВ)	10	10	10							
M4		30	10							

^{а)} $\Gamma_{\gamma}/\Gamma_{W.u.}$ (верхний предел) = 10 — для E2(ИВ); 0.03 — для M1(ИС); 0.1 — для M2(ИС); 0.003 — для E1 (T = 0, запрещенные по изоспину E1 γ -переходы).

⁶⁾ $\Gamma_{\gamma}/\Gamma_{\text{W.u.}}$ (верхний предел) = 0.1 для A = 21-44.

^{в)} В ротационных полосах супердеформированных ядер возможны значения Γ_γ/Γ_{W.u.} > 1000 для E2 γ-переходов.

^{г)} $\Gamma_{\gamma}/\Gamma_{W.u.}$ (верхний предел) = 30 для A = 90-150.

Таблица 2. Систематика γ -переходов с учетом запретов по изоспину в ядрах $5 \leqslant A \leqslant 40$ [21]

γ -Переход	E1		$M\lambda$			
$\begin{array}{c} \langle B(E1)\rangle \\ \{\langle B(M\lambda)\rangle\}, \mathrm{W.u.} \end{array}$	разрешенные $\Delta T = 1, T_Z = 0;$ $\Delta T = 0, \pm 1, T_Z \neq 0$	запрещенные $\Delta T = 0, T_Z = 0$	благоприятные $\Delta T = \pm 1, T_Z = 0$	нормальные $\Delta T = 0, T_Z \neq 0$	заторможенные $\Delta T = 0, T_Z = 0$	
$\langle B(E1) \rangle$	≈ 0.0026	$\approx 0.0003^{a)}$				
$\langle B(M1) \rangle$			$\approx 0.38^{6)}$	$\approx 0.10^{\mathrm{b}}$	$\approx 0.0048^{r)}$	
$\langle B(M2) \rangle$			≈ 0.31		≈ 0.1	

^{а)} Фактор запрета
 ≈ 7 для ядер сN=Z.

⁶⁾ Полная интенсивность излучения определяется только ИВ-частью оператора γ -перехода.

 $^{\rm B)}$ Полная интенсивность излучения определяется ИВ- и ИС-частями оператора γ -перехода.

^{г)} Полная интенсивность излучения определяется только ИС-частью оператора γ -перехода.

T = 0 запрещены по изоспину. Рекомендованные [25–28] верхние пределы для приведенных вероятностей $\langle B(E\lambda) \rangle$ электрических и $\langle B(M\lambda) \rangle$ магнитных γ -переходов приведены в табл. 1. Систематики ИВ/ИС γ -переходов даны в [21].

Для ядер в области $20 \leqslant A \leqslant 40$ вклад ИСчасти в матричный элемент γ -переходов составляет для M1-переходов порядка 10^{-3} ; для M2переходов — 10^{-2} ; для ML(L > 2)-переходов — 2×10^{-1} ; для запрещенных по изоспину E1переходов — 3×10^{-2} . Для $EL(L \ge 2)$ -переходов трудно сделать какой-либо определенный вывод о вкладе ИС-части в матричный элемент перехода.

ЯДЕРНАЯ ФИЗИКА том 80 № 5 2017

По интенсивности γ -переходы также могут быть классифицированы [21] как благоприятные ($\Delta T = 1$; $T_Z = 0$), нормальные ($\Delta T = 0$, 1; $T_Z \neq 0$), заторможенные ($\Delta T = 0$; $T_Z = 0$). Соответствующая систематика для ядер с $5 \leq A \leq 40$ отображена в табл. 2.

4. ЯДРО ⁶Не (БОРРОМИЕВСКОЕ *nn* ГАЛО) И ЯДРО ⁶Li (БОРРОМИЕВСКОЕ *np* ГАЛО ДЛЯ ИАС, ТАНГО *np* ГАЛО ДЛЯ ОСНОВНОГО СОСТОЯНИЯ)

Специфика структуры ВФ g.s. ядра 6 Не состоит в том, что над замкнутой $1s_{1/2}$ -оболочкой, содер-

жащей два нейтрона и два протона (плотно связанный α -частичный кор), расположены относительно слабо связанные два нейтрона, формирующие nn гало и занимающие 1р-оболочку (ВФ содержит 93% вклада $1p_{3/2}$ -подоболочки и 7% вклада $1p_{1/2}$ подоболочки). Поэтому при воздействии оператора \mathbf{T}_{-} на ВФ g.s. ⁶Не ($T=1, T_{Z}=1$) получаем ИАС с конфигурацией, соответствующей только пр гало, поскольку формирование КС в данном случае запрещено принципом Паули. ИАС (Т = $= 1, T_Z = 0)$ в ядре ⁶Li имеет энергию возбуждения 3.56 МэВ (рис. 5). Результаты экспериментов и расчетов [5, 6, 9, 12, 13] свидетельствуют о наличии пр гало у отмеченного ИАС. Ширина ИАС [29] составляет 8.2 эВ (период полураспада $T_{1/2} = 6 \times$ $imes 10^{-17}$ с), однако коэффициент ветвления для M1 γ -распада не определен. Если предположить, что ширина ИАС определяется лишь $M1 \gamma$ -распадом на основное состояние, величина приведенной вероятности B(M1) составит ≈ 8.6 единиц Вайскопфа (W.u.). Если в операторе $M1 \gamma$ -перехода пренебречь орбитальной частью, можно определить приведенную вероятность $M1 \gamma$ -распада $B(M1, \sigma)$ ИАС из значения величины ft для β^- -распада ядра ⁶Не (рис. 5).

Величины ft для β -распада типа Гамова— Теллера материнского ядра (⁶He g.s.) и $B(M1, \sigma)$ для γ -распада ИАС (⁶Li, E = 3562 кэВ) связаны следующим образом [6, 21]:

$$ft = \frac{1163}{\{T_0 \cdot B(M1,\sigma)\}},$$
(4)

где T_0 — изоспин ИАС; ft выражено в секундах; $B(M1, \sigma)$ — в ядерных магнетонах μ_0^2 , при этом W.u. = $1.79\mu_0^2$. В результате оказалось, что $B(M1, \sigma) = 8.2$ W.u., т.е. $M1 \gamma$ -распад ИАС в ⁶Li ускорен и величина соответствующей приведенной вероятности близка к верхнему пределу (табл. 1). В случае отсутствия гало в g.s. и наличия гало у ИАС в ядре ⁶Li $M1 \gamma$ -переход с ИАС на основное состояние будет заторможен, поскольку перекрытие волновых функций валентных нуклонов будет ослаблено (радиальный фактор в операторе $M\lambda \gamma$ -перехода пропорционален $r^{\lambda-1}$). Таким образом, ускорение $M1 \gamma$ -перехода с ИАС, имеющего np гало, на g.s. ⁶Li свидетельствует о наличии np гало в g.s. ⁶Li.

Для ИАС в ⁶Li валентные нуклоны связаны в момент $I^{\pi} = 0^+$ и формируют борромиевское *пр* гало. Для основного состояния ⁶Li валентные нуклоны связаны в момент $I^{\pi} = 1^+$ и, поскольку *пр*-подсистема при данном спине и четности оказывается связанной, формируют *пр* гало типа

Рис. 4. Структура ВФ АИАС, включающая компоненты, соответствующие p и n гало, в случае, когда материнское ядро обладает n гало. Обозначения нейтронов, протонов и нейтронных дырок в АИАС те же, что и на рис. 2.

Рис. 5. Связь [6, 21] между β -распадом типа Гамова– Теллера материнского состояния (⁶ He g.s.) и вероятностью $B(M1, \sigma) \gamma$ -распада ИАС (⁶ Li, E = 3562 кэВ).

танго. Заключение о наличии пр танго-гало в основном состоянии ⁶Li согласуется как с данными о характеристиках ядра ⁶Li, так и с данными, полученными в ядерных реакциях с пучками ⁶Li. Ядро ⁶Li (g.s.) имеет [30, 31] кластерную структуру $\alpha + d$, энергия его развала на α -частицу и дейтрон составляет всего 1.47 МэВ. Радиус ⁶Li составляет 2.32-2.45 Фм. что примерно на 10% превышает его значение, ожидаемое из обычных (~A^{1/3}) систематик. Импульсные распределения ядер-остатков после развала были исследованы [30, 31] для различных мишеней и различных энергий пучков ⁶Не и ⁶Li. Наблюдалось довольно узкое $(\sigma = 28-29 \text{ МэВ c}^{-1})$ распределение ядер ⁴Не при развале ⁶Не и промежуточное ($\sigma = 46-55$ МэВ с⁻¹) при развале ⁶Li. Для обычных (гало отсутствует) ядер ширина импульсного распределения продуктов развала составляет $\sigma \sim 100 \text{ M} \Rightarrow \text{B} \text{ c}^{-1}$. Достаточно узкие импульсные распределения продуктов развала подтверждают наличие гало у ядра ⁶Не и гипотезу наличия танго-гало у ядра ⁶Li.

Таблица 3. Систематика средних значений приведенных вероятностей (*B*(*E* λ)) γ -переходов с учетом правил отбора по изоспину для ядер ^{6,7,8}Li, ^{8,9,10}Be, ^{8,10,11}B, ^{10,11,12,13,14}C, ^{13,14,15,16,17}N, ^{15,16,17,19}O, ¹⁷F

γ -Переход	L E1			E2			E3					
$\langle B(E\lambda) \rangle,$ W.u.	благо- приятные $\Delta T = \pm 1$	нормаль- ные $\Delta T = 0;$ $T_Z \neq 0$	запрещен- ны e^{a} $\Delta T = 0;$ $T_Z = 0$	разре- шенные $\Delta T = 1;$ $T_Z = 0$	все переходы $\Delta T = 0, \pm 1;$ $\Delta T_Z = 0$	$\begin{array}{l} \Delta T=\pm 1,\\ T_{Z}\neq 0 \end{array}$	$\begin{array}{l} \Delta T = 0; \\ T_Z \neq 0 \end{array}$	$\begin{array}{l} \Delta T=0;\\ T_Z=0 \end{array}$	$\begin{array}{l} \Delta T = \pm 1;\\ \Delta T_Z = 0 \end{array}$	$\begin{array}{l} \Delta T = 0;\\ T_Z \neq 0 \end{array}$	$\begin{array}{l} \Delta T = 0;\\ T_Z = 0 \end{array}$	$\begin{array}{l} \Delta T = 0;\\ \Delta T_Z = 0 \end{array}$
$\langle B(E1) \rangle$	≈ 0.0079	≈ 0.0032	≈ 0.00029	≈ 0.006	≈ 0.0025							
$\langle B(E2) \rangle$						≈ 1.51	≈ 1.29	≈ 1.3	≈ 1.2			
$\langle B(E3) \rangle$										≈ 4	≈ 8	≈ 5

^{а)} Фактор запрета по изоспину ≈20.

5. СИСТЕМАТИКА ПРИВЕДЕННЫХ ВЕРОЯТНОСТЕЙ *B*(*E*λ) И *B*(*M*λ) γ-ПЕРЕХОДОВ В ЯДРАХ ⁶⁻⁸Li, ^{8–10}Be, ^{8,10,11}B, ^{10–14}C, ^{13–17}N, ^{15–17,19}O, ¹⁷F. ГАЛО-ИЗОМЕРЫ

Для систематики $B(E\lambda)$ и $B(M\lambda)$ были использованы данные о γ -переходах в ядрах ⁶⁻⁸Li, ⁸⁻¹⁰Be, ^{8,10,11}B, ¹⁰⁻¹⁴C, ¹³⁻¹⁷N, ^{15-17,19}O, ¹⁷F [29, 32–39]. Систематика соответствующих средних значений $\langle B(E\lambda) \rangle$ и $\langle B(M\lambda) \rangle$ с учетом правил отбора по изоспину представлена в табл. 3 и 4. Полученные величины $\langle B(E\lambda) \rangle$ и $\langle B(M\lambda) \rangle$ согласуются с данными более ранних систематик [21, 40]. Наиболее интересные из полученных распределений величин $\lg(B(E\lambda))$ и $\lg(M\lambda)$ приведены на

Рис. 6. Распределение величин $\lg(B(M1))$ для ИВ, ИВ + ИС и ИС γ -переходов в ^{6,7,8}Li, ^{8,9,10}Be, ^{8,10,11}B, ^{10,11,12,13,14} С, ^{13,14,15,16,17}N, ^{15,16,17,19}O, ¹⁷F. Вертикальные столбцы (здесь и на рис. 7–11) показывают количество *M*1 γ -переходов во всех указанных ядрах. Средние значения и стандартное отклонение составляют: $\langle \lg(B(M1)) \rangle = -1.0, \langle B(M1) \rangle = 0.1$ W.u. и $\sigma(\lg(B(M1))) = 0.99.$

ЯДЕРНАЯ ФИЗИКА том 80 № 5 2017

рис. 6-11. Вертикальные столбцы показывают количество γ -переходов заданной мультипольности во всех ядрах, указанных в подписях к соответствующим рисункам. Полученные распределения на рис. 6-11 аппроксимировались функцией Гаусса.

Области малых значений в распределениях величин $\langle B(E\lambda) \rangle$ и $\langle B(M\lambda) \rangle$ могут быть связаны с наличием гало-изомеров. В случае, когда галоструктура возбужденного состояния отличается от гало-структуры основного состояния ядра или его основное состояние не имеет гало-структуры, γ переходы между такими состояниями могут быть существенно заторможены и образование галоизомеров становится возможным [10, 11]. Для выявления гало-изомеров необходимо анализировать парциальные переходы γ -распада соответствующих уровней и резонансов. Радиальная зависимость типа r^{λ} для $E\lambda$ - и $r^{\lambda-1}$ для $M\lambda$ операторов может компенсировать различия в ВФ

Рис. 7. Распределение величин $\lg(B(M1))$ для $\Delta T = = 1$, ИВ γ -переходов в ^{6,7,8}Li, ^{8,9,10}Be, ^{8,10,11}B, ^{10,11,12,13,14}C, ^{13,14,15,16,17}N, ^{15,16,17,19}O, ¹⁷F. Средние значения и стандартное отклонение составляют: $\langle \lg(B(M1)) \rangle = -0.46$, $\langle B(M1) \rangle = 0.35$ W.u. и $\sigma(\lg(B(M1))) = 0.60$.

ИЗОСИМОВ

$M1$ γ -переход	Благоприятные $\Delta T = \pm 1$	Благоприятные $\Delta T = 1; T_Z = 0$	Нормальные, $\Delta T = 0$	Заторможенные ^{а)} (ИС) $\Delta T = 0;$ $T_Z = 0$	Все $M1$ -переходы, $\Delta T = 0, \pm 1;$ $\Delta T_Z = 0$
$\langle B(M1) \rangle$, W.u.	≈ 0.35	≈ 0.2	≈ 0.1	≈ 0.008	≈ 0.1

Таблица 4. То же, что и в табл. 3, для приведенных вероятностей $(B(M1)) \gamma$ -переходов

^{а)} Фактор торможения ≈ 20 для ИС γ -переходов.

Таблица 5. Гало-ядро \rightarrow гало-ядро γ -переходы для ядер $6 \leq A \leq 17$ (энергии отделения нуклонов, S_n, S_p, S_{2p} и S_d , приведены для основных состояний ядер)

№ п/п	Ядро	Начальное состояние, E, M эB; J^{π}, T	Конечное состояние, E, M эB; J^{π}, T	Γ , эВ $(T_{1/2})$	<i>S</i> _n , кэВ	<i>S</i> _p , кэВ	S _d (S _{2p}), кэВ	B(M1), W.u.	B(E1), W.u.	B(E2), W.u.
1	⁶ Li	ИАС резонанс, 3.56; 0+, 1	g.s.; 1 ⁺ , 0	$(5.9 \times 10^{-17} \text{ c})$	5665	4593	1474.0	8.6		
2	⁹ Be	Резонанс, 1.68; 1/2+, 1/2	g.s.; 3/2 ⁻ , 1/2	0.30	1665.4	16888			2.2×10^{-1}	
3	⁸ B	Резонанс, 0.7695; 1+, 1	g.s.; $I^{\pi} = 2^+, T = 1$	0.0252	13020	137.5		2.63		
4	¹⁰ C	3.3536; 2+, 1	g.s.; 0+, 1	4.25×10^{-3} (155 \phic)	21283.1	4006.0	3820.9			9.6
5	$^{10}\mathrm{Be}$	Резонанс, 7.371; 3-, 1	$5.958; 2^+, T = 1$	0.11	6812	19636			1.2×10^{-1}	
6	$^{11}\mathrm{Be}$	0.320; 1/2-, 3/2	g.s.; 1/2+, 3/2	(115 фс)	501.62	20165			$3.6 imes10^{-1}$	
7	^{10}B	Резонанс, 6.875; 1-, 0 + 1	5.919; $I^{\pi} = 2^+, T = 0$	0.054	8436.3	6585.9			$1.9 imes 10^{-1}$	
8	$^{17}\mathrm{F}$	0.495; 1/2+	g.s.; 5/2 ⁺ , 1/2	(286 фc)	16800	600.27				25

Таблица 6. Гало-ядро \rightarrow ядро без гало γ -переходы для ядер $6 \leq A \leq 17$ (энергии отделения нуклонов, S_n , S_p , приведены для основных состояний ядер)

№ п/п	Ядро	Начальное состояние, E, M эB; J^{π}, T	Конечное состояние		Конечное состояние		Γ , эВ $(T_{1/2})$	<i>S</i> _n , кэВ	$S_p,$ кэВ	B(M1),W.u.	B(E1), W.u.	B(E2), W.u.
			E, МэВ	J^{π}, T								
1	${}^{10}B$	5.919; 2+, 0	g.s.	$3^+, 0$	0.112	8436.3	6585.9	2.6×10^{-2}				
			0.718	$1^+, 0$	0.025			8.5×10^{-3}				
2	¹⁰ Be	5.9584; 2 ⁺ , 1	3.368	$2^+, 1$	(≼55 фс (>90%))	6812	19636	$3 imes 10^{-2}$				
3	^{14}N	6.20; 1 ⁺ , 0	g.s.	$1^+, 0$	(160 ¢c)	10553.3	7550.6	1.8×10^{-3}		2.1×10^{-2}		
4	^{14}N	Резонанс, 9.13; 3+,0	g.s.	$1^+, 0$	(45 ¢c)	10553.3	7550.6			8.1×10^{-3}		
			5.83	3-,1					6.4×10^{-5}			
			6.45	$3^+, 0$				2.2×10^{-3}				
5	14 N	Резонанс, 9.70; 1+	g.s.	$1^{+}, 0$	0.06	10553.3	7550.6	9.4×10^{-4}				
			2.31	$0^+, 1$				5.1×10^{-3}				

гало-состояний и состояний, не обладающих галоструктурой. Поэтому наиболее чувствительными к замедлению будут M1 (или, возможно, E1 и M2) γ -переходы между уровнями ядра с гало \rightarrow отсутствием гало. Переходы между уровнями ядра типа гало \rightarrow гало должны быть ускорены вследствие значительного перекрывания волновых функций и наличия мягкой моды возбуждения в гало-ядрах [1–3].

При рассмотрении ИАС, ДИАС, КС, ДКС в качестве материнских (с ВФ Ψ_{T_0+1,T_0+1}^{PS} , опреде-

ляемой формулами (1)–(3), рис. 1) нами выбраны следующие ядра: nn гало — ⁶He, ¹¹Li, ^{12,14}Be, ¹⁷B; pn гало — ⁶Li; n гало — ¹¹Be, ¹⁴B, ^{17,19}C; pp гало — ¹⁰C, ¹⁷Ne; p гало — ⁸B, ¹²N, ¹⁷F. Используя экспериментальные данные [29, 32–39] для ядер $6 \leq A \leq 17$, были отобраны γ -переходы между уровнями типа гало (промежуточное гало) — гало (промежуточное гало). Соответствующие значения $B(E\lambda)$ и $B(M\lambda)$ (табл. 5) находятся вблизи границы верхнего рекомендованного предела (табл. 1). Ускоренный характер γ -переходов в табл. 5 сви-

Рис. 8. Распределение величин $\lg(B(M1))$ для ИС γ переходов в N = Z ядрах ⁶Li, ⁸Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁶O. Средние значения и стандартное отклонение составляют: $\langle \lg(B(M1)) \rangle = -2.07, \langle B(M1) \rangle = 0.008$ W.u. и $\sigma(\lg(B(M1))) = 1.02.$

Число М2 у-переходов

Рис. 9. Распределение величин $\lg(B(M2))$ для ИВ, ИВ + ИС и ИС γ -переходов в ^{6,7,8}Li, ^{8,9,10}Ве, ^{8,10,11}В, ^{10,11,12,13,14}С, ^{13,14,15,16,17}N, ^{15,16,17,19}O, ¹⁷F. Средние значения и стандартное отклонение составляют: $\langle \lg(B(M2)) \rangle = -0.38$, $\langle B(M2) \rangle = 0.4$ W.u. и $\sigma(\lg(B(M2))) = 1.0$.

детельствует о высокой степени пространственного перекрывания (особенно для $M1 \gamma$ -переходов) ВФ начального и конечного состояний ядра.

Далее были отобраны возбужденные состояния ядер, подходящие для наличия гало (промежуточного гало), т.е. имеющие небольшие энергию связи и спин, γ -распад заторможен и имеет небольшую мультипольность, гало в конечном состоянии заведомо отсутствует из-за значительной энергии отделения нуклонов. Данные о характеристиках и γ -распаде таких состояний приведены в табл. 6.

Сравнение значений $B(E, \lambda)$ и $B(M, \lambda)$ из табл. 5 и 6 показывает, что γ -переходы типа гало \rightarrow гало отсутствует значительно заторможены по

Рис. 10. Распределение величин $\lg(B(E1))$ для всех типов (запрещенных и разрешенных по изоспину, $\Delta T = 1, 0$) γ -переходов в ^{6,7,8}Li, ^{8,9,10}Be, ^{8,10,11}B, ^{10,11,12,13,14}C, ^{13,14,15,16,17}N, ^{15,16,17,19}O, ¹⁷F. Средние значения и стандартное отклонение составляют: $\langle \lg(B(E1)) \rangle = -2.64, \langle B(E1) \rangle = 0.002$ W.u. и $\sigma(\lg(B(E1))) = 1.2.$

Число Е2 ү-переходов

Рис. 11. Распределение величин $\lg(B(E2))$ для ИВ, ИВ + ИС и ИС γ -переходов в ^{6,7,8}Li, ^{8,9,10}Ве, ^{8,10,11}В, ^{10,11,12,13,14}С, ^{13,14,15,16,17}N, ^{15,16,17,19}O, ¹⁷F. Средние значения и стандартное отклонение составляют: $\langle \lg(B(E2)) \rangle = 0.15$, $\langle B(E2) \rangle = 1.4$ W.u. и $\sigma(\lg(B(E2))) = 0.87$.

сравнению с γ -переходами типа гало \rightarrow гало. Соответствующий фактор торможения достигает значений 10^4 для M1, 5×10^4 для E1 и 10^2 для E2 γ -переходов.

6. ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

В настоящей работе показано, что ИАС, ДИАС, КС, ДКС возбужденные состояния и резонансы с различными изоспинами в галоидальных ядрах могут иметь структуру гало различного (*nn*, *np*, *pp*) типа. При этом волновые функции этих состояний могут одновременно иметь nn, np, pp-компоненты структуры двухчастичного гало.

Для основного состояния ядра ⁶Li ($I^{\pi} = 1^+$; $S_n = 5.66$ МэВ; $S_p = 4.59$ МэВ; $S_d = 1.47$ МэВ) проявляются свойства, характерные для галоструктур. Большая величина приведенной вероятности M1 γ -распада ИАС на g.s. ⁶Li свилетельствует о наличии гало типа танго в основном состоянии ядра ⁶Li.

В ядрах $6\leqslant A\leqslant 17$
 $\gamma\text{-переходы типа гало}\rightarrow$ → гало отсутствует заторможены по сравнению с γ -переходами типа гало \rightarrow гало. Фактор торможения достигает значений: 10^4 для M1 γ -переходов, 5×10^4 для E1 γ -переходов и 10^2 для E2 γ переходов.

Наличие гало в возбужденных состояниях и отсутствие гало в основном состоянии ядра, так же как и различия в структуре гало для возбужденных состояний, может приводить к образованию галоизомеров.

СПИСОК ЛИТЕРАТУРЫ

- I. Tanihata, J. Phys. G 22, 157 (1996).
 A. S. Jensen *et al.*, Rev. Mod. Phys. 76, 215 (2004).
- В. Jonson, Phys. Rep. **389**, 1 (2004).
 Л. И. Галанина, Н. С. Зеленская, ЭЧАЯ **43**, 295 (2012) [Phys. Part. Nucl. **43**, 147 (2012)].
- V. T. Voronchev, V. M. Krasnopolsky, and V. I. Ku-5. kulin, J. Phys. G 8, 649 (1982).
- 6. V. T. Voronchev, V. M. Krasnopolsky, V. I. Kukulin, and P. B. Sazonov, J. Phys. G 8, 667 (1982).
- 7. M. V. Zhukov, B. V. Danilin, D. V. Fedorov, et al., Phys. Rept. 231, 151 (1993).
- 8. R. Raabe, A. Andreev, M. Huyse, ..., L. I. Galanina, and N. S. Zelenskaya, Phys. Rev. C 67, 044602
- (2003). 9. Л. И. Галанина, Н. С. Зеленская, ЯФ **70**, 308 (2007) [Phys. Atom. Nucl. **70**, 283 (2007)]. 10. I. N. Izosimov, AIP Conf. Proc. **1681**, 030006 (2015);
- Preprint No. E6-2015-41, JINR (Dubna, 2015). 11. I. N. Izosimov, EPJ Web Conf. **107**, 09003 (2016)
- 12. Y. Suzuki and K. Yabana, Phys. Lett. B 272, 173 (1991).

- 13. L. Zhihong et al., Phys. Lett. B 527, 50 (2002).
- 14. Л. И. Галанина, Н. С. Зеленская, ЯФ **76**, 1542 (2013) [Phys. Atom. Nucl. **76**, 1457 (2013)]. C. Jin-Gen *et al.*, Chin. Phys. Lett. **20**, 1021 (2003).
- 15.
- 16. A. A. Ogloblin et al., Int. J. Mod. Phys. E 20, 823 (2011).
- 17. À. A. Ógloblin et al., Phys. Rev. C 84, 054601 (2011).
- 18. V. K. Lukyanov et al., Phys. Rev. C 88, 034612 (2013).
- 19. Л. И. Галанина, Н. С. Зеленская, ЯФ **78**, 730 (2015) [Phys. Atom. Nucl. 78, 685 (2015)].
- 20. Л. Й. Галанина, Н. С. Зеленская, ЯФ 79. 393 (2016) [Phys. Atom. Nucl. 79, 594 (2016)].
- 21. Ю. В. Наумов, О. Е. Крафт, Изоспин в ядерной физике (Наука, Ленинград, 1972).
- 22. Ю.В.Наумов, А.А.Быков, И.Н.Изосимов, ЭЧАЯ 14, 420 (1983).
- 23. I. N. Izosimov, in Proceedings of the International Symposium on Exotic Nuclei (EXON2012), Vladivostok, Russia, 2012 (World Sci., 2013), p. 129; Preprint No. E6-2012-121, JINR (Dubna, 2012).
- 24. Ю. В. Наумов, О. Е. Крафт, ЭЧАЯ 6, 892 (1975).
- 25. J. K. Tuli, Report BNL-NCS-51655-01/02-Rev, NNDC, Brookhaven National Laboratory (New York, 2001), p. 101.
- 26. P. M. Endt, At. Data Nucl. Data Tables 23, 547 (1979). P. M. Endt, At. Data Nucl. Data Tables **23**, 3 (1979).
- 27.
- 28. P. M. Endt, At. Data Nucl. Data Tables 26, 47 (1981).
- 29. NNDC, National Brookhaven Laboratory. http://www.nndc.bnl.gov
- 30. Р. Калпакчиева, В. А. Маслов, Р. А. Астабатян и др., ЯФ 70, 649 (2007) [Phys. Atom. Nucl. 70, 619 (2007)].
- 31. Ю. Э́. Пенионжкевич, ЯФ 72, 1674 (2009) [Phys. Atom. Nucl. 72, 1617 (2007)].
- 32. D. R. Tilley et al., Nucl. Phys. A 708, 3 (2002).

- D. R. Tilley *et al.*, Nucl. Phys. A **706**, 3 (2002).
 J. H. Kelley *et al.*, Nucl. Phys. A **880**, 88 (2012).
 D. R. Tilley *et al.*, Nucl. Phys. A **708**, 3 (2002).
 D. R. Tilley *et al.*, Nucl. Phys. A **745**, 155 (2004).
 F. Ajzenberg-Selove, Nucl. Phys. A **506**, 1 (1990).
 F. Ajzenberg-Selove, Nucl. Phys. A **523**, 1 (1991).
 D. R. Tilley *et al.*, Nucl. Phys. A **566**, 1 (1993).
 D. R. Tilley *et al.*, Nucl. Phys. A **566**, 1 (1995).

- 39. D. R. Tilley *et al.*, Nucl. Phys. A **595**, 1 (1995).
- 40. V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics, Bristol and Philadelphia, 1992).

ISOSPIN IN HALO NUCLEI. BORROMEAN HALO, TANGO HALO, AND HALO-ISOMERS

I. N. Izosimov

It has been shown that isobar-analog (IAS), double isobar-analog (DIAS), configuration (CS), and double configuration states (DCS) can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo-like nuclei is discussed. $B(M\lambda)$ and $B(E\lambda)$ for γ transitions in ^{6–8}Li, ^{8–10}Be, ^{8,10,11}B, ^{10–14}C, ^{13–17}N, ^{15–17,19}O, and ¹⁷F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure, but the excited state may have one.