ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2017, № 2, с. 97–109

= ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ = ТЕХНИКА =

УДК 621.316.721

ИСТОЧНИКИ ТОКОВ РАЗБАЛАНСА ФОКУСИРУЮЩИХ И ДЕФОКУСИРУЮЩИХ СТРУКТУРНЫХ СВЕРХПРОВОДЯЩИХ КВАДРУПОЛЬНЫХ МАГНИТОВ НУКЛОТРОНА

© 2017 г. В. Н. Карпинский^{*a*}, Ю. М. Ноженко^{*a*}, М. М. Омельяненко^{*a*}, *, А. Л. Осипенков^{*a*}, А. О. Сидорин^{*a*}, *b*

^аОбъединенный институт ядерных исследований Россия, 141980, Дубна Московской обл., ул. Жолио-Кюри, 6 ^bСанкт-Петербургский государственный университет Россия, 199034, С.-Петербург, Университетская наб., 7–9 *e-mail: mmomelyanenko@inbox.ru Поступила в редакцию 09.03.2016 г.

Описано устройство, приведены технические характеристики и схемы основных узлов источников токов разбаланса фокусирующих и дефокусирующих магнитов при последовательной схеме питания нуклотрона. Устройства выполнены на основе тиристорных выпрямителей. Высокое быстродействие, малые пульсации и низкий шум выходного тока достигнуты за счет применения транзисторных блоков регулирования тока в линейном режиме. Особенностью источников является работа тиристорных выпрямителей в так называемом следящем режиме, позволяющем свести к минимуму потери мощности на регулирующих транзисторах и обеспечить возврат в сеть запасенной в индуктивных элементах энергии. Для прецизионного регулирования тока используется дополнительный контур обратной связи.

DOI: 10.7868/S0032816217020070

ВВЕДЕНИЕ

Протонный синхротрон (нуклотрон) [1], магнитная система которого основана на быстроциклирующих сверхпроводящих магнитах, является базовой установкой Лаборатории физики высоких энергий ОИЯИ для проведения широкого спектра фундаментальных и прикладных исследований с пучками ионов релятивистских энергий. В кольце нуклотрона размещены 96 структурных дипольных магнитов, 64 структурных квадрупольных магнита (фокусирующих и дефокусирующих), несколько десятков дипольных, секступольных и октупольных корректирующих магнитов. Корректирующие магниты питаются индивидуально от источников малой мощности. В период пусконаладочных работ и в первые годы эксплуатации нуклотрона для питания структурных магнитов использовалось два мощных источника тока: один — для цепи последовательно соединенных дипольных магнитов, второй — для цепи квадрупольных. В ходе модернизации ускорителя, проведенной в 2007–2011 гг.

Рис. 1. Эквивалентная электрическая схема питания магнитов \mathcal{A} и $\boldsymbol{\Phi}: \mathcal{A}_1, \mathcal{A}_2$ – группы дефокусирующих магнитов; $\boldsymbol{\Phi}_1, \boldsymbol{\Phi}_2$ – группы фокусирующих магнитов; $I_{19,20\text{TB}}$ – ток основного источника питания нуклотрона; $I_{37\text{TB}}$, $I_{22\text{TB}}$ – токи источников разбаланса.

7

Рис. 2. Компьютерная модель (программа FASTMEAN [9]), иллюстрирующая работу 37ТВ в следящем режиме. V_1 – транзисторный регулирующий каскад; *ИТУТ*₁ – идеальный трансформатор тока; OY_1 , OY_2 – операционные усилители.

[2], была создана новая система питания структурных магнитов, основанная на питании всех последовательно соединенных структурных магнитов (и дипольных, и квадрупольных) от одного мощного источника тока. Принципиальная возможность такого подхода связана с тем, что при интегральных значениях магнитного поля в дипольных и градиента в квадрупольных магнитах, заданных на этапе проектирования нуклотрона, номинальные токи их питания отличаются не более чем на $\pm 10\%$ в требуемом диапазоне изменения бетатронных частот. При этом одним из преимуществ данной схемы является то, что необходимый разбаланс токов может быть создан двумя источниками тока относительно небольшой мошности (один – для цепи всех последовательно соединенных квадрупольных магнитов (фокусирующих и дефокусирующих), а второй – только для цепи фокусирующих магнитов (рис. 1)). Исходя из удобства выполнения токовводов квадрупольные магниты разбиты на 4 группы: A_1, A_2, Φ_1, Φ_2 – по 16 магнитов в каждой. Ток первого дополнительного источника 37ТВ имеет встречное направление по отношению к току основного источника 19,20ТВ. Иными словами, 37ТВ играет роль активного шунта и отбирает часть тока из цепи квадрупольных магнитов ("токоотбор"). Ток второго дополнительного источника 22ТВ имеет то же направление, что и ток основного источника ("токодобавка"). Один из первых опытов по управлению токами разбаланса описан в [3].

ОБЩИЕ ТРЕБОВАНИЯ К ИСТОЧНИКАМ РАЗБАЛАНСА И ВЫБОР СХЕМНОГО РЕШЕНИЯ

Присутствие на фокусирующих и дефокусирующих магнитах напряжения самоиндукции, возникающего при нарастании и спаде тока основного источника, предъявляет ряд специфических требований к источникам токов разбаланса. При работе нуклотрона скорость изменения тока в магнитах может достигать 3 кА/с, а перепады напряжения на дефокусирующих \mathcal{I} и фокусирующих Φ магнитах — до ± 60 В при фронте до 30 мс. При этом источники разбаланса должны обеспечивать ток, с высокой точностью повторяющий форму тока главного источника и не зависящий от перепадов напряжения на их выходе.

Это означает, что такие источники должны быть способны как отдавать мощность, так и поглощать ее из нагрузки, обладать высоким быстродействием, стабильностью выходных токов, а также высоким выходным сопротивлением в определенной полосе частот. Соотношение поля дипольных магнитов и полей магнитов \mathcal{I} и Φ должно выдерживаться с относительной погрешностью¹ $\leq 5 \cdot 10^{-4}$ в диапазоне изменения поля от точки инжекции до максимального значения [4]. Требования к коэффициентам шума и пульсаций выходного тока источников – порядка 10^{-4} – 10^{-5} [4–6].

Рекордно низкие выходные пульсации достигнуты в источнике питания MPS 854 (Danfysik, выходной ток 2000 A, напряжение 200 B) [7]. Размах

¹ Относительная погрешность определяется как $\delta = (U_{\text{max}} - U_{\text{min}})/(2U_{\text{cp}})$. Аналогично вычисляются коэффициенты шума и пульсаций.

Рис. 3. Результаты моделирования работы 37TB в следящем режиме: **a** – токи источников 19,20TB, 37TB и ток магнитов \mathcal{A} и $\boldsymbol{\Phi}$; **б** – напряжение на магнитах \mathcal{A} и $\boldsymbol{\Phi}$; **в** – напряжения на транзисторном каскаде (U_{V1}) и на выходе тиристорного выпрямителя (U_{TB}); **г** – мощность, поглощаемая и отдаваемая источником 37TB.

пульсаций на нагрузке <15 мВ. Это источник питания на основе тиристорного выпрямителя, на выходе которого – регулирующий транзисторный каскад в линейном режиме. Источник предназначен для питания неизменяющимся во времени током. Основное подавление пульсаций осуществляется главным силовым фильтром выпрямителя, а подавление остаточных пульсаций – при помощи транзисторного каскада и сложных обратных связей. Скорость изменения тока таких источников <1%/с, поэтому они неприменимы на быстроциклирующем сверхпроводящем нуклотроне.

Обеспечить одновременно быстродействие и высокое подавление пульсаций сетевой частоты и ее гармоник способны высокочастотные ключевые преобразователи. Например, в источнике LHC600A-40V (CERN, выходной ток 600 A, напряжение 40 B) [8] входная часть — это резонансный инвертор на IGBT-транзисторах, на выходе — транзисторный каскад в линейном режиме. Шум и пульсации источника LHC600A-40V до частот порядка 300 Гц удовлетворяют вышеперечисленным требованиям. На более высоких частотах источник LHC600A-40V создает заметные помехи, вызванные высокочастотным преобразованием. Поэтому этот источник также не подходит для применения на нуклотроне.

В связи с вышеперечисленным принято следующее компромиссное решение:

 использовать на входе тиристорный выпрямитель;

– частоту среза главного силового фильтра выпрямителя выбрать достаточно высокой, чтобы обеспечить необходимую скорость изменения напряжения источника (в ущерб качеству подавления пульсаций);

 на выходе применить транзисторный каскад в линейном режиме;

 требуемое подавление пульсаций обеспечить дополнительным пассивным фильтром на выходе транзисторного каскада.

После первых опытов применения на нуклотроне источника такой структуры [3] последовало дальнейшее развитие системы разбаланса токов [6], и в этот период были отработаны схемы основных узлов источников 37TB и 22TB, которые описываются в данной работе.

Шум и пульсации напряжения и тока на выходе источников 37ТВ и 22ТВ до частот порядка 300 Гц соизмеримы с шумом и пульсациями на выходе упомянутого выше LHC600A-40V. Но, в

Рис. 4. Структурная схема источника 37ТВ. AB – автоматический выключатель; Tp – силовой трансформатор; $CH\Phi Y$ – система импульсно-фазового управления выпрямителя; $Y3\Pi H_1$, $Y3\Pi H_2$ – устройства защиты от перенапряжения; PH – регулятор напряжения тиристорного выпрямителя; $IC\Phi$ – главный силовой фильтр; PT – линейный транзисторный каскад регулирования тока; $ДT_1$, $ДT_2$ – датчики тока; ΠPT – прецизионный регулятор тока; $B\Phi$ – выходной фильтр; $YI\Pi$ – устройство гашения поля.

отличие от последнего, 37ТВ и 22ТВ приспособлены для быстроциклирующего ускорителя, и на их выходе отсутствуют высокочастотные помехи.

Чтобы снизить напряжение и мощность, выделяемую на транзисторном регулирующем каскаде, тиристорные выпрямители используются в так называемом следящем режиме. При этом на транзисторном каскаде поддерживается постоянное падение напряжения, а выходное напряжение тиристорного выпрямителя повторяет изменения напряжения на нагрузке с учетом падения напряжения на транзисторном каскаде.

Источники 37ТВ и 22ТВ имеют идентичную структуру и схемы управления и отличаются только величиной выходного напряжения и тока, поэтому далее описывается только источник 37ТВ.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ РАБОТЫ ИСТОЧНИКА 37ТВ В СЛЕДЯЩЕМ РЕЖИМЕ

На рис. 2 представлена компьютерная модель, созданная в программе FASTMEAN [9], которая иллюстрирует принцип работы источника 37TB в следящем режиме при протекании в магнитах \mathcal{A} и Φ тока основного источника 19,20TB. Функции тиристорного выпрямителя с системой управления выполняют операционные усилители OY_1 , OY_2 . V_1 – транзисторный регулирующий каскад в

линейном режиме, который управляется током источника 19,20TB (источник тока I_1) через идеальный трансформатор тока *ИТУТ*₁. Результаты моделирования типичного рабочего цикла нуклотрона и работы 37TB в следящем режиме приведены на рис. 3.

На рис. За представлены ток главного источника 19,20ТВ амплитудой до 6 кА (кривая $I_{19,20TB}$), выходной ток источника 37ТВ амплитудой до 600 А (кривая I_{37TB}) и результирующий ток через магниты \mathcal{I} и Φ амплитудой 5400 А (кривая $I_{\pi\phi}$).

На рис. Зб отображена э.д.с., наводимая результирующим током на магнитах \mathcal{A} и Φ (кривая $U_{\pi\phi}$).

На рис. Зв можно наблюдать, как тиристорный выпрямитель поддерживает на транзисторном каскаде V_1 постоянное падение напряжения 10 В (U_{Vl}) , а напряжение на выходе тиристорного выпрямителя (U_{TB}) при этом изменяется по закону $U_{TB} = U_{\mathcal{A}\Phi} + U_{Vl} + I_{37TB}R_2$, где R_2 – сопротивление силового кабеля.

На рис. Зг представлена зависимость мощности ($P_{37\text{TB}}$), проходящей через источник 37TB, от времени. Отрицательные значения мощности на графике соответствуют отрицательной полярности напряжения на выходе источника при неизменном направлении тока. Это означает, что в это время мощность поступает из нагрузки в источник. Тиристорный выпрямитель при соответ-

100

Характеристика	Значение	Примечание
Номинальное входное напряжение питания, В	3×380	
Частота, Гц	50	
Номинальный выходной ток, А	0-600	
Номинальное выходное напряжение, В:		
в выпрямительном режиме	+65	
в инверторном режиме	-75	Ведомый инвертор
Номинальное входное напряжение управления, В	0-10	
Номинальный коэффициент передачи $I_{\rm выx}/U_{\rm bx},$ A/B	60	Контур <i>ПРТ</i> включен
Температурный дрейф:		Контур ПРТ включен,
коэффициента передачи, 1·10 ⁻⁶ /°С, не более	±25	расчетные значения
выходного тока, мА/°С, не более	±10	
Размах напряжения шума и пульсаций на выходе в полосе частот 1–1000 Гц, В:		Нагрузка: сверхпроводящие магниты 20 мГн + кабель 30 мОм
при отключенном выходном фильтре, не более	0.7	
с выходным фильтром, не более	0.1	

ствующей схеме и настройке способен возвращать электроэнергию в сеть — автоматически переходить в так называемый инверторный режим, сохраняя при этом способность стабилизировать напряжение на транзисторном каскаде.

СТРУКТУРНАЯ СХЕМА ИСТОЧНИКА 37ТВ И ПРИНЦИП ЕГО РАБОТЫ

На рис. 4 представлена структурная схема 37ТВ. В качестве источника питания установки использован тиристорный выпрямитель комплектного электропривода КТЭ 800/220-112-1-УХЛ4 с собственной системой импульсно-фазового управления *СИФУ* и системой защит. Остальные силовые цепи, а также блоки управления и защит разработаны и изготовлены в ЛФВЭ ОИЯИ.

Напряжение питания 3×380 В, 50 Гц через автоматический выключатель подается на трансформатор *Tp*, понижается до 3×70 В и далее поступает на тиристорный выпрямитель электропривода (мост Ларионова, полностью управляемый). На выходе выпрямителя установлено устройство защиты от перенапряжения *УЗПН*₁, которое замыкает выход выпрямителя накоротко при возникновении напряжения обратной полярности свыше 150 В. Обратное перенапряжение может возникнуть, например, в случае внезапного отключения сети или сбоя инверторного режима при наличии запасенной в индуктивных элементах энергии.

Напряжение выпрямителя сглаживается главным силовым фильтром $\Gamma C \Phi$ и поступает на линейный транзисторный каскад регулирования тока РТ, в котором используются параллельно соединенные блоки линейного регулирования тока РТ-01 [10]. В основе блоков РТ-01 – силовой каскад из параллельно соединенных транзисторов в линейном режиме, охваченный отрицательной обратной связью по току. Каждый блок рассчитан на ток 50 А. Имеется внутренняя система защит. Напряжение на РТ служит сигналом обратной связи для выпрямителя и через плату регулирования напряжения РН подается на систему импульсно-фазового управления выпрямителя СИФУ. Таким образом на РТ поддерживается постоянное падение напряжения 10 В. Для защиты РТ от перенапряжения служит устройство УЗПН₂, срабатывающее при превышении 50 В.

Для повышения точности и стабильности регулирования тока служит внешний дополнительный контур обратной связи, в состав которого входят датчик тока $\mathcal{A}T_1$ и плата прецизионного регулирования тока *ПРТ*. Возможна работа источника 37TB как с контуром *ПРТ*, так и без него – в режиме "Обход". На выходе *РT* установлен

Рис. 5. Электрическая принципиальная схема силовых цепей и соединений 37TB. *PH* – регулятор напряжения тиристорного выпрямителя; *ИУП* – изолирующий усилитель-повторитель; *ИУШ* – изолирующий усилитель сигнала шунта; *ПРТ* – прецизионный регулятор тока; *PT* – линейный транзисторный каскад (12 блоков PT-01 параллельно); *КГП*₁, *КГП*₂ – ключи гашения поля (модули PM800HSA120 "Mitsubishi" с платами управления); *P/O* – сигнал "*Pa6oma/Omключение*"; *R*₃, *R*₆ – 75ШСУ-600-0.5.

выходной фильтр $B\Phi$, служащий для ослабления пульсаций выпрямителя и собственного шума *PT*. Сигнал с датчика тока $\mathcal{I}T_2$ поступает на циклозадающую аппаратуру в качестве контрольного сигнала и как информация для архива.

После выходного фильтра ток через ключи (IGBT-модули) устройства гашения поля $YI\Pi$ поступает в магниты Д и Φ нуклотрона. Ключи замкнуты при нормальной работе нуклотрона и размыкаются по сигналу датчиков срыва сверхпроводимости. При размыкании ключей в цепь тока вводятся последовательные резисторы, на которых выделяется большая часть запасенной в индуктивности цепи энергии. Таким образом защищаются от повреждения потерявшие сверхпроводимость обмотки магнитов. Ключи $YI\Pi$ также размыкаются при срабатывании защит 37TB.

СИСТЕМА ЗАЩИТ

Стойка управления тиристорного электропривода содержит стандартную заводскую систему защит. Свободные входы использованы для организации специфических защит 37ТВ. Доработанная система защит срабатывает по сигналам:

 Срыв сверхпроводимости нуклотрона (при поступлении сигнала с датчиков срыва сверхпроводимости);

— *Защита ТВ* (превышение напряжения и/или тока на выходе выпрямителя);

 $- U_{\text{max}}$ инверторного режима (сработало УЗП H_1);

 $- U_{\text{max}} PT$ (сработало УЗП H_2);

- Авария PT (при аварийном отключении одного или нескольких блоков PT-01);

— *Авария УГП* (при аварийном отключении IGBT-модулей устройства гашения поля).

Рис. 6. Электрическая принципиальная схема регулятора напряжения тиристорного выпрямителя. DA_1 – ISO124P; DA_2 , DA_4 , DA_5 – LF411C (питание: +15 B – выв. 7, -15 B – выв. 4); U_{II} (±15 B) изолирован от *Gnd*.

При поступлении одного или нескольких аварийных сигналов выдается сигнал отключения *Работа/Откл*, по которому выключаются регуляторы *PH* и *ПТР*, выпрямитель переводится в инверторный режим и размыкаются ключи *УГП*.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И КОНСТРУКЦИЯ ИСТОЧНИКА 37ТВ

Основные технические характеристики 37TB приведены в таблице.

Конструктивно 37ТВ выполнен в стандартных электротехнических шкафах. Охлаждение выпрямителя КТЭ 800/220-112 — воздушное естественное, блоков РТ-01 — воздушное принудительное (встроенными в каждый блок вентиляторами), IGBT-модулей устройства гашения поля — водяное проточное.

ЭЛЕКТРИЧЕСКАЯ ПРИНЦИПИАЛЬНАЯ СХЕМА СИЛОВЫХ ЦЕПЕЙ И СОЕДИНЕНИЙ ЦЕПЕЙ УПРАВЛЕНИЯ 37ТВ

Упрощенная принципиальная схема силовых цепей и цепей управления источника 37ТВ приведена на рис. 5.

Главный силовой фильтр $\Gamma C \Phi$ состоит из дросселей L_1 , L_2 типа ΦPOC , основной емкости C_1 и демпфирующей цепи R_1C_2 . Одно из основных условий при выборе параметров силового LC-фильтра — частота среза фильтра должна быть ниже самой низкой гармоники сетевой частоты (во избежание резонансных явлений). Для луч-

шего подавления пульсаций выпрямленного напряжения частоту среза нужно выбирать как можно ниже, но не слишком низкую, чтобы выпрямитель имел достаточное быстродействие для работы в следящем режиме. В данном случае частота среза $\Gamma C \Phi$ выбрана равной 35 Гц. Подробный расчет фильтров с цепями демпфирования приведен в [11].

Транзисторный регулирующий каскад *PT* состоит из 12 параллельно соединенных блоков PT-01 [10]. Цепь компенсации R_4C_4 на выходе *PT* необходима для устойчивой работы блоков PT-01 на индуктивную нагрузку. Расчет компенсирующей цепи описан в [10]. Выходной фильтр $B\Phi$ состоит из емкости C_5 и демпфирующей цепи R_5C_6 . Демпфирование необходимо, поскольку индуктивность магнитов \mathcal{A} и Φ и емкость C_5 образуют колебательный контур (частота 40 Гц). $B\Phi$ оказывает некоторое влияние на величину и форму тока в магнитах \mathcal{A} и Φ , поэтому предусмотрено отключение $B\Phi$ с помощью реле K_1 . В *ГСФ* и $B\Phi$ применены конденсаторы типа МБГВ.

Устройство гашения поля $Y\Pi$ состоит из ключей гашения поля $K\Pi_1$, $K\Pi_2$ и гасящих резисторов R_6 , R_7 . При поступлении сигнала на отключение ключи размыкаются одновременно, ток нагрузки замыкается через резисторы R_6 , R_7 , на которых выделяется запасенная в магнитах \mathcal{I} и Φ энергия. Время гашения порядка 40 мс. Напряжение на каждом резисторе не превышает 500 В. Конденсаторы C_7 , C_8 (пленочные, фирмы Vishay) устраняют высокочастотные резонансные процессы при выключении. В качестве ключей ис-

Рис. 7. Электрическая принципиальная схема прецизионного регулятора тока. *DA*₁, *DA*₃, *DA*₅ – LF411C (питание: +15 В (вывод 7), -15 В (вывод 4)), *DA*₂ – LM311P, *DA*₄ – KP590KH4; *VD*₁, *VD*₂ – BAV199; *VD*₃–*VD*₅ – 1N4148.

пользуются интеллектуальные IGBT-модули Mitsubishi ($U_{\text{max}} = 1200$ В, $I_{\text{max}} = 800$ А). Платы управления модулей (разработаны в ЛФВЭ ОИЯИ) обеспечивают гальваническую изоляцию управляющего сигнала и сигнала аварийного отключения модулей (превышение тока, перегрев).

Электрическая принципиальная схема платы РН

На рис. 6 приведена упрощенная электрическая принципиальная схема платы регулятора напряжения тиристорного выпрямителя. При поступлении сигнала *Работа* аналоговыми ключами DA_3 схема переводится в режим регулятора напряжения. На вход усилителя ошибки DA_2 от потенциометра R_9 (U_{cra6}) поступает опорное напряжение. Цепь R_5C_1 обеспечивает плавное нарастание напряжения выпрямителя при включении (порядка 0.3 с). На "+Вх.","–Вх." поступает сигнал отрицательной обратной связи (напряжение на блоках РТ-01) и далее через изолирующий усилитель DA_1 – на усилитель ошибки. Сигнал с выхода усилителя ошибки ("Вых.") через повторитель DA_5 поступает на *СИФУ* выпрямителя. В результате на блоках РТ-01 поддерживается постоянное падение напряжения (обычно 10 В).

При поступлении сигнала *Откл* (или при размыкании тумблера "Работа/Откл") отключается опорное напряжение $U_{\rm стаб}$, выключается усилитель ошибки, на *СИФУ* поступает напряжение смещения $U_{\rm инв}$ от потенциометра R_{10} , которое определяет выходное напряжение выпрямителя в инверторном режиме. Номинальное входное напряжение *СИФУ* электропривода КТЭ 800/220-112-1-УХЛ4 находится в пределах ±4.5 В.

Электрическая принципиальная схема платы ПРТ

Упрощенная электрическая принципиальная схема платы прецизионного регулятора тока ΠPT приведена на рис. 7. На вход "Вх." поступает управляющий сигнал от циклозадающей аппаратуры (0–10 В). На вход "Вх. ОС" подается сигнал обратной связи (0–10 В) с изолирующего усилителя UYIII датчика тока R_3 силовой цепи (рис. 5). С выхода ΠPT ("Вых.") сигнал (также в пределах 0–10 В) поступает на изолирующий усилитель-повторитель UYIII и далее – на входы блоков РТ-01.

Рис. 8. Электрическая принципиальная схема изолирующего усилителя-повторителя. DA_1 – AD210, DA_2 – LF411C; U_{Π} = 15 В (изолирован от *Gnd1*, *Gnd2*).

Рис. 9. Электрическая принципиальная схема изолирующего усилителя сигнала шунта. $DA_1 - OP177$, $DA_2 - AD210$, $DA_3 - LF411C$; $U_{\Pi} = 15$ В (изолирован от *Gnd1*, *Gnd2*).

Плата содержит входной каскад DA_1 , усилитель ошибки DA_3 , выходной повторитель DA_5 , аналоговые ключи DA_4 и реле времени на DA_2 . Ключи служат для включения и выключения режима регулирования тока. Реле времени формирует задержку включения ΠPT на время порядка l с. Задержка необходима для того, чтобы ΠPT вступал в работу после установления напряжения тиристорного выпрямителя. Включение и выключение ΠPT осуществляется по сигналу *Работа/Откл* или тумблером "*Вкл. ПРТ/Обход*". В ре-

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 2 2017

жиме "*Обход*" *ПРТ* выключен, и входной сигнал управления передается без изменений на изолирующий усилитель-повторитель *ИУП*.

Электрическая принципиальная схема изолирующего усилителя-повторителя

Схема изолирующего усилителя-повторителя ИУП приведена на рис. 8. Устройство обеспечивает гальваническую развязку управляющего сигнала от цепей управления блоков РТ-01 (в блоках

Рис. 10. Электрическая принципиальная схема устройства защиты от перенапряжения УЗПН-150. VD_1 , VD_2 , $VD_6 - UF4007$, $VD_3 - VD_5 - 1N4756A$ (в УЗПН-50 вместо VD_4 , VD_5 установлены перемычки, $R_4 - 2.4$ кОм).

РТ-01 цепи управления гальванически связаны с силовой цепью). Используемый в схеме изолирующий прецизионный усилитель AD210 (DA_1) построен по принципу трансформаторного модема с частотой преобразования 50 кГц. Для дополнительной фильтрации частоты преобразования на выходе DA_1 установлен фильтр нижних частот 2-го порядка с частотой среза 10 кГц. Коэффициент усиления $HY\Pi$ по напряжению равен единице. Номинальное входное и выходное напряжение составляет 0–10 В. Установка нуля осуществляется резистором R_3 ("Уст. нуля").

Электрическая принципиальная схема изолирующего усилителя сигнала шунта

Схема изолирующего усилителя сигнала шунта *ИУШ* приведена на рис. 9. Сигнал с токового шунта величиной 0–75 мВ поступает на прецизионный малошумящий каскад DA_1 с коэффициентом усиления по напряжению 67. Микросхема DA_2 – это AD210, описанная выше. Коэффициент усиления AD210 в данной схеме около 2. Коэффициент усиления всего устройства устанавливается резистором R_4 ("*Уст. Кус*"). Величина 0– 75 мВ входного напряжения соответствуют 0– 10 В выходного. Нуль на выходе корректируется резистором R_7 ("*Уст. нуля*").

Электрическая принципиальная схема устройств защиты от перенапряжения УЗПН-150, УЗПН-50

Электрическая принципиальная схема устройства защиты от перенапряжения УЗПН-150 приведена на рис. 10. В нормальной ситуации силовой тиристор *VS*₁ закрыт. При превышении порогового напряжения 150 В, определяемого стабилитронами VD_3-VD_5 , открывается вспомогательный тиристор VS_2 и запускает VS_1 , который замыкает накоротко выводы защищаемого устройства. Согласно техническим характеристикам, VS_1 типа T143-630 рассчитан на средний ток 630 А и допускает ударный однократный ток 10 кА в течение 10 мс. Для сигнализации срабатывания $Y3\Pi H$ служит узел сигнализации с оптроном U_1 . При срабатывании $Y3\Pi H$ конденсатор C_3 разряжается через входную цепь оптрона U_1 , и в систему защиты поступает сигнал о срабатывании.

Устройство УЗПН-50 (порог срабатывания 50 В) имеет аналогичную схему и отличается тем, что вместо VD_4 , VD_5 установлены перемычки, а величина R_4 составляет 2.4 кОм.

ПИТАНИЕ СОБСТВЕННЫХ НУЖД ИСТОЧНИКА 37ТВ

Для питания плат управления и автоматики используется импульсный стабилизированный источник питания Mean Well DRP-240-24 (24 B, 10 A), из напряжения которого на платах при помощи изолирующих DC/DC-преобразователей TRACO получаются гальванически изолированные стабилизированные напряжения ±15 B. На вводе 24 В каждой платы установлен самовосстанавливающийся полимерный предохранитель Polyswitch и обратно включенный диод для защиты от перемены полярности.

Рис. 11. Осциллограммы испытания 37ТВ в режиме короткого замыкания выхода при скачкообразном изменении напряжения выпрямителя: \mathbf{a} — верхний луч — скачкообразные изменения напряжения тиристорного выпрямителя (размах 8 В), нижний луч — выходной ток 240 А; масштаб по горизонтали 0.25 с/деление; $\mathbf{6}$ — верхний луч — скачкообразное нарастание напряжения выпрямителя величиной 8 В, нижний луч — пульсации выходного тока (0.6 А/деление), масштаб по горизонтали 5 мс/деление.

ЛАБОРАТОРНЫЕ ИСПЫТАНИЯ ИСТОЧНИКА 37ТВ

На рис. 11 и 12 приведены осциллограммы, полученные при испытании источника 37ТВ в режиме короткого замыкания выхода. На рис. 11а дана осциллограмма испытаний 37ТВ при скачкообразном изменении напряжения выпрямителя. Испытание весьма информативно, поскольку можно одновременно наблюдать качество настройки регулятора *PH* и качество стабилизации тока каскадом *PT*. Выходной ток *PT* установлен равным 240 А (нижний луч). На вход опорного

Рис. 12. Осциллограмма, иллюстрирующая влияние пульсаций напряжения выпрямителя с частотой 300 Гц на выходной ток 37ТВ: верхний луч – пульсации напряжения выпрямителя (1 В/деление); нижний луч – пульсации выходного тока при токе 600 А (0.24 А/деление).

напряжения платы PH подается прямоугольное напряжение от генератора (фронт ~50 нс) в сумме с постоянным смещением. Напряжение на PT изменяется от 10 до 18 В. Согласно рис. 116, влияние скачков напряжения на выходной ток пренебрежимо мало. На верхнем луче видны пульсации напряжения выпрямителя с частотой 300 Гц.

На рис. 12 представлена осциллограмма, иллюстрирующая влияние пульсаций напряжения выпрямителя с частотой 300 Гц на выходной ток 37ТВ. Если принять размах пульсаций напряже-

Рис. 13. Совместный рабочий цикл блоков 19,20ТВ и 37ТВ: верхний луч — напряжение на *РТ* (10 В/деление); средний луч — напряжение на выходе 37ТВ (на магнитах \mathcal{A} и $\mathcal{\Phi}$) (10 В/деление); нижний луч — выходной ток 37ТВ (60 А/деление).

Рис. 14. Осциллограмма начала рабочего цикла. Переход выпрямителя 37TB в инверторный режим при малом токе: верхний луч – напряжение на *PT* (10 В/деление); средний луч – напряжение на выходе 37TB (10 В/деление); нижний луч – ток 37TB (30 А/деление). Масштаб по горизонтали 0.1 с/деление.

Рис. 15. Осциллограммы с анализатора пульта нуклотрона: **a** – производная индукции магнитного поля магнита \mathcal{I} (напряжение шума на измерительной индукционной катушке магнита), $B\Phi$ подключается во время рабочего цикла нуклотрона; **б** – амплитудно-частотный спектр напряжения шума на индукционной катушке после подключения $B\Phi$, по вертикальной оси – амплитуда в условных числах.

ния равным 1 В, а размах пульсаций тока -0.24 А, выходное сопротивление *PT* (группа из 12 параллельно соединенных блоков PT-01) составит 4.2 Ом, а выходное сопротивление одного блока PT-01 на частоте 300 Гц при токе 50 А - около 50 Ом, что хорошо согласуется с измерениями в [10].

РАБОТА 37ТВ НА СВЕРХПРОВОДЯЩИЕ МАГНИТЫ НУКЛОТРОНА

На рис. 13 приведена осциллограмма типичного рабочего цикла нуклотрона. Средний луч – это напряжение на магнитах \mathcal{A} и $\boldsymbol{\Phi}$, наводимое током источника 19,20ТВ. Напряжение изменяется приблизительно от –21 до 38 В. Рабочий цикл 37ТВ (нижний луч, выходной ток 37ТВ) начинается с инверторного режима. На верхнем луче (напряжение на *PT*) видно, как напряжение нарастает до 20 В и режим стабилизации напряжения устанавливается с запаздыванием порядка 0.2 с (см. рис 14). Это объясняется тем, что перезарядка емкостей главного силового фильтра *ГСФ* выпрямителя в начале инверторного режима происходит за счет тока, отбираемого из магнитов \mathcal{I} и Φ через *PT*, а ток этот в начале цикла небольшой. При положительном перепаде напряжения на выходе 37ТВ перезарядка емкостей *ГСФ* происходит за счет энергии из сети, поэтому процессы протекают значительно быстрее и изменение напряжения на *PT* едва заметно.

На рис. 15 представлены осциллограммы с анализатора пульта нуклотрона: на рис. 15а – осциллограмма напряжения на измерительной индукционной катушке магнита \mathcal{A} , иллюстрирующая эффективность работы $B\Phi$, а на рис. 156 – амплитудно-частотный спектр напряжения на индукционной катушке при включенном $B\Phi$. В спектре не наблюдается явно выраженных периодических составляющих, за исключением небольшого пика на частоте 300 Гц, вызванного остаточными пульсациями напряжения тиристорного выпрямителя.

ЗАКЛЮЧЕНИЕ

Решена задача создания быстродействующих источников токов разбаланса с низкими шумом, пульсациями и помехами для быстроциклирующего сверхпроводящего ускорителя. Полных функциональных аналогов источников не существует. Источник 37TB без существенных изменений в схемах и конструкции отработал в шести сеансах нуклотрона. Относительное значение пульсаций выходного тока источника 37TB не превышало $4 \cdot 10^{-5}$. Относительное значение пульсаций напряжения на магнитах $\mathcal{Д}$ и Φ с включенным выходным фильтром не превышало $8 \cdot 10^{-4}$. Отказов не было. Получена экспериментальная информация, хорошо изучены особенности совместной работы источника токоотбора

37ТВ и основного источника 19,20ТВ. Также практически проверена возможность управления токами разбаланса магнитов \mathcal{A} и Φ при одновременной работе источников 19,20ТВ, 37ТВ и источника токодобавки 22ТВ.

Авторы выражают благодарность А.А. Шурыгину за разработку печатных плат и группе электромонтеров под руководством А.Л. Осипенкова за участие в конструировании и изготовление источников 37TB и 22TB.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Смирнов А.А., Коваленко А.Д.* // Письма в ЭЧАЯ. 2004. Т. 1. № 6 (123). С. 11.
- Агапов Н.Н., Бутенко А.В., Коваленко А.Д., Волков В.И., Карпинский В.Н., Сидорин А.О., Трубников Г.В., Ходжибагиян Г.Г. // Письма в ЭЧАЯ. 2012. Т. 43. № 4. С. 916.
- Аверичев А.С., Агапов Н.Н., Алфеев А.В., Андреев В.А., Базанов А.М., Балдин А.А., Батин В.И., Блинов Н.А., Бровко О.И., Бутенко А.В., Василишин Б.В., Вишневский А.В., Волков В.И., Галимов А.Р., Говоров А.И. и др. Сообщение ОИЯИ Р9-2012-108. Дубна, 2012. С. 6.
- Карпинский В.Н., Кондратьев Н.Г., Осипенков А.Л., Караваев В.Г., Филиппов Н.А., Трубников Г.В., Коваленко А.Д., Сидорин А.О., Бутенко А.В., Волков В.И., Василишин Б.В., Кириченко А.Е., Романов С.В. и др. // Письма в ЭЧАЯ. 2010. Т. 7. № 7 (163). С. 837.
- 5. Калиниченко В.В., Саванеев В.П. Сообщение ОИЯИ Р13-83-523. Дубна, 1983.
- Аверичев А.С., Агапов Н.Н., Алфеев А.В., Андреев В.А., Базанов А.М., Батин В.И., Блинов Н.А., Бровко О.И., Бутенко А.В., Валькович А., Василишин Б.В., Вишневский А.В., Волков В.И., Галимов А.Р., Говоров А.И. и др. Сообщение ОИЯИ Р9-2013-140. Дубна, 2013. С. 9.
- 7. http://www.danfysik.com/854/26795
- 8. http://te-epc-lpc.web.cern.ch/te-epc-lpc/converters/ lhc600a-40v/general.stm
- 9. http://fastmean.ru
- 10. Омельяненко М.М. // ПТЭ. 2017. № 2. С. 72.10.7868/ S0032816217010268
- 11. http://www.ieee.li/pdf/introduction_to_power_electronics/ Chapter 10.Input Filter Design