

T202

P4-87-382

1987

Ф.А.Гареев, С.Н.Ершов, Н.И.Пятов, С.А. Фаянс*

ЗАРЯДОВО-ОБМЕННЫЕ РЕАКЦИИ

Направлено в Оргкомитет международного симпозиума "Новейшие достижения в ядерной физике", Новосибирск, 27 июня – 1 июля 1987 г.

^{*}Институт атомной энергии им. И.В.Курчатова, Москва

I. <u>Введение</u>

Зарядово-обменные реакции адронов и легких ионов с ядрами за последние годы стали важным инструментом исследования как структуры ядер, так и механизма реакций. В частности, большой прогресс достигнут в реакциях при промежуточных энергиях частиц (🜫 IOO МэВ), когда доминирующий вклад в сечение в области низких энергий возбуждения E_x ≤ E_F и при небольших передачах импульса $\rho ≤ \rho_F$ дают пряядер мые квазиупругие процессы. В инклюзивных спектрах на малых углах был открыт новый класс спин-изоспиновых резонансов, в частности гамов теллеровских резонансов, и установлено физическое явление подавления силы спин-изоспиновых переходов в области $F_X \lesssim 30$ МэВ по сравнению с оболочечными расчетами^{71,2/}. Эти исследования существенно продвинули наше понимание эффектов многочастичных возбуждений в низкоэнергетических спектрах, а также роли мезонных обменных токов и ненуклонных степеней свободы в ядрах 3,4/. В реакциях при промежуточных энергиях получены новые важные сведения как об эффективных взаимодействиях нуклонов в ядрах, так и о нуклон-ядерных взаимодействиях, особенв спин-изоспиновом канале /.5/. HO

Большое внимание за последние годы привлекли также реакции с поляризованными пучками, в которых измерялись анализирующие способности и коэффициенты передачи спиновой поляризации. Эти величины очень чувствительны как к деталям механизма реакции, так и к структуре ядерных возбуждений. Измерения коэффициентов передачи спиновой поляризации в принципе дают возможность проводить мультипольный анализ в сплошном спектре, а при известной структуре ядерных возбуждений позволяют изучать индивидуальные компоненты нуклон-ядерных эффективных взаимодействий.

В докладе обсуждаются последние достижения в теоретических и экспериментальных исследованиях зарядово-обменных реакций при промежуточных энергиях.

2. Микроскопическое описание зарядово-обменных реакций

Для получения из измеренных инклюзивных энергетических спектров структурной информации о распределении силы переходов различных мультипольностей, особенно в сплошном спектре ядерных возбуждений, были развиты микроскопические модели^{/5-7/}. Общими для них являются следующие основные предположения:

> Обълана Спра инструу Патрына исследования БИБ пыртсы а

-6

 $\dot{\iota}$) при относительно малых энергиях возбуждений ядра ($F_X \lesssim \mathcal{E}_F$) доминирующий вклад в сечение реакции дают одноступенчатые процессы квазиупругого рассеяния, которые описываются в импульсном приближении искаженных волн ($\mathcal{D}WIA$)/8/

LL) в качестве эффективного нуклон-ядерного взаимодействия используется зависящее от энергии t – матричное *NN* -взаимодействие, параметризованное по данным фазового анализа⁹;

 $\dot{l}\dot{l}\dot{l}$) возбуждения ядра описываются в микроскопическом подходе с учетом эффективных взаимодействий в ядре в методе случайной фазы (СФ) или теории конечных ферми-систем (ТКФС); при этом обычно включаются вклады всех частично-дырочных переходов с передачей орбитального момента 0 $\leq L \leq 5$ и спина S = 0, I (т.е. возбуждения с полным моментом и четностью $J^{T} = 0^+, I^+, 0^-, I^-, \dots 4^-)$. Искаженные волны обычно вычисляют для феноменологического оптического

искаженные волны сомчно вычисляют для феноменологического оптического потенциала. Наиболее часто используют параметризации /IO,II/ оптического потенциала по данным об упругом рассеянии протонов. Основное различие моделей ^{/5-7/} касается структурных расчетов пе-

Основное различие моделей ³⁻⁷⁷ касается структурных расчетов переходных плотностей ядерных возбуждений. В работах ¹⁵⁷ используется метод СФ с эффективными взаимодействиями *77+3* – мезонного обмена и дополнительного локального взаимодействия Ландау-Мигдала в спин-изоспиновом канале.

Самосогласованный метод Хартри-Фока с упрощенными . силами Скирма используются в работе/6/. Наконец, в работах /У/ структура возбужлений описывается в ТКСФ с эффективными взаимодействиями в спинизоспиновом канале, включающими локальное отталкивание Ландау-Мигдала и притягиванцую амплитуду одношионного обмена (см. остальное описание в /12/). Важно отметить, что силовые функции и переходные плотности в этом подходе внчисляются на полном ч.-д. базисе, т.е. с точным учетом одночастичного континуума. Обычно получают дискретизованный спектр возбуждений дочернего ядра и для каждого возбуждения внчисляют угловые распределения реакции. Для получения непрерывного инклызивного энергетического спектра нейтронов расчетные сечения для заданного угла Э размывают сверткой с функциями Брейта-Вигнера, что на феноменологическом уровне соответствует эффекту связи частично-дирочных возбуждений с многопарными (спредовые ширины). В работе^{/5/} использовались асимметричные функции Брейта-Вигнера с забисящими от энергии ширинами, что позволило переместить значительную долю силы перехолов в высокоэнергетическую область возбужлений. так что в низкоэнергетической области осталась необходимость в ослаблении силы переходов примерно на 15 %. Включение связи ч.-д. возбуждений с возбуждением

∆ -изобара-нуклонная дырка уже дает заметный дефицит расчетного сечения по сравнению с экспериментом. В работе^{/6} использовалась постоянная для всех состояний ширина размытия 2 МэВ. Сделан вывод о необходимости ослабления ГТ-переходов в области $E_{\chi} \leq 20$ МэВ примерно на 35 %. Наконец, в работах /7/ использовались симметричные функции Брейта-Вигнера с зависящими от энергии ширинами, подбираемыми так, чтобы наилучшим образом описать наблюдающиеся в спектрах структуры в области $E_{\chi} \leq 20$ МэВ.

В качестве примера на рис.I,2 показаны расчеты энергетических спектров нейтронов для (ρ, n) -реакций на ${}^{90}Zr$ и ${}^{208}PB$ при $E_{\rho} = 200$ МэВ и экспериментальные данные, любезно предоставленные д-ром К.Годе (см. также ${}^{/I}$). В ТКФС ослабление силы спин-изоспиновых переходов описывается с помощью феноменологической величины локального заряда квазичастиц $e_q/6z$ по отношению к полям σz -симметрии I3 . Квадрат этой величины входит в вероятность любого спин-изоспинового перехода, а также содержится в изовекторных компонентах магнитных моментов и МІ-переходов. В частности, для ГТ-переходов $e_q^2/\sigma z$ характеризует долю правила сумм 3(N-Z), которая исчерпывается частичнодырочной ветвыю возбуждений. В сечение (ρ, n) -реакции для спин-флиповых переходов $e_q^2/\sigma z$ входит как внешний фактор,и его величина под-биралась из условия наилучшего описания низкоэнергетической части инклюзивного спектра. Показанные на рис.I результаты получены пор $e_q fz$ = 0,8 при использовании оптического потенциала I1 . С оптическим потенциалом 208 РВ (рис.2) проведены с оптическим потенциа-

2 .

Рис.2. То же, что на рис. I, для реакции
$$208 P_{b}^{208}(\rho,n)^{208}\beta_{i}$$

при $F_{\rho} = 200$ МэВ. (Расчет с оптическим потенциалом/IO/)

лом /10/. Оценка: е, [67] ≈ 0,8 неплохо согласуется с данными, полученными из анализа В-распада и МІ-переходов.

Наши расчети показали, что одноступенчатый механизм (ρ, n) – реакций при $\mathcal{E}_{\rho} > 100$ МэВ позволяет хорошо описать наблюдаемые спектри вплоть до энергий возбуждения ~ 20 МэВ. Выще по энергии теоретические сечения систематически ниже экспериментальных. Однако при $e_{\rho}[\sigma_{\mathcal{I}}] = I$ вычисленное интегральное сечение по всему показанному на рис. I,2 интервалу 0 $\leq -Q_{\rho n} \leq 40$ МэВ хорошо согласуется с экспериментальным, т.е. если "излищек" сечения в области 0 $\leq -Q_{\rho n}$

 ≤ 20 МэВ переместить в вышележащую область, то одноступенчатый механизм способен объяснить весь наблюдаемый спектр вплоть до $- Q_{\rho n} \approx \approx 40$ МэВ. Такое перемещение происходит при взаимодействии ч.-д. возбуждений с более сложными многопарными^{/3/} и физически отражается в величине $e_{g}[\sigma_{T}]$. Конечно, эффекты ослабления силы спин-изоспиновых переходов, связанные с обменными мезонными токами и барионными резонансами^{/4/}, также могут давать вклад в $e_{g}[\sigma_{T}]$, 'однако пока нет убедительных количественных оценок их в средних и тяжелых ядрах.

На рис.I,2 показаны парциальные вклады в сечение переходов различных мультипольностей. Доминирующий вклад на малых углах дают I⁺ IT-переходы, а фон других мультипольностей $\angle > 0$ мал при $\theta = 0^{\circ}$, но окстро нарастает с углом. При $\theta = 45^{\circ}$ в спектре уже хорошо виден спин-дипольный ($\angle = I$) резонанс в области 20 $\leq -Q_{\rho n} \leq 30$ МэВ, образованный суммарными вкладами возбуждений с $J'' = 0^-$, I и 2⁻. Отметим, что аналогичные качественные выводы получены и в работах^{/5},6/.

3. Исследования с поляризованными протонами

Недавние исследования с поляризованными протонами /15/ дали прямые свидетельства о доминантности спин-флиновых переходов в спектрах реакции на малых углах. Измерялась поперечная поляризация ρ_{e} вылетающих нейтронов, связанная с поляризацией ρ_{c} налетающих протонов (поляризованных перпендикулярно плоскости реакции) через коэффиниенты $\mathcal{D}_{MN}(\theta)$ передачи спиновой поляризации соотношением $\rho_{e} = \mathcal{D}_{MN}(\theta)$, коэффициенты \mathcal{D}_{MN} принимают характеристические значения для различных переходов с передачей орбитального момента \mathcal{L} и спина $\mathcal{S} = 0, I$. Простие оценки получены в приближении плоских волн/I6/

$$D_{NN}(0^{\circ}) = \begin{cases} +1, \ S'=0 & \text{возбуждения} \\ 0, \ S=1, \ L=J & \text{четности} \\ -J/(2J+1), \ L=J-1 & \text{спин-Флино-} \\ -(J+1)/(2J+1), \ L=J+1 \end{cases}$$
(I)

Из (1) следует, что для 0⁺-состояний $\mathcal{D}_{NN} = +1$, для 0⁻-возбуждений $\mathcal{D}_{NN} = -I$, для 1⁺ ГТ-переходов $\mathcal{D}_{NN} = -I/3$ и т.д. Для всех спинфлиповых переходов $\mathcal{D}_{NN} = -I/3$. Эти оценки хорошо подтверждаются численными расчетами 17/, проведенными в рамках подхода 6/. Величина \mathcal{D}_{NN} связана с вероятностью \mathcal{S} переворота спина

нуклона при возбуждении

$$S = (1 - D_{NN})/2,$$
 (2)

с помощью которой полное сечение для неполяризованного цучка разделяется на сечение с переворотом спина σS и сечение без переворота спина $\sigma (I-S)$, так что

$$\sigma \mathcal{D}_{NN} = \sigma (1 - S) - \sigma S \quad (3)$$

Экспериментальные распределения для б'S, б(1-S) и Д_{ии} обнчно строят, усредняя полученные спектри по энергетическому интервалу I МэВ, чтобы исключить резкие статические флуктуации.

На основе микроскопического подхода $^{/7/}$ нами проведены расчеты .cooтветствующих распределений для реакции $g^{go}Zr(\rho,n)^{go}NB$ при $E_{\rho} =$ = I60 МэВ и ${}^{48}Ca(\rho,n){}^{48}Sc$ при E_{ρ} = I35 МэВ и полученные результаты вместе с экспериментальными данными из работ / I5, I7, I8/ приведены на на рис. 3.4 и в таблице. Использовался оптический потенциал в параметризации /II/. Расчеты показали, что при e_{0}/σ_{z} = 0,8 теория хорошо описывает наблюдаемые в распределениях 5 и 5/-5) структуры в области 0 < - Qpp < 20 МэВ, причем правильно воспроизводит соотношение интегральных вкладов переходов без переворота спина и с переворотом спина (б(1-5)/(б) 🕱 2/3. Отметим, что с ростом угла θ это отношение заметно растет, достигая в \mathcal{D} \mathcal{I} при θ = I2⁰ значения ≈ 0.9. Эту тенденцию было интересно проверить экспериментально. Хорошее согласие расчетов с экспериментальными данными получено и для распределения $\mathcal{D}_{NN}(o^{9})$. В низкоэнергетической области спектра \mathcal{P}_{ZF} (рис.3) доминирует I⁺-возбуждение (- Qpn ≈ 9 МэВ), что и определяет значение $\mathcal{D}_{NN}pprox$ -0,3. Такое же значение \mathcal{D}_{NN} характерно и для всей области ГТР (I3 \leq - Q_{PD} \leq 20 МэВ). В окрестности ИАС (- Qon- I2 МэВ) сказывается влияние окружающих его I+ возубждений, пони-

Рис.3. Вычисленные (сплошные линии) и экспериментальные (гистограммы) распределения σS , $\sigma(t-S)$ и \mathcal{D}_{HN} для реакции $\mathcal{D}_{Tr}(\bar{\rho},\bar{n})^{go}NB$ при $\mathcal{E}_{P} = 160$ МэВ и угла $\theta_{cm} = 0^{\circ}$. (см. текст).

 Таблица.
 Интегральные сечения (ρ, n) реакций на различных участках спектра $\Delta Q_{\rho n}$ (в ед. мбн/ср.), вычисленные при $e_{q}[\sigma t] = 0.8$. Даны парциальные вклады I⁺($\lambda = 0$) переходов, суммарный фон l > 0 переходов, полные сечения σ_{t} , а так же отношение вкладов переходов без переворота спина $\sigma(1-S)$ и с переворотом спина $\sigma_{s}S$.

1 Qpn	pn 5(1 ⁺) <u>5</u> 5(L)		<u> </u>		5(1-5)/55	
(МэВ)		170	теор.	эксп.	теор.	•эксп.
^{go} Zr(p,n) ^{so} NB,			<i>Ε</i> _ρ =	I60 МэB,	$\theta_{cm} = 0^{\circ}$	
0 – IO	IO,I	I,0	II,5	IO,3	0,58	0,5
0 - 20	48,4	4,5	57,2	62	0,64	0,67
0 - 40	56,4	20,4	8I,9	I25	0,66	0,71
⁹⁰ Zr(p,n) ⁹⁰ Nb,			$E_{\rho} = 160 \text{ MaB},$		$\theta_{cm} = 6^{\circ}$	
0 – IO	3,0	2,3	5,4		0,73	
0 - 20	I4,7	I6,7	32,8		0,79	
0 - 40	I8,7	48,5	69,0		0,82	
	4 ⁸ Ca (f	o,n) ⁴⁸ Sc ,	Ep=	135 MəB,	$\theta_{cm} = 0^{\circ}$	
0 - 5	9,0	0,7	9,9	IO	0,50	
0 - I 5	5 0,I	3,2	59,0	72	0,63	
0 - 40	60,4	17,5	84,4	I36	0,64	
⁴⁸ Ca(p,n) ⁴⁸ Sc ,			Ep =	135 MəB,	$\theta_{cm} = 6^{\circ}$	
0 - 5	4,3	2,0	6,4		0,58	
0 – I5	24,2	II,O	38,2		0,70	
0 - 40	30,7	38,2	72,4		0,72	

жающих значение \mathcal{D}_{NN} до $\approx 0,3$, по сравнению с оценкой +I для изолированного резонанса. В области 20-30 МэВ распределение \mathcal{D}_{NN} определяется конкуренцией вкладов сильно фрагментированных 2⁻-переходов, 0⁻-резонанса (в окрестности - $\mathcal{Q}_{pn}\approx 27$ МэВ, $\mathcal{D}_{NN}\approx -I$), 3⁺-резонанса (с центроидом при - $\mathcal{Q}_{pn}\approx 26$ МэВ, $\mathcal{D}_{NN}\approx -0,3$) и "хвоста" ГТР, для которых $\mathcal{D}_{NN} < 0$, и фрагментированных I⁻-переходов с $\mathcal{D}_{NN} > 0$. Среди последних, однако, заметный вклад дает лишь спин-дипольный I⁻-резонанс, предсказываемый теорией в окрестности - $\mathcal{Q}_{pn}\approx 28$ МэВ ($\mathcal{D}_{NN}(\mathcal{O})\approx +0,3$). Присутствие вблизи него 0⁻-и 3⁺-резонансов со сравнимыми по величине сечениями приводит к суммарному отрицательному \mathcal{D}_{NN} в окрестности I⁻-резонанса. Однако наблюдающиеся в экспериментальном распределении

6

 \mathcal{D}_{NN} структуры при - $Q_{\rho n}$ > 22 МэВ значительно лучше описываются теорией, если О⁻-резонанс передвинуть в область - $Q_{\rho n} \approx 32$ МэВ (пунктирная линия на рис.3). Это свидетельствует о высокой чувствительности распределений \mathcal{D}_{NN} к энергетическому положению резонансов, имеющих интегральное сечение $\mathfrak{S} \approx I$ мб/ср. Заметим, что указанный сдвиг на 5 МэВ О⁻-резонанса практически не меняет распределений \mathfrak{S} и $\mathfrak{S}(I-S)$. В области - $Q_{\rho n}$ > 30 МэВ предсказываемые теорией значения $\mathcal{D}_{NN}(O^{\circ})$ малы, что связано с влиянием 2⁺-и 3⁻-переходов с $\mathcal{D}_{NN} > 0$. Спинквадрупольный резонанс, согласно расчетам, локализуется в окрестности - $\mathcal{Q}_{\rho n} \approx 36$ МэВ.

Расчеты показали, что распределения $D_{\mu\nu\nu}$ довольно заметно меняются с углом θ (см. рис.5), причем изменения, связанные со сдвигом 0⁻-резонанса, также характерным образом меняются с ростом угла (пунктирные линии). Все это подчеркивает важность экспериментальных измерений при $\theta > 0^{\circ}$ и позволяет надеяться извлекать из таких распределений новые сведения о мультипольном составе в сплошном спектре.

Аналогичные заключения получены и при анализе реакции ${}^{48}Co(\rho,n)$ ${}^{48}Sc$ (см. рис.4). Отметим только, что расхождение теории и эксперимента при $-Q_{\rho n} = I-2$ МаВ, по-видимому, связано с тем, что предсказываемое здесь теорией сечение возбуждения 2^+ -уровня (E_{χ} =I,I4 МаВ) оказывается при $\theta = 0^{\circ}$ в несколько раз меньше экспериментальной оценки /I8/. И котя для него теоретическое значение $\mathcal{D}_{NW}(0^{\circ}) \approx$ +I, но в результате усреднения по энергетическому интервалу по се-

чению доминирует 3⁺-возбуждение ($\mathcal{E}_{X} = 0,62$ МэВ), для которого $\mathcal{D}_{NN}(\mathcal{O}^{\circ}) \approx -0,55$. Очевидно, необходим дополнительный анализ структуры 2⁺-возбуждения в ⁴⁸ Sc.

Рис. 5. Вычисленные при $C_q[67] = 0.8$ распределения $J_{NN}(\theta)$ для реакции ${}^{90}Z_{V}(\rho,n) {}^{90}NB$ при $E_{\rho} = = = 160$ МеВ. Пунктиром показаны раст пределения при сдвите 0^{-} резонанса в область - $Q_{P}n = 32$ МеВ. 4. Заключение

1.

Проведенный нами анализ данных по (ρ, n) -реанциям при промежуточных энергиях показал применимость импульсного приближения искаженных волн и микроскопического описания структуры возбуждений в ТКФС. Отметим, что удовлетворительно описываются не только инклюзивные спектры на малых углах в области - $Q_{\rho n} \leq 30$ МэВ, но и более детальные распределения, полученные в реакциях с поляризованными протонами. Можно считать хорошо установленным, что доминирующий вклад в спектры в низкоэнергетической области дают ГТ-переходы, причем есть необходимость ослаблять силу спин-изоспиновых переходов в этой области примерно на 1/3, что описывается в ТКФС феноменологической величиной $e_{\rho}[\sigma z] \approx 0.8$. В интегральном сечении в области 0 \leq - $Q_{\rho n} \leq 40$ МэВ при $\theta = 0^{\circ}$ доминирует вклад спин-флиновых переходов, причем отношение $\sigma(1-s)/\sigma S \approx 2/3$, однако оно растет с θ .

Согласно ТКФС ослабление силы спин-изоспиновых переходов должно иметь универсальный характер. В частности, для ГТ β -переходов это эффективно соответствует перенормировке константы слабого аксиально-векторного взаимодействия $g_A - G_A = e_q [{\bf s} \, {\bf r} \, {\bf j} \cdot {\bf g}_A \approx {\bf I}$, что хорошо известно из анализа экспериментальных данных (см., например, /19/). Перенормируется в ядерной среде и константа *ПNN* - взаимодействия: $g_{\pi NN} - G_{\pi NN} \equiv e_q [{\bf s} \, {\bf r} \, {\bf j} \, {\bf g}_{\pi NN}$. Эти перенормировки констант важны, например, при оценке вклада пионного механизма в ЕМС-эффект^{/20/}.

Локальный заряд $e_{q}[\sigma Z]$ входит в изовекторную часть оператора МІ-переходов и влияет на сечения их возбуждения в неупругом рассеянии протонов. Анализ, проведенный для ${}^{48}C\sigma$, ${}^{90}Zr$, и ${}^{208}Pg$, показал, что при $e_{p}[\sigma Z] \approx 0.8$ теория хорошо согласуется с данными по $(\rho, \rho')^{/2I/}$.

Физически величина $e_{\rho}[\sigma z]$ учитывает эффекты в низкоэнергетических ч.-д. спектрах, связанные как с многопарными возбуждениями, так с ненуклонными степенями свободы (мезонные обменные токи и барионные резонансы) /12,13/. Связь ч-д. возбуждений с многопарными приводит к спрэдовой ширине резонансов и фрагментации силы переходов по спектру возбуждений ^{3/}. Это было подтверждено в недавних расчетах спектров реакции ³⁰ Zr(ρ , n) при $E_{\rho} = 200$ Мав с учетом $2\rho 2h$ – возбуждений ^{/22/}. Качественные оценки вклада двухступенчатых процессов в сечения реакции были проведены в работах ^{/23/} и сделан вывод о его малости в области – $Q_{\rho n} \leq 25$ Мав при $\theta = 0^{\circ}$. Это подтверждает надежность оценки величины $e_q[\sigma \tau] \approx 0.8$.

Наличие вклада IT-переходов в нерезонансной части сплошного спектра выше ITP пока является весьма неопределенным. Помимо механизма связи ч.-д. возбуждений с многопарными определенную роль могут сыграть и корреляции в основном состоянии, не включенные в СФ или ТКФС.

8

В работе /24/ отмечалось, что в ядрах с замкнутыми оболочками и

 $\mathcal{N}=\mathcal{Z}$ такие корреляции приводят к появлению дополнительной силы IT-переходов в области энергий возбуждений $\mathcal{E}_{x} \approx \mathcal{E}_{F}$. Решению этого вопроса, а также надежной идентификации спин-мультипольных резонансов в сплошном спектре, насомненно, будут способствовать экспериментальные измерения полного набора коэффициентов \mathcal{D}_{ij} передачи поляризации при различных углах \mathcal{O} .

В заключение авторы выражают благодарность д-ру Е.Бангу, в сотрудничестве с которым получен ряд приведенных результатов, а также д-ру К.Годе и проф. Р.Мадей за предоставление экспериментальных данных.

Литература

 Bainum D.E. et al. Phys.Rev.Lett.<u>44</u> (1980) 1751; Goodman C.D. et al., ibid, p.1755; Horen D.J. et al. Phys.Lett. <u>95B</u> (1980) 27; Gaarde C. et al. Nucl.Phys.A369 (1981)258.

2. Gaarde C. Nucl.Phys. A396 (1983) 127c; Physica Scripta <u>V5</u> (1983) 55; Gaarde C. et al. in Spin Excitations in Nuclei, eds. Petrovich F. et al. (Plenum, N.Y., 1984), p.65;

Goodman C.D., Bloom S.D. - ibid, p.143.

 Bertsch G.F., Hamamoto I. Phys.Rev. <u>G26</u> (1982) 1323; Takayanagi
 K. et al. Nucl.Phys. <u>A444</u> (1985) 436; Muto K. et al. Phys.Lett., <u>165B</u> (1985) 25; Drozdz S. et al. Nucl.Phys. <u>A451</u> (1986) 11.

4. Towner I.S., Khanna F.C. Nucl.Phys. <u>A399</u> (1983) 334; Bohr A., Mottelson B.R. Phys.Lett. <u>100B</u> (1981) 10; Izumoto T. Nucl.Phys. <u>A395</u> (1983) 189; Arima A. et al. Phys.Lett. 122B (1983) 126.

5. Osterfeld F. Phys.Rev. <u>C26</u> (1982) 762; Osterfeld F., Schulte A. Phys.Lett. <u>138B</u> (1984) 23; Osterfeld F. et al. Phys.Rev. <u>c31</u> (1985) 372.

6. Klein A. et al., Phys.Rev. C31 (1985) 710.

7. Гареев Ф.А. и др. ЯФ, <u>39</u> (1984) **1401**; <u>44</u> (1986) 1435; Bang J. et al. Nucl. Phys. <u>440A</u> (1985) 445; Phys. Scr. <u>34</u> (1986) 541.

8. Kerman A.K. et al. Ann.Phys. <u>8</u> (1959) 551; , Bertsch G., Scholten O. Phys. Rev. <u>C25</u> (1982) 804.

9. Love W.G., Francy M.A. Phys.Rev. <u>C24</u> (1981) 1073; ibid <u>C31</u> (1985) 488.

10. Nadasen A. et al. Phys.Rev. <u>C23</u> (1981) 1023.

Crawley C.M. et al. Phys.Rev. <u>C26</u> (1982) 87;
 Schwandt P. et al. Phys.Rev. <u>C26</u> (1982) 55.

12. Пятов Н.И., Фаянс С.А., ЭЧАЯ, <u>14</u> (1983) 953

перевод: Sov.J.Part.Nucl., <u>14</u> (1983) 401).

13. Мигдал А.Б. Теория конечных ферми-систем и свойства атомных ядер, изд. 2^е, Наука, М., 1983.

 Ershov S.N., Gareev F.A., Pyatov N.I., Fayans S.A. In:Weak and Electromagnetic Interactions in Nuclei, ed. Klapdor H.V. (Springer, 1986), p.287.

Taddeucci T.N. et al. Phys.Rev., C33 (1986) 746;
 Taddeucci T.N. Suppl. J.Phys. Soc.Japan, <u>55</u> (1986) 156; Madey R. et al., see ref.14, p.280.

16. Moss J.M. Phys.Rev. C26 (1982) 727.

17. Klein A., Love W.G. Phys.Rev. <u>C33</u>, (1986) 1920.

18. Anderson B.D. et al. Phys.Rev. <u>C31</u> (1985) 1147; 1161.

19. Wilkinson D.H. Phys.Rev. <u>C7</u> (1973) 930;
Brown B.A.. At. Data Nucl.Data Tables, <u>33</u> (1985) 347;
Towner I.S., Nucl.Phys. <u>444A</u> (1985) 402.
Alkhazov G.D. et al. Nucl.Phys. <u>438A</u> (1985) 482.

20. Llewelyn Smith C.H. Phys.Lett., <u>128B</u> (1983) 107; Bricson M., Thomas A.W. Phys.Lett., 128B (1983) 112; Титов А.И., ЯФ, <u>40</u> (1984) 76; Саперштейн Э.Е., Шматиков М.Ж. Письма в ЖЭТФ, <u>41</u> (1985) 44.

21. Борзов И.Н. и др. ЯФ, <u>40</u>(1984) II5I; ЯФ, <u>42</u> (1985) 625.

22. Wambach J. et al. Preprint P/87/3/34, University of Illinois, 1987.

 Ebensen H., Bertsch G.F. Phys.Rev. <u>C32</u> (1985) 553; Smith R.D. Wambach J. Preprint P/87/4/52, University of Illinois, 1987
 Desplanques B., Noguera S. Phys.Lett. <u>B173</u> (1986) 23.

Рукопись поступила в издательский отдел 4 июня 1987 года.