УДК 539.171.11

КЛАСТЕРЫ ИНЕРТНЫХ ГАЗОВ

© 2017 г. А. А. Коробицин, Е. А. Колганова

Объединенный институт ядерных исследований, Дубна E-mail: koroaa@theor.jinr.ru, kea@theor.jinr.ru

Исследуются свойства кластеров инертных газов. Рассчитываются основные характеристики всех возможных однородных и неоднородных димеров инертных газов и тримера гелия в различных потенциальных моделях.

DOI: 10.7868/S0367676517100131

ВВЕДЕНИЕ

Кластеры инертных газов представляют собой большой класс молекул. взаимодействие которых описывается потенциалами ван-дер-ваальсового типа. Исследование таких кластеров всегда привлекало повышенное внимание физиков-теоретиков и экспериментаторов в течение многих лет и продолжает оставаться актуальным и в наши дни, особенно из-за их интересных свойств, как, например, эффект Ефимова [1]. Квантово-механический эффект Ефимова был впервые предсказан в 1970 году российским физиком-теоретиком Виталием Ефимовым. Этот эффект прекрасно демонстрирует разнообразие возможностей при переходе от задачи двух тел к трехчастичной задаче. Хорошо известно, что любая система двух частиц с достаточно быстро убывающим и не слишком сингулярным взаимодействием имеет конечное число связанных состояний. В случае системы трех частиц, при определенных условиях, реализуется противоположная ситуация: число связанных состояний может быть бесконечным. Такая спектральная ситуация имеет место в случае, когда ни одна из парных подсистем не имеет связанных состояний, но хотя бы две из них обладают бесконечными длинами рассеяния [2, 3]. Конечно, конкретные двухчастичные системы обладают конечными длинами рассеяния и поэтому можно говорить о системах ефимовского типа, в которых этот эффект проявляется лишь частично. Одной из таких систем, несомненно, является тример гелия ⁴Не₃, возбужденное состояние которого имеет ефимовскую природу [2-11].

Для изучения проявления эффекта Ефимова в трехатомных кластерах необходимы хорошие знания волновых функций димеров. В настоящей работе мы вычисляем волновые функции

и спектры двухатомных молекул инертных газов He₂, Ne₂, Ar₂, Kr₂ и Xe₂ с различными межатомными потенциалами. Среди ранних потенциалов, описывающих взаимодействие между этими атомами, наиболее удачным считается эмпирический потенциал Леннарда-Джонса LJ [12]. В настоящее время наиболее адекватными потенциальными моделями считаются чисто теоретический потенциал К.А. Танга и Я.П. Тоенниса – ТТ [13], а также полуфеноменологические потенциалы LM2M2 [14], HFD-B2 [15, 16], HFD-B [17], построенные Р.А. Азизом с сотрудниками. Эти потенциалы более глубокие по сравнению с LJ и поддерживают слабосвязанные состояния, которые особенно интересны с точки зрения существования ефимовских резонансов [3, 18].

1. ДВУХЧАСТИЧНЫЕ КЛАСТЕРЫ

Вопрос о существовании связанных состояний димеров инертных газов многие годы оставался открытым. Так, димер гелия был впервые открыт в независимых экспериментах [19] и [20], а первая экспериментальная оценка его энергии связи была получена лишь в 1996 году [21]. Согласно более позднему эксперименту [22], среднее значение длины связи димера гелия составила $r = 52 \pm 4$ Å, тем самым указывая, что димер гелия является самой протяженной среди известных двухатомных молекул. В этой же работе была дана оценка энергии связи димера $1.1^{+0.3}_{-0.2}$ мК и длина рассеяния 104^{+8}_{-18} Å. Отметим, что такая слабая связь позволяет двум атомам гелия находиться в связанном состоянии только с нулевым угловым моментом. Возбужденные же уровни (вращательные или колебательные) у этой молекулы отсутствуют. Анализ экспериментальных данных [22], проведенный недавно в работе [23], дает несколько другую оценку энергии

Уровень	Ne ₂	Ne ₂ [12]	Ar ₂	Ar ₂ [12]
$egin{array}{c} E_0 & E_1 & & \ E_2 & E_3 & & \ E_4 & E_5 & & \ E_6 & E_7 & & \ E_8 & & \ E_8 & & \ \end{array}$	20.179 3.861 0.043	20.178 3.859 0.598	101.361 70.799 46.863 28.871 16.084 7.704 2.865 0.682 0.025	101.454 71.019 47.139 29.157 16.334 7.892 2.985 0.693 —

Таблица 1. Сравнение значений энергии связи *E* (К) димеров неона и аргона с результатами работы [12]

Таблица 2. Сравнение значений энергии связи *E* (К) димеров криптона и ксенона с результатами работы [12]

Уровень	Kr ₂	Kr ₂ [12]	Xe ₂	Xe ₂ [12]
E_{0}	150.719	150.716	210.665	210.674
E_1^0	126.294	126.280	188.596	188.599
$E_2^{'}$	104.542	104.534	168.051	168.059
$\tilde{E_3}$	85.339	85.329	148.986	148.985
E_{4}	68.554	68.552	131.354	131.357
E_5	54.050	54.038	115.120	115.107
E_6	41.685	41.689	100.226	100.213
E_7	31.313	31.308	86.626	86.630
E_8	22.780	22.780	74.277	74.270
E_{9}	15.925	15.924	63.114	63.111
$\vec{E_{10}}$	10.580	10.578	53.099	53.085
E_{11}^{10}	6.573	6.576	44.173	44.171
E_{12}^{11}	3.721	3.723	36.281	36.279
E_{13}^{12}	1.836	1.837	29.368	29.366
E_{14}^{13}	0.725	0.722	23.374	23.364
E_{15}^{11}	0.186	0.230	18.242	18.229
E_{16}^{10}	0.014	_	13.909	13.916
E_{17}^{-1}			10.313	10.315
E_{18}			7.389	7.380
E_{19}^{10}			5.072	5.068
E_{20}			3.295	—
E_{21}^{-1}			1.988	—
E_{22}^{-1}			1.080	—
E_{23}^{-}			0.501	—
$E_{24}^{}$			0.178	—
E_{25}^{-1}			0.036	—
$E_{26}^{}$			$6.4 \cdot 10^{-04}$	—

связи $1.3^{+0,25}_{-0,19}$ мК. Прояснение этой ситуации, безусловно, требует дальнейших экспериментальных исследований этой системы. Первые экспериментальные измерения спектра димера неона были выполнены в [24]. Всего дискретный спектр димера неона в *s*-состоянии содержит три уровня, два из которых экспериментально измерены в работе [25] и имеют значения энергии 24.22 ± 0.02 K и 4.405 ± 0.02 K соответственно. Для энергии второго возбужденного состояния получена только оценка сверху – меньше 0.14 К [25].

Для исследования кластеров инертных газов была рассмотрена квантово-механическая задача двух частиц, взаимодействующих при помощи центрального потенциала ван-дер-ваальсового типа. В результате решения радиального уравнения Шредингера были вычислены спектры двухатомных систем инертных газов и их радиальные волновые функции.

Вначале был выполнен расчет, в котором в качестве межатомного взаимодействия использовалась потенциальная модель LJ [12]. Наши результаты, представленные в табл. 1 и 2, демонстрируют хорошее согласие с результатами работы [12], в которой уже проводился численный расчет спектров некоторых димеров инертных газов. Однако результаты для слабосвязанных состояний отличаются, что можно объяснить повышением компьютерной точности вычислений. Далее мы использовали современные модели ТТ [13], LM2M2 [14]. HFD-B2 [15, 16] и HFD-B [17]. Вычисленные спектры с этими потенциалами для всех однородных двухчастичных систем He_2 , Ne_2 , Ar_2 , Kr_2 и Xe_2 приведены в табл. 3 и 4. Как и ожидалось, с увеличением массы атомов возрастает число уровней в спектрах этих систем. В то время как димер гелия имеет одно связанное состояние, спектр димера неона содержит три уровня, а димер ксенона – 24 уровня.

Для всех неоднородных димеров инертных газов расчеты проводились в потенциальной модели ТТ [13]. Результаты вычислений энергии связи основных и наиболее слабосвязанных состояний

E (К), среднеквадратичного радиуса $\sqrt{\langle r^2 \rangle}$ (Å)

и среднего радиуса $\langle r \rangle$ (Å) приведены в табл. 5 и 6.

Как и для однородных систем, энергия связи основного состояния увеличивается с увеличением массы атомов, формирующих димер. Практически во всех системах, кроме Ar₂, имеется слабосвязанное состояние с энергией, близкой к нулю, поэтому можно ожидать в трехчастичных кластерах наличия ефимовских резонансов вблизи этих порогов.

Радиальные волновые функции φ основного состояния димеров NeXe, вычисленные с потенциалом TT [13] приведены на рис. 1. На рис. 2*a* и *б* построены радиальные волновые функции φ для всех состояний димера аргона. На рис. 3*a* и *б* приведены радиальные волновые функции φ для димеров He₂, Ne₂, HeNe и Ar₂, Ne₂, ArNe.

КОРОБИЦИН, КОЛГАНОВА

Димер	He ₂	He ₂ (мК) Ne ₂ (К)		$e_2(K)$	Ar ₂ (K	
Потенциал Уровень	TT	LM2M2	TT	HFD-B2	TT	HFD-B
E_0	1.3240	1.3036	24.1316	24.4421	121.5004	121.9369
$\overline{E_1}$			4.2777	4.5279	83.7284	84.9491
E_2			0.0222	0.0327	54.0021	55.3693
E_3					31.8334	32.9571
E_4					16.5115	17.2461
E_5					7.0383	7.4253
E_6					2.1227	2.2811
E_7					0.2823	0.3213
	1	1				

Таблица 3. Спектры *E_i* (К) однородных димеров инертных газов гелия, неона и аргона, вычисленные с потенциалами TT [13], LM2M2 [14], HFD-B2 [15], HFD-B [16]

Таблица 4. Спектры *E_i* (К) однородных димеров инертных газов криптона и ксенона, вычисленные с потенциалами TT [13] и HFD-B2 [17]

Димер	Kr	₂ (K)	Xe ₂ (K)		
Потенциал Уровень	TT	HFD-B2	TT	HFD-B2	
E_0	184.7897	184.7685	267.1759	268.0782	
$\tilde{E_1}$	153.1110	153.9699	238.6889	239.8699	
$\dot{E_2}$	124.8287	126.2006	212.0169	213.3263	
$\tilde{E_3}$	99.8756	101.4508	187.1428	188.4631	
$\tilde{E_4}$	78.1658	79.7117	164.0472	165.3147	
E_5	59.5926	60.9850	142.7075	143.8921	
$\tilde{E_6}$	44.0234	45.2075	123.0977	124.1661	
$\tilde{E_7}$	31.2940	32.2453	105.1879	106.1196	
E_8	21.2031	21.9275	88.9437	89.7246	
E_9	13.5088	14.0318	74.3252	74.9522	
E_{10}	7.9285	8.2844	61.2863	61.7655	
E_{11}	4.1441	4.3684	49.7742	50.1195	
E_{12}	1.8129	1.9386	39.7280	39.9593	
E_{13}	0.5801	0.6377	31.0784	31.2192	
E_{14}	0.0912	0.1080	23.7471	23.8215	
E_{15}	$1.39 \cdot 10^{-04}$	$5.63 \cdot 10^{-04}$	17.6446	17.6762	
E_{16}			12.6781	12.6822	
E_{17}			8.7381	8.7290	
E_{18}			5.7122	5.6992	
E_{19}			3.4831	3.4706	
E_{20}			1.9286	1.9189	
E_{21}			0.9256	0.9192	
$\overline{E_{22}}$			0.3511	0.3476	
E_{23}			0.0837	0.0823	
E_{24}			$4.80 \cdot 10^{-03}$	$4.58 \cdot 10^{-03}$	

КЛАСТЕРЫ ИНЕРТНЫХ ГАЗОВ

Атом	Величина	He	Ne	Ar	Kr	Xe
	E_0	1.3240 мК	3.442	9.886	11.540	11.978
He	$\langle r angle$	51.784	4.041	4.093	4.236	4.505
	$\sqrt{\langle r^2 \rangle}$	70.618	4.138	4.137	4.274	4.541
	E_0		24.132	47.963	53.845	55.565
Ne	$\langle r \rangle$		3.331	3.627	3.777	4.015
	$\sqrt{\langle r^2 \rangle}$		3.346	3.636	3.784	4.022
	E_0			121.500	147.334	168.742
Ar	$\langle r angle$			3.836	3.954	4.145
	$\sqrt{\langle r^2 \rangle}$			3.840	3.957	4.148
	E_0				184.790	217.189
Kr	$\langle r \rangle$				4.055	2.235
	$\sqrt{\langle r^2 \rangle}$				4.057	4.237
	\dot{E}_0					267.176
Xe	$\langle r angle$					4.398
	$\sqrt{\langle r^2 \rangle}$					4.399

Таблица 5. Энергия связи основного состояния E_0 (K), средний радиус $\langle r \rangle$ (Å) и среднеквадратичный радиус $\sqrt{\langle r^2 \rangle}$ (Å) для всех неоднородных димеров инертных газов, вычисленные с потенциалом TT [13]

Таблица 6. Энергия связи наиболее слабосвязанного состояния E(K), средний радиус $\langle r \rangle$ (Å) и среднеквадратичный радиус $\sqrt{\langle r^2 \rangle}$ (Å) для всех неоднородных димеров инертных газов, вычисленная с потенциалом TT [13]

Атом	Величина	Не	Ne	Ar	Kr	Xe
	$E_{\langle r \rangle}$	$1.324 \cdot 10^{-03}$	3.442	9.886	0.034	0.141
He		51.784	4.041	4.093	13.355	9.801
	$\sqrt{\langle r^2 \rangle}$	70.618	4.138	4.137	15.095	10.462
	$E_{\langle r \rangle}$		0.022	0.689	0.263	1.019
Ne			11.825	6.858	8.551	7.222
	$\sqrt{\langle r^2 \rangle}$		13.040	6.995	8.712	7.338
	$E_{/r}$			0.282	0.031	0.026
Ar				9.601	14.878	16.274
	$\sqrt{\langle r^2 \rangle}$			9.790	15.331	16.739
	$E_{\langle r \rangle}$				$1.39 \cdot 10^{-04}$	0.030
Kr					53.339	16.693
	$\sqrt{\langle r^2 \rangle}$				62.446	17.055
Xe	$E_{\langle r \rangle}$					$4.80 \cdot 10^{-03}$
						31.111
	$\sqrt{\langle r^2 \rangle}$					32.087

2. ТРЕХЧАСТИЧНЫЕ КЛАСТЕРЫ

Одним из эффективных методов исследования трехчастичных систем являются вычислительные алгоритмы, основанные на использовании дифференциальных уравнений Фаддеева [4, 26, 27].

Положение системы трех частиц в конфигурационном пространстве после отделения движения центра масс описывается парами приведенных координат Якоби \vec{x}_{α} , \vec{y}_{α} , $\alpha = 1, 2, 3$:

$$\vec{x}_{\alpha} = \left[\frac{2m_{\beta}m_{\gamma}}{m_{\beta} + m_{\gamma}}\right]^{1/2} \left(\vec{r}_{\beta} - \vec{r}_{\gamma}\right),$$
$$\vec{y}_{\alpha} = \left[\frac{2m_{\alpha}(m_{\beta} + m_{\gamma})}{m_{\alpha} + m_{\beta} + m_{\gamma}}\right]^{1/2} \left(\vec{r}_{\alpha} - \frac{m_{\beta}\vec{r}_{\beta} + m_{\gamma}\vec{r}_{\gamma}}{m_{\beta} + m_{\gamma}}\right), \quad (1)$$

где \vec{r}_{α} – радиус-векторы частиц с массами m_{α} , а (α , β , γ) образуют циклическую перестановку индексов (1, 2, 3). Набор координат α описывает разбиение трех частиц на пару частиц ($\beta\gamma$) и отдельную частицу α .

Полную волновую функцию Ψ трехчастичной системы можно записать в виде суммы компонент Фаддеева Φ_{α} :

$$\Psi(\vec{x}_{\alpha}, \ \vec{y}_{\alpha}) = \sum_{\alpha} \Phi_{\alpha}(\vec{x}_{\alpha}, \ \vec{y}_{\alpha}), \qquad (2)$$

которые удовлетворяют системе дифференциальных уравнений

$$\begin{pmatrix} -\Delta_{\vec{x}_{\alpha}} - \Delta_{\vec{y}_{\alpha}} + V_{\alpha}(\vec{x}_{\alpha}) - E \end{pmatrix} \Phi_{\alpha}(\vec{x}_{\alpha}, \vec{y}_{\alpha}) = \\ = -V_{\alpha}(\vec{x}_{\alpha}) \sum_{\beta \neq \alpha} \Phi_{\beta}(\vec{x}_{\beta}, \vec{y}_{\beta}),$$

$$(3)$$

где V_{α} — потенциал взаимодействия в паре α и E полная энергия системы. Для тождественных частиц между компонентами Фаддеева возникает простая связь, которая описывается с помощью операторов циклической перестановки частиц P, а система уравнений (3) сводится к одному уравнению [26]. После углового анализа для случая нулевого полного орбитального момента получается трехмерное дифференциальное уравнение для соответствующей проекции компоненты Фаддеева [4, 27]:

$$\left(-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \left(\frac{1}{x^2} + \frac{1}{y^2} \right) \frac{\partial}{\partial z} \left(1 - z^2 \right) \frac{\partial}{\partial z} + V(x) - E \right) \times$$

$$\times \varphi(x, y, z) = -V(x) P \varphi(x, y, z),$$
(4)

где *x*, *y* и *z* связаны с соответствующими координатами Якоби:

$$x = |\vec{x}|, \ y = |\vec{y}|, \ z = \frac{(\vec{x}, \vec{y})}{x, y}, \ x, y \in [0, \infty), \ z \in (-1, 1).$$

Рис. 1. Радиальные волновые функции φ основного состояния (n = 0) димеров Ne₂ (сплошная линия), Ar₂ (штриховая линия), Kr₂ (точечная линия) и Xe₂ (штрихпунктирная линия), вычисленные для потенциала TT [13].

Впервые существование тримера гелия было установлено в эксперименте [20], позднее был измерен средний радиус основного состояния молекулы $\langle r \rangle = 1.1^{+0.4}_{-0.5}$ нм [28], которое хорошо согласуется с теоретическими предсказаниями [29, 30]. Малость энергии связи димера гелия позволяет предполагать наличие возбужденного состояния ефимовского типа в трехатомной молекуле. На протяжении последних лет было проведено множество теоретических расчетов системы ⁴He₃ с различными реалистическими атом-атомными потенциалами (см. обзоры [2, 3]). И действительно, во всех этих расчетах было получено два уровня с энергиями около 126 мК для основного и 2.28 мК для возбужденного состояний. Более того, в целой серии работ [3, 18] показывается, что наличие возбужденного состояния связано именно с эффектом Ефимова [1]. Однако экспериментального подтверждения этого факта не было до совсем недавнего времени. Лишь в 2015 году удалось экспериментально измерить энергию связи возбужденного состояния тримера гелия относительно парного порога развала [31].

В настоящей работе для расчета спектра тримера гелия мы используем дифференциальные уравнения Фаддеева (4). Для описания межатомного взаимодействия V использовались потенциалы LM2M2 [14] и HFD-B2 [15]. В табл. 7 приведены результаты расчетов энергии связи тримера гелия, которые демонстрируют хорошее согласие с результатами других авторов.

В табл. 8 дается сравнение значений энергии связи димера гелия ε_d среднего радиуса $\langle r \rangle$,

Рис. 2. Радиальные волновые функции φ для четных (*a*) и нечетных (*b*) состояний Ar₂, вычисленные с потенциалом TT [13]. На рис. *a*, δ – сплошная линия соответствует состоянию димера аргона с n = 0 (n = 1), штриховая линия – n = 2 (n = 3), точечная линия – n = 4 (n = 5), штрихпунктирная линия – n = 6 (n = 7). В основном состоянии Ar₂n = 0.

⁴Не-⁴Не длины рассеяния $\ell_{sc}^{(1+1)}$, энергии возбужденного состояния тримера гелия E_1^* и разницы $|E_1^* - \varepsilon_d|$ для различных потенциалов с результатами экспериментов [22] и [31]. Для наших расчетов использовались потенциальные модели HFD-B [32], HFDHE2 [33], LM2M2 [14] и TTY [34]. Также в табл. 8 приведены результаты работы [5] расчета возбужденного состояния тримера гелия для других потенциальных моделей PCKLJS [23], SAPT96 [35], CCSAPT07 [36]. Отметим, что различные потенциальные модели дают довольно разные результаты для двухчастичной задачи, например, энергия связи димера может отличаться в два раза.

Рис. 3. Радиальные волновые функции ϕ димеров, вычисленные в модели TT [13]: $a - \text{He}_2$ (сплошная линия), Ne₂ (штриховая линия), HeNe (точечная линия); $\delta - \text{Ar}_2$ (штриховая линия), Ne₂ (сплошная линия), ArNe (точечная линия).

Экспериментально была измерена энергия связи возбужденного состояния тримера гелия относительно двухчастичного порога, которая составила 0.98 ± 0.2 мК [31]. Из табл. 8 видно, что все потенциальные модели хорошо воспроизводят этот результат.

ЗАКЛЮЧЕНИЕ

В работе исследовались свойства димеров инертных газов, а именно были вычислены спектр, средний радиус и среднеквадратичный радиус всех возможных однородных и неоднородных димеров инертных газов в различных потенциальных

Таблица 7. Энергии связи основної	о E_0 и возбужденного E_1	состояний тримера г	елия ⁴ Не ₃ , вычисленные
с потенциалом LM2M2 [14], в сравн	ении с результатами работ	т [3, 5—11]	

<i>Е</i> (мК)	LM2M2	[3]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
E_0	126.5	125.9	126.4	126.4	126.2	126.4	126.5	126.5	126.4
E_1^*	2.277	2.282	2.271	2.268	_	2.265	2.278	2.278	2.271

Таблица 8. Сравнение значений энергии связи димера гелия ε_d , среднего радиуса димера $\langle r \rangle$, ⁴He-⁴He длины рассеяния $\ell_{sc}^{(1+1)}$, энергии возбужденного состояния тримера гелия E_1^* и этой энергии относительно двухчастичного порога $|E_1^* - \varepsilon_d|$, вычисленные для различных потенциалов с результатами экспериментов [22] и [31]

Потенциал	ε _d (мК)	$\ell_{sc}^{(1+1)}(\text{\AA})$	$\langle r angle$ (Å)	<i>E</i> ₁ [*] (мК)	$E_1^* - \varepsilon_d$ (MK)
HFDHE2 [33] HFD-B [32] LM2M2 [14] TTY [34] PCKLJS [23] SAPT96 [35] CCSAPT07 [36]	$\begin{array}{r} -0.830 \\ -1.685 \\ -1.303 \\ -1.309 \\ -1.615 \\ -1.744 \\ -1.564 \end{array}$	124.65 88.50 100.23 100.01	64.12 46.10 51.99 51.78 47.09 45.45 47.78	$1.67 \\ 2.74 \\ 2.27 \\ 2.28 \\ 2.65^{a} \\ 2.80^{a} \\ 2.59^{a}$	0.84 1.05 0.97 0.97 1.03 1.06 1.02
Exp. [22]	$1.1^{+0.3}_{-0.2}$	104^{+8}_{-18}	52^{+4}_{-4}		0.98 ± 0.2 [31]

^а Результаты расчетов из работы [10].

моделях. Показано, что во всех димерах, кроме Ar₂, имеются состояния с энергией, близкой к порогу развала. Это обстоятельство позволяет предположить наличие ефимовских резонансов в трехатомных системах инертных газов. В рамках дифференциальных уравнений Фаддеева в представлении полного углового момента выполнен расчет спектра тримера гелия. Показано, что все современные потенциальные модели хорошо воспроизводят положение возбужденного состояния относительно парного порога, хотя абсолютные значения и энергии возбужденного состояния тримера, и энергии связи димера гелия, значительно отличаются. Эта ситуация требует дальнейших как экспериментальных, так и теоретических исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ефимов В.Н. // ЯФ. 1970. Т. 12. С. 1080.
- 2. Колганова Е.А., Мотовилов А.К., Зандхас В. // ЭЧАЯ. 2009. Т. 40. С. 396.
- Kolganova E.A., Motovilov A.K., Sandhas W. // Few-Body Syst. 2011. V. 51. P. 249.
- Motovilov A.K., Sandhas W., Kolganova E.A. et al. // Eur. J. Phys. 2001. V. 13. P. 33.

- Roudnev V.A., Yakovlev S.L., Sofianos S.A. // Few-Body Systems. 2005. V. 37. P. 179.
- Lazauskas R., Carbonell J. // Phys. Rev. A. 2006. V. 73. 062717.
- Salci M., Yarevsky E., Levin S.B. et al. // Int. J. Quant. Chem. 2007. V. 107. P. 464.
- 8. *Kievsky A., Garrido E., Romero-Redondo C. et al.* // Few-Body Systems. 2011. V. 51. P. 259.
- 9. Roudnev V., Cavagnero M. // J. Phys. B. 2011. V. 45. 025101.
- Hiyama E., Kamimura M. // Phys. Rev. A. 2012. V. 85. 062505; Phys. Rev. A. 2012. V. 85. 022502.
- 11. *Deltuva A.* // Few-Body Systems. 2015. V. 56. P. 993; arXiv: 1505.03927.
- Leither D.M., Doll J.D. // J. Chem. Phys. 1991. V. 94. P. 6644.
- Tang K.T., Toennies J.P. // J. Chem. Phys. 2003. V. 118. P. 4976.
- Aziz R.A., Slaman M.J. // J. Chem. Phys. 1991. V. 94. P. 8047.
- Aziz R.A., Slaman M.J. // J. Chem. Phys. 1989. V. 130. P. 187.
- 16. Aziz R.A. // J. Chem. Phys. 1993. V. 99. P. 4518.

- Aziz R.A., Slaman M.J. // J. Chem. Phys. 1990. V. 142.
 P. 173.
- Колганова Е.А., Мотовилов А.К. // ЯФ. 1999. Т. 62. С. 1253.
- Luo F., McBane G.C., Kim G. et al. // J. Chem. Phys. 1993. V. 98. P. 9687.
- Schöllkopf W., Toennies J.P. // Science. 1994. V. 266. P. 1345.
- Luo F., Giese C.F., Gentry W.R. // J. Chem. Phys. 1996.
 V. 104. P. 1151.
- 22. *Grisenti R., Schöllkopf W., Toennies J.P. et al.* // Phys. Rev. Lett. 2000. V. 85. P. 2284.
- 23. Cencek W., Przybytek M., Komasa J. et al. // J. Chem. Phys. 2012. V. 136. 224303.
- 24. *Tanaka Y., Yoshino K. //* J. Chem. Phys. 1972. V. 57. P. 2964.
- 25. Wüest A., Merkt F. // J. Chem. Phys. 2003. V. 118. P. 8807.
- 26. *Меркурьев С.П., Фаддеев Л.Д.* Теория рассеяния для систем нескольких частиц. М.: Наука, 1985.

- 27. Kostrykin V.V., Kvinstinsky A.A., Merkuriev S.P. // Few-Body Syst. 1989. V. 6. P. 97.
- 28. Brühl R., Kalinin A., Kornilov O. et al. // Phys. Rev. Lett. 2005. V. 95. 063002.
- 29. *Roudnev V.A., Yakovlev S.L.* // Chem. Phys. Lett. 2000. V. 328. P. 97.
- 30. Barletta P., Kievsky A. // Phys. Rev. A. 2001. V. 64. 042514.
- Kunitski M., Zeller S., Voigtsberger J. et al. // Science. 2015. V. 348. P. 551.
- 32. Aziz R.A., McCourt F.R.W., Wong C.C.K. // Mol. Phys. 1987. V. 61. P. 1487.
- Aziz R.A., Nain V.P.S., Carlew J.S. et al. // J. Chem. Phys. 1979. V. 79. P. 4330.
- 34. Tang K.T., Toennies J.P., Yiu C.L. // Phys. Rev. Lett. 1995. V. 74. P. 1546.
- Jansen A.R., Aziz R.A. // J. Chem. Phys. 1997. V. 107. P. 914.
- 36. Jeziorska M., Cencek C., Patkowski K. et al. // J. Chem. Phys. 2007. V. 127. 124303.