_____ ЯДРА =

ПРЕДСТАВЛЕНИЕ РАДИАЦИОННЫХ СИЛОВЫХ ФУНКЦИЙ В ПРАКТИЧЕСКОЙ МОДЕЛИ КАСКАДНОГО ГАММА-РАСПАДА

© 2017 г. Д. К. Ву^{1),2)*}, А. М. Суховой^{1)**}, Л. В. Мицына^{1)***}, Ш. Зейналов^{1)****}, Н. Йованчевич^{3)*****}, Д. Кнежевич^{3)******}, М. Крмар^{3)******}, А. Драгич^{4)*******}

Поступила в редакцию 14.06.2016 г.; после доработки 24.08.2016 г.

Разработанная в Дубне практическая модель каскадного гамма-распада нейтронного резонанса позволяет из аппроксимации интенсивностей двухквантовых каскадов одновременно определять параметры плотности уровней ядра и парциальных ширин эмиссии продуктов ядерной реакции. В представленном варианте модели минимизирована доля используемых феноменологических представлений. Анализ новых результатов подтвердил полученную ранее зависимость динамики взаимодействия ферми- и бозе-состояний ядра от его формы. Из отношений плотностей уровней вибрационного и квазичастичного типов следует также, что это взаимодействие проявляется в диапазоне энергий связи нейтрона и, вероятно, различается в ядрах с различной четностью нуклонов.

DOI: 10.7868/S0044002717020271

ВВЕДЕНИЕ

Параметры каскадного гамма-распада произвольного высоколежащего уровня ядра при любых энергиях возбуждения определяются только плотностью уровней ρ и парциальными ширинами Г дипольных электрических и магнитных переходов. Интенсивность каскадов с чистыми квадрупольными переходами пренебрежимо мала при энергиях возбуждения ядра выше нескольких МэВ. Спины уровней, возбуждаемых первичными переходами для обеих четностей заключены в интервале $2 \leqslant \Delta J \leqslant 4$. Изучение процесса гаммараспада представляет интерес, в первую очередь, для исследования динамики взаимодействия фермионного и бозонного состояний ядерной материи. Достоверная информация необходима также и для более точного описания процесса деления. Согласно [1] энергия между возбужденными осколками деления распределяется в зависимости от плотности их уровней. Но плотности уровней, рассчитан-

- ³⁾Университет Нови-Сад, Факультет науки, Отдел физики, Сербия.
- ⁴⁾Институт физики, Белград, Сербия.
- ^{*}E-mail: vuconghnue@gmail.com
- **E-mail: suchovoj@nf.jinr.ru
- ****E-mail: mitsyna@nf.jinr.ru
- *****E-mail: zeinal@nf.jinr.ru
- ******E-mail: nikola.jovancevic@df.uns.ac.rs
- *******E-mail: david.knezevic@df.uns.ac.rs
- ********E-mail: krmar@df.uns.ac.rs
- *********E-mail: dragic@ipb.ac.rs

ные на основе существующих моделей [2], сильно отличаются от данных современного эксперимента [3]. Это различие может быть объяснено только большей информативностью эксперимента с регистрацией каскада продуктов реакции по сравнению с любыми методиками получения спектров одиночных гамма-квантов или нуклонных продуктов без использования режима совпадений.

Поскольку ординарные гамма-спектры и сечения реакции зависят от произведения $\rho \times \Gamma$, это полностью исключает возможность одновременного определения из таких данных достоверных значений ρ и Γ . Эта возможность реализована только в экспериментах по изучению каскадов из двух последовательных гамма-переходов, интенсивности которых содержат информацию и об энергии возбуждения ядра, и об энергии испускаемого гамма-кванта (нуклона). Только такие эксперименты могут уменьшить полную ошибку определяемых ρ и Γ до нескольких десятков процентов.

Так как все индивидуальные уровни и вероятности переходов между ними невозможно определить современными спектрометрическими детекторами, то информацию о сверхтекучести ядра можно получить только из непрямых экспериментов. При этом и плотность уровней ρ , и парциальные ширины Γ в любом ядре являются неизвестными функциями.

1. ВОЗМОЖНОСТИ СОВРЕМЕННОГО ЭКСПЕРИМЕНТА И ЕГО МОДЕЛЬНОГО ПРЕДСТАВЛЕНИЯ

Интенсивности $I_{\gamma\gamma}(E_1)$ двухквантовых каскадов между нейтронным резонансом (или иным компаунд-состоянием) λ и некоторой группой f

¹⁾Объединенный институт ядерных исследований, Дубна, Россия.

²⁾Вьетнамская Академия наук и Технологический институт физики, Ханой, Вьетнам.

нижних уровней ядра через любые промежуточные уровни i для фиксированной энергии первичного перехода E_1 записываются системой уравнений вида

$$I_{\gamma\gamma}(E_1) = \sum_{\lambda,f} \sum_i \frac{\Gamma_{\lambda i}}{\Gamma_{\lambda}} \frac{\Gamma_{if}}{\Gamma_i} =$$
(1)
$$= \sum_{\lambda,f} \frac{\Gamma_{\lambda i}}{\langle \Gamma_{\lambda i} \rangle m_{\lambda i}} n_{\lambda i} \frac{\Gamma_{if}}{\langle \Gamma_{if} \rangle m_{if}},$$

где $m_{\lambda i}$ — число уровней, возбуждаемых первичными переходами в интервалах от энергии исходного уровня λ до промежуточного уровня i; m_{if} — число уровней, возбуждаемых вторичными гамма-переходами в интервалах от энергии промежуточного уровня i до конечного уровня f; $n_{\lambda i}$ — число промежуточных уровней каскадов в малых интервалах энергий первичных переходов. Из системы (1), в которой связаны неизвестное число уровней n (или m) и неизвестные парциальные ширины Г, определяется набор параметров *р* и *q* модельных функций $\rho = f(p_1, p_2, ...)$ и $\Gamma =$ $= \varphi(q_1, q_2, ...)$ с ошибкой, обусловленной расхождением существующих теоретических представлений и результатов эксперимента. Предшествующий анализ [4] показал, что в модель можно включать даже возможную связь между значениями плотности уровней и силовых функций в некоторых узких интервалах энергий возбуждения. Таким образом, из спектров двухквантовых каскадов можно одновременно определить параметры искомых функций ρ и Γ при любых плотностях уровней λ и i.

Анализ [3] экспериментальных данных по интенсивностям каскадов из области масс $28 \le A \le \le 200$ показал, что полученные плотности уровней нельзя воспроизвести с точностью эксперимента моделями, игнорирующими существование ветвей бозонного состояния ядерной материи (или учитывающими этот процесс недостаточно корректно).

Разработанная нами методика не требует использования непроверенных экспериментом гипотез (например, гипотезы Портера-Томаса [5] о распределении ширин эмиссии продуктов ядерной реакции, гипотезы Акселя-Бринка [6, 7] о независимости значений радиационных ширин от энергии возбуждаемого уровня или гипотезы Бора-Моттельсона [8] о корректности использования оптической модели ядра для определения вероятности эмиссии нуклонных продуктов реакции). Основой Дубненской модели каскадного гаммараспада компаунд-состояний ядра с энергиями возбуждения $E_{\rm ex} \approx 5 - 10$ МэВ являются модель плотности *n*-квазичастичных уровней, баланс изменения энтропии и энергии квазичастичных уровней [2, 9, 10] и тестируемые представления о форме энергетической зависимости радиационных силовых функций.

Систематическая погрешность в любой экспериментальной методике вычисления значений функций ρ и Γ всегда определяется большими коэффициентами переноса ошибок измеряемого спектра δS или сечения реакции $\delta \sigma$ на ошибки $\delta \rho$ и бГ определяемых параметров. Величина погрешности может сильно возрастать при увеличении энергии распадающегося уровня исследуемой реакции. Оценить эту ошибку и направление коррекции модельных представлений о $\rho = f(p_1, p_2, ...)$ и $\Gamma = \varphi(q_1, q_2, ...)$ можно, только сопоставляя различные варианты описания плотности уровней и радиационных силовых функций. Например, при сравнении нескольких вариантов практической модели [3, 11, 12] удалось обнаружить, что скорость изменения плотности уровней вибрационного типа, задаваемая в [11, 12] феноменологически, частично или полностью определяется энергией спаривания последнего нуклона Δ_0 в ядре. Точность аппроксимации интенсивностей во всех реализованных вариантах практической модели при постепенном снижении числа подгоняемых параметров сохраняется, поэтому результаты аппроксимации спектров $I_{\gamma\gamma}$ в настоящей работе не приводятся.

В отличие от [3], в предлагаемом варианте модели два параметра (скорость изменения ядерной энтропии и скорость изменения энергии квазичастичных состояний) в феноменологическом представлении коэффициента коллективного увеличения плотности уровней C_{coll} [3, 10] заменены единым подгоняемым параметром E_u :

$$C_{\text{coll}} = A_l \exp(\sqrt{(E_{\text{ex}} - U_l)/E_u} - (2) - (E_{\text{ex}} - U_l)/E_u) + \beta,$$

где A_l — параметры плотности вибрационных уровней выше точки разрыва каждой l пары, а U_l — энергия порогов разрыва куперовских пар. Параметр $\beta \ge 1$ может отличаться от 1 для деформированных ядер.

Влияние оболочечных неоднородностей одночастичного спектра [2, 10] было учтено через параметр *а* зависимости плотности уровней от энергии возбуждения:

$$a(A, E_{\text{ex}}) = \tilde{a}(1 + ((1 - \exp(\gamma E_{\text{ex}}))\delta E/E_{\text{ex}})) \quad (3)$$

(соответственно, через параметр $g = 6a/\pi^2$ плотности *n*-квазичастичных состояний вблизи поверхности Ферми [9]). Асимптотическое значение $\tilde{a} =$ $= 0.114A + 0.162A^{2/3}$ и значение коэффициента $\gamma = 0.054$ взяты из [2, 10]. Оболочечная поправка δE , рассчитываемая [2] из данных дефекта масс в жидкокапельной модели ядра, была незначительно изменена для сохранения среднего расстояния D_{λ} между резонансами [3].

2. ЭНЕРГЕТИЧЕСКАЯ ЗАВИСИМОСТЬ СИЛОВЫХ ФУНКЦИЙ

В модели процесса каскадного гамма-распада для любых возбужденных уровней и энергий испускаемого кванта с хорошей точностью должна быть задана форма энергетической зависимости парциальных радиационных ширин.

На основании существующих моделей для ядра массы A силовая функция определяется как $k = \Gamma/(A^{2/3}E_{\gamma}^3D_{\lambda})$, где E_{γ} — энергия гаммаперехода. Абсолютное значение суммы радиационных ширин для первичных E1- и M1-переходов каскадов (полная радиационная ширина) обычно доступно из измеряемых сечений реакции. Наиболее вероятную форму этой суммы можно получить из чисто феноменологических представлений или из экстраполяции каких-либо теоретических моделей в область энергий возбуждения $E_d < E_{\rm ex} < B_n$ $(E_d$ — точка перехода в (1) от известных уровней [13] к представлению о функции плотности уровней, B_n — энергия связи нейтрона в ядре).

Экспериментально установлено, что точное воспроизведение интенсивностей каскадов обеспечивает добавление в энергетическую зависимость функции $k(E1, E_{\gamma}) + k(M1, E_{\gamma})$ нескольких пиков с различной площадью, положением центра и асимметрией формы. Основное же слагаемое этой энергетической зависимости может быть представлено гладким распределением силовых функций моделей типа [14] с дополнительными параметрами, варьирование которых дает набор функций Е1- и М1-переходов с широкой областью значений (как сделано в [11, 12]). Форма дополнительных пиков может быть выявлена и задана только эмпирически. Например, описание каждого из таких пиков двумя экспонентами (как в предыдущем варианте модели [3, 11, 12]) удобно при решении системы нелинейных уравнений (1), хотя экспоненты и не используются в модельном аппарате теоретических представлений [2].

Для описания формы пиков E1- и M1-силовых функций используются функции Брейта—Вигнера или Лоренца. Асимметричная функция Брейта— Вигнера применялась при теоретическом анализе закономерностей фрагментации квазичастичных состояний при различных их положениях относительно поверхности Ферми [15]. К сожалению, используя эту функцию, нам не удалось подобрать набор параметров, пригодный для подгонки наиболее вероятных значений $\rho = f(p_1, p_2, ...)$ и $\Gamma = \varphi(q_1, q_2, ...)$.

Использовать для описания локальных пиков силовых функций асимметричную кривую Лоренца оказалось проще. Ее параметры для каждого *i* пика аналогичны модели [14], а именно: положение центра E_i , ширина Γ_i , амплитуда W_i и параметр асимметрии $\alpha_i = CT^2$. Выражение $\alpha_i(E_\gamma - E_i)/E_\gamma$ растет линейно с увеличением разности энергии возбуждения $B_n - E_i$ от нуля в центре пика до максимального значения при B_n и уменьшается при снижении энергии возбуждения ядра. Таким образом, пики E1- и M1-силовых функций представляются выражением

$$k = W \frac{(E_{\gamma}^2 + (\alpha_i (E_i - E_{\gamma})/E_{\gamma}))\Gamma_i^2}{(E_{\gamma}^2 - E_i^2)^2 + E_{\gamma}^2 \Gamma_i^2}.$$
 (4)

Существенной проблемой при аппроксимации функций Лоренца, описывающих процесс распада высоковозбужденного уровня, является резкое ухудшение сходимости итерационного процесса. Подгонка всех параметров функций (4) приводит к неограниченному уменьшению Γ_i на некоторых участках траектории итерационного процесса.

Необходимость учета влияния на силовые функции резкого локального изменения плотности уровней выявлена еще на этапе безмодельного определения набора случайных функций ρ и Γ [16]. Для этого определяемые силовые функции умножаются [4] на отношение

$$M = \rho_{\rm mod} / \rho_{\rm exp},\tag{5}$$

где ρ_{exp} — наилучшая аппроксимация для данной итерации; ρ_{mod} — гладкая модельная функциональная зависимость, воспроизводящая и плотность нейтронных резонансов, и кумулятивную сумму известных уровней с E_{ex} ниже E_d . Для определения ρ_{mod} выбрана модель ферми-газа с обратным смещением. В данном варианте анализа использовано ограничение $1 \leq \rho_{mod}/\rho_{exp} \leq 10$ [11].

3. РЕЗУЛЬТАТЫ

Трудности решения системы (1) возникают как из-за сильной нелинейности искомых функций ρ и Γ , так и из-за их антикорреляции. Есть вероятность попадания в ложный минимум χ^2 , что может привести к существенной систематической погрешности значений ρ и Γ .

Сопоставление результатов представленного и предыдущих вариантов модели показало, что достигнута хорошая точность воспроизведения плотности промежуточных уровней каскадов. Наибольшие расхождения ее значений найдены только для ¹³⁷Ва и ¹⁸²Та. При этом для ¹³⁷Ва большую погрешность, скорее всего, дает вариант предыдущей аппроксимации [3]. Для ¹⁸²Та в предлагаемом варианте значения порогов разрыва второй и третьей пары 1.6 и 5.8 МэВ, в [3] эти же пороги равны 1.6 и 4.0 МэВ, т.е. полученные данные по плотности уровней даже в худшем случае ¹⁸²Та дают картину процесса, в которой принципиальные ошибки

Рис. 1. Зависимость средних плотностей промежуточных уровней двухквантовых каскадов (точки с ошибками) от энергии возбуждения для четно-нечетных ядер (подгонки с наименьшим χ^2). Сплошные линии — расчетные данные [17], точечные линии — расчет по модели [10].

обусловлены неточностью современных представлений о процессе гамма-распада.

Максимальную точность и достоверность полученных результатов можно получить из экспериментов, в которых из всей массы гамма-каскадов распада компаунд-состояния любого ядра выделяется не менее ≈99% интенсивности первичных переходов. Тем не менее надежную информацию о наиболее вероятной плотности уровней и силовых функциях дипольных гамма-переходов можно извлечь даже из свертки спектра первичных продуктов распада компаунд-состояния и функции зависимости коэффициентов ветвления гаммапереходов от энергии промежуточного уровня каскада. Это следует из сопоставления порогов разрыва трех-четырех куперовских пар, определенных с разными вариантами зависимостей ρ и Г. В последних вариантах практической модели полученные результаты меняются очень слабо.

Плотности уровней из модели ферми-газа с "обратным смещением" [17] и из модели с учетом оболочечных неоднородностей одночастичного спек-

Рис. 2. То же, что на рис. 1, но для четно-четных ядер.

тра [10] представлены на рис. 1-3. Видно, что вторая модель воспроизводит производную $d
ho/dE_{
m ex}$ с лучшей точностью, чем модель [17]. Но плотности

уровней, рассчитанные по обеим моделям, сильно отличаются от результатов эксперимента. Представленные результаты радиационных силовых функций *E*1- и *M*1-переходов (рис. 4–6) и

Рис. 3. То же, что на рис. 1, но для ⁷⁴Ge, ¹⁷⁷Lu и нечетно-нечетных ядер.

их сумм (рис. 7–9) не имеют принципиальных расхождений с опубликованными ранее [18–20]. Но остается нерешенной проблема однозначного описания формы наблюдаемых пиков электрических и магнитных силовых функций, когда использование экспоненциальных функций [3] и модифицированной функции Лоренца (4) дает близкие значения χ^2 . Следует добавить, что данные рис. 4–9 не

Рис. 4. Силовые функции E1-переходов (точки •) и M1-переходов (точки •) для четно-нечетных ядер в зависимости от энергии первичных переходов. Точки Δ — расчеты по модели [14] в сумме с k(M1) = const в энергетическом интервале $0 < E_1 < B_n - E_d$.

требуют включения в силовые функции какихлибо дополнительных "пигми-резонансов". Для интерпретации процесса достаточно теоретических представлений о сосуществовании в любом ядре квазичастичных и вибрационных уровней и о фрагментации при возрастании $E_{\rm ex}$ всех состояний ядра того или иного типа.

Во многих ядрах (рис. 7–9) "плато" суммы силовых функций E1- и M1-переходов совпадает с суммой расчетных значений для модели [14] и величины k(M1) = const, нормированной на экспериментальные отношения k(M1)/k(E1).

ЯДЕРНАЯ ФИЗИКА том 80 № 2 2017

Силовые функции первичных переходов с энергией $E_1 < 0.5B_n$ регулярно убывают с уменьшением энергии. Существенное уменьшение суммы k(M1) + k(E1) для небольших энергий гаммапереходов сохраняется для всех вариантов описания радиационных силовых функций. Асимптотические нулевые значения сумм силовых функций при этом отсутствуют [14]. Не исключена возможность заметного увеличения силовых функций E1- или M1-переходов вблизи и выше B_n , обусловленная фрагментацией n-квазичастичных состояний ядра при наличии порога разрыва ку-

Рис. 5. То же, что на рис. 4, но для четно-четных ядер.

перовской пары в районе энергии связи нейтрона. Поэтому радиационные силовые функции не могут являться простой экстраполяцией гигантских резонансов, что полностью противоречит гипотезе Акселя—Бринка [6, 7], используемой в операциях с гамма-спектрами.

На рис. 10 представлена массовая зависимость порогов разрыва второй и третьей куперовских

пар. Поскольку эти величины различаются для ядер с различной четностью нуклонов и зависят от средней энергии спаривания, они представлены на рисунке раздельно и сопоставляются с величиной B_n/Δ_0 (аналогично [3]). Видно, что пороги разрыва пар слабо зависят от формы силовых функций. Это значит, что реальная корреляция ρ и Γ в экспе-

Рис. 6. То же, что на рис. 4, но для ⁷⁴Ge, ¹⁷⁷Lu и нечетно-нечетных ядер.

риментах по регистрации двухквантовых каскадов незначительна.

На рис. 11 представлены результаты аппроксимации параметра E_u . Наблюдается практически полное соответствие его значений со средним значением энергии спаривания Δ_0 последнего нуклона для ≈ 30 ядер. Разброс остальных значений E_u может быть связан с ошибками нормировки экспериментальных значений $I_{\gamma\gamma}$ из-за неучтенной в модели [11, 12] возможности разрыва пар протонов одновременно или вместо пар нейтронов, неточностью феноменологической части модели или флуктуацией экспериментальных значений Δ_0 [21]. Нельзя исключить и возможность раз-

ЯДЕРНАЯ ФИЗИКА том 80 № 2 2017

Рис. 7. Суммы силовых функций E1- и M1-переходов (точки •) для четно-нечетных ядер в зависимости от энергии первичных переходов. Сплошные линии — подгонки с учетом поправки (5). Точки \triangle — расчеты по модели [14] в сумме с k(M1) = const в энергетическом интервале $0 < E_1 < B_n - E_d$.

личного соотношения компонент квазичастичного и фононного типа в волновой функции резонанса, определяющего сечение захвата тепловых нейтронов любым стабильным (долгоживущим) ядроммишенью.

В современных моделях [2] полная плотность уровней равна сумме плотностей уровней квазичастичного и коллективного типа. На рис. 12 представлены значения отношения плотности уровней коллективного типа (практически только вибрационных) к полной плотности. В районе B_n эти отношения очень близки для ядер с любой четностью нуклонов. Но при энергии E_d эти отношения для четно-четных ядер заметно меньше, а для четнонечетных и нечетно-нечетных заметно больше. Все варианты Дубненской модели не дают оснований предполагать наличие резких изменений структуры ядра в точке $E_{\rm ex} = B_n$. Поэтому на основании рис. 12 правомерно предположить, что нейтронные резонансы могут сохранять различный тип структуры (с доминированием квазичастичных или фононных компонент) волновых функций и принадлежать нескольким различающимся распределениям

Рис. 8. То же, что на рис. 7, но для четно-четных ядер.

приведенных нейтронных и полных радиационных ширин резонансов.

В работе [22] выполнена аппроксимация распределений приведенных нейтронных и полных радиационных ширин нейтронных резонансов. При анализе предполагается, что экспериментальный набор этих ширин представляется суммой нескольких (до четырех) распределений с варьируемыми ширинами и положениями максимумов. Для полных радиационных ширин в ядрах с числом резонансов ≥170 средняя доля двух наиболее интенсивных распределений равна 44 и 34% от суммарного распределения полных радиационных ширин (что близко к 40% доли уровней вибрационного ти-

Рис. 9. То же, что на рис. 7, но для ⁷⁴Ge, ¹⁷⁷Lu и нечетно-нечетных ядер.

па). Таким образом, два методически независимых эксперимента указывают на различие структуры волновых функций соседних уровней в широком диапазоне стабильных ядер-мишеней до энергии B_n и несколько выше.

Имеющееся расхождение значений *E*1- и *M*1силовых функций (рис. 4-9) с результатами [3] обусловлено, скорее всего, различной степенью влияния формы парциальных ширин для дополнительных пиков (4) силовых функций на значения χ^2 в области малых значений используемых энергетических зависимостей. При этом наблюдаемые вариации форм сумм E1- и M1-силовых функций (рис. 7–9) нельзя интерпретировать как их

Рис. 10. Массовая зависимость порогов разрыва второй (\bullet , \bullet , \bigcirc) и третьей (\blacksquare , \square , \square) куперовских пар. Точки: \bullet , \blacksquare – четно-четные, \bullet , \blacksquare – четно-нечетные, \bigcirc , \square – нечетно-нечетные компаунд-ядра. Точки \triangle – массовые зависимости B_n/Δ_0 .

безусловное различие, не исключив возможности существования уровней различной структуры при энергии возбуждения порядка 5–10 МэВ.

4. ЗАКЛЮЧЕНИЕ

Получена экспериментальная информация о динамике разрыва трех-четырех куперовских пар нуклонов. Систематическая погрешность определения порогов разрыва для основной массы доступных к изучению ядер не превышает ~1 МэВ.

Набор данных, полученных с использованием:

модели плотности *n*-квазичастичных уровней [9] для описания результатов последовательного разрыва трех-четырех куперовских пар при энергии не более чем на 5—10 МэВ выше основного состояния ядра,

феноменологических представлений (2) об энергетической зависимости плотности уровней

Рис. 11. Зависимость параметра E_u (2) от массового числа A. Точки: • – четно-четные, • – четнонечетные, • – нечетно-нечетные компаунд-ядра. Кривая – среднее значение энергии спаривания Δ_0 последнего нуклона в ядре с массой A [21].

Рис. 12. Отношение плотности вибрационных уровней к суммарной плотности в районе энергии $B_n(a)$ и для точки $E_d(b)$. Линии: сплошные — средние значения для четно-четных ядер (точки \bullet), штриховые — для четно-нечетных (точки \bullet), точечные — для нечетно-нечетных ядер (точки \circ).

вибрационного типа в том же диапазоне энергий и

композиций феноменологических и/или теоретических представлений о форме энергетических зависимостей ширин эмиссии гамма-квантов, позволяет предположить, что динамика взаимодействия фермионного и бозонного состояний ядерной материи зависит от формы изучаемого ядра.

СПИСОК ЛИТЕРАТУРЫ

- K.-H. Schmidt and B. Jurado, Phys. Rev. C 83, 014607 (2011).
- 2. Reference Input Parameter Library RIPL-2, Handbook for Calculations of Nuclear Reaction Data, IAEA-TECDOC (2002).
- А. М. Суховой, Л. В. Мицына, Н. Йованчевич, ЯФ 79, 207 (2016) [Phys. Atom. Nucl. 79, 313 (2016)].
- N. Jovancevich, A. M. Sukhovoj, W. I. Furman, and V. A. Khitrov, in *Proceedings of the XX International Seminar on Interaction of Neutrons* with Nuclei, Dubna, May 2012, Preprint № E3-2013-22, JINR (Dubna, 2013), p. 157; http://isinn.jinr.ru/past-isinns.html
- 5. C. F. Porter and R. G. Thomas, Phys. Rev. **104**, 483 (1956).
- 6. P. Axel, Phys. Rev. 126, 671 (1962).
- 7. D. M. Brink, PhD Thesis (Oxford University, 1955).
- 8. A. Bohr and B. R. Mottelson, *Nuclear Structure*, *Vol. 1* (W. A. Benjamin, New York; Amsterdam, 1969).
- 9. V. M. Strutinsky, in *Proceedings of the International Congress on Nuclear Physics*, *Paris, France, 1958*, p. 617.

- 10. A. V. Ignatyuk, Report INDC-233(L), IAEA (Vienna, 1985).
- А. М. Суховой, ЯФ 78, 256 (2015) [Phys. Atom. Nucl. 78, 230 (2015)].
- A. M. Sukhovoj and L. V. Mitsyna, in Proceedings of the XXII International Seminar on Interaction of Neutrons with Nuclei, Dubna, May 2014, Preprint № E3-2015-13, JINR (Dubna, 2015), p. 245; http://isinn.jinr.ru/past-isinns.html
- 13. http://www-nds.iaea.org/ENDSF
- С. Г. Кадменский, В. П. Маркушев, В. И. Фурман, ЯФ 37, 277 (1983) [Sov. J. Nucl. Phys. 37, 165 (1983)].
- 15. Л. А. Малов, В. Г. Соловьев, ЯФ **26**, 729 (1977) [Sov. J. Nucl. Phys. **26**, 384 (1977)].
- Э. В. Васильева, А. М. Суховой, В. А. Хитров, ЯФ 64, 195 (2001) [Phys. Atom. Nucl. 64, 153 (2001)].
- 17. W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A **217**, 269 (1973).
- A. M. Sukhovoj and V. A. Khitrov, Preprint No. E3-2005-196, JINR (Dubna, 2005).
- 19. А. М. Суховой, В. А. Хитров, ЭЧАЯ **36**, 697 (2005) [Phys. Part. Nucl. **36**, 359 (2005)].
- 20. А. М. Суховой, В. А. Хитров, ЭЧАЯ **37**, 1705 (2006) [Phys. Part. Nucl. **37**, 899 (2006)].
- 21. В. А. Кравцов, Массы атомов и энергии связи ядер (Атомиздат, Москва, 1965).
- 22. А. М. Суховой, В. А. Хитров, ЯФ **76**, 70 (2013) [Phys. Atom. Nucl. **76**, 68 (2013)].

REPRESENTATION OF RADIATIVE STRENGTH FUNCTIONS IN THE PRACTICAL MODEL OF CASCADE GAMMA DECAY

D. C. Vu, A. M. Sukhovoj, L. V. Mitsyna, Sh. Zeinalov, N. Jovancevic, D. Knezevic, M. Krmar, A. Dragic

The developed in Dubna practical model of the cascade gamma decay of a neutron resonance allows from the fitted intensities of the two-step cascades to obtain parameters both of level density and of partial widths of emission of nuclear reaction products. In the presented variant of the model a part of phenomenological representations is minimized. Analysis of the new results confirms the previous finding that the dynamics of the interaction between Fermi- and Bose-nuclear states depends on the form of the nucleus. It also follows from the ratios of the densities of vibrational and quasi-particle levels that this interaction exists at list up to the binding neutron energy and probably differs for nuclei with varied parities of nucleons.