

E5-87-330

H.Neidhardt

ON THE DISSIPATIVE LAX - PHILLIPS SCATTERING THEORY

Submitted to "Journal of Mathematical Analysis and Applications"

1. Introduction

In [4] C.Foias characterizes all possible scattering matrices occurring in the abstract framework of a dissipative Lax-Phillips scattering theory developed in [6]. The aim of this paper is to continue the investigation of the scattering matrix using a quite different approach to this object. The new approach forces a generalization of the notion of Darlington synthesis as defined in [3] to the case that the contraction-valued function is not an analytical one. This generalized notion which in the paper is called an analytically unitary synthesis of a contraction-valued function reduces to the notion of Darlington synthesis if the operator-valued function is an analytical one. Using this notion we find that a strongly measurable contractionvalued function can be regarded as the scattering matrix of a dissipative Lax-Phillips scattering theory if and only if the adjoint contraction-valued function admits an analytically unitary synthesis. Moreover, taking into account the above mentioned relation to the Darlington synthesis we find that a contraction-valued function arises from an orthogonal dissipative Lax-Phillips scattering theory if and only if the adjoint contraction-valued function is an analytical one and possesses a Darlington synthesis.

From this point of view the conditions (β), (β_{e}), (5.5.1) - (5.5.4) of C.Foias [4] characterizing the set of occurring scattering matrices in a necessary and sufficient manner are equivalent to the property that the adjoint

contraction-valued function has an analytically unitary synthesis. If the adjoint function is an analytical one this means that (β) , (β_*) , (5.5.1) - (5.5.4) of [4] are necessary and sufficient conditions to guarantee the existence of a Darlington synthesis. At the end of this paper we give a direct proof of these conclusions.

Moreover, we believe that the present approach has the advantage of a great simplicity and transparency. Especially, this transparency appears in the reconstruction theorem which is based on the well-known and widely investigated reconstruction theorem of a concorvative Lax-Phillips scattering theory [1,2,6].

In accordance with [4] we use a discret Lax-Phillips framework. For the convenience of the reader we repeat the assumptions of the dissipative Lax-Phillips scattering theory in a discret framwork. A triplet $\{T, D_+, D_-\}$ consisting of a contraction T on a separable Hilbert space \mathcal{H} and two subspaces \mathcal{D}_{\pm} of \mathcal{H} is called a dissipative Lax-Phillips scattering theory if the following assumptions are fulfilled.

(h1) $\mathbb{T} \mathfrak{D}_{+} \subseteq \mathfrak{D}_{+}, \mathbb{T}^{*} \mathfrak{D}_{-} \subseteq \mathfrak{D}_{-},$ (h2) $\mathbb{T} \mathfrak{t} \mathfrak{D}_{+}$ and $\mathbb{T}^{*} \mathfrak{t} \mathfrak{D}_{-}$ are isometries, (h3) $\bigcap_{n \in \mathbb{Z}_{+}} \mathbb{T}^{n} \mathfrak{D}_{+} = \{0\} = \bigcap_{n \in \mathbb{Z}_{+}} \mathbb{T}^{*n} \mathfrak{D}_{-},$

(h4) $P_{\mathcal{H} \ominus \mathcal{D}_{+}}^{\mathcal{H}} \xrightarrow{T^{n} \to 0}, P_{\mathcal{H} \ominus \mathcal{D}_{-}}^{\mathcal{H}} \xrightarrow{T^{*n} \to 0} \text{ strongly for } n \to +\infty.$

Let U on ${\mathcal K}$ be the minimal unitary dilation of T. Let

 $(1.1) \quad \exists \ell_{\pm} = \bigvee_{n \in \mathbb{Z}} U^n \mathfrak{D}_{\pm}.$

Obviously, the subspaces \mathcal{H}_{\pm} reduce the operator U. We set

$$(1.2) \quad \underbrace{U}_{\pm} = \underbrace{U} = \underbrace{U}_{\pm}.$$

The wave operators W_{+} are defined by

(1.3)
$$W_{n \to +\infty} = \operatorname{s-lim}_{n \to +\infty} T^{n} P_{\mathcal{D}}^{\mathcal{U}} U_{-}^{*n}$$

and

1.4)
$$\mathbb{W}_{+} = \operatorname{s-lim}_{n \to +\infty} \mathbb{T}^{*n} \mathbb{P}^{\mathbb{W}}_{\mathcal{D}_{+}} \mathbb{U}^{n}_{+}$$

The scattering operator S,

$$(1.5)$$
 $S = W_{+}^{*}W_{-},$

acts from \mathcal{H}_{\pm} into \mathcal{H}_{\pm} . The operators U_{\pm} are bilateral shifts. Transforming these operators into their Fourier representations we find that in these representations the scattering operator S acts as a multiplication operator with a strongly measurable contraction-valued function which is called the scattering matrix of the dissipative Lax-Phillips scattering theory.

2. Conservative and nonconservative Lax-Phillips scattering theory

We say the triplet $\{T, D_+, D_-\}$ forms a conservative Lax-Phillips scattering theory [5] demanding in addition to (h1) - (h4) that T is a unitary operator. Usually, in

this case the condition (h4) is replaced by

(2.1)
$$\bigvee_{n \in \mathbb{Z}} \mathbb{T}^n \mathcal{D}_{\pm} = \mathcal{H},$$

but it is not hard to see that (h4) and (2.1) are equivalent provided T is a unitary operator. <u>Definition 2.1.</u> Let $\{T, D_+, D_-\}$ be a dissipative Lax-Phillips scattering theory. If there exists a unitary operator U on $\mathcal{R} > \mathcal{H}$ as well as orthogonal incoming and outgoing subspaces G_- and G_+ of U such that the conditions

$$(2.2) P_{H}^{\mathcal{K}} U^{\mathcal{H}} = T$$

and

$$(2.3) \qquad \mathcal{K} = G_{\perp} \oplus \mathcal{H} \oplus G_{\perp}$$

are fulfilled and $\{U, \mathcal{D}_{+}^{\prime}, \mathcal{D}_{-}^{\prime}\}, \mathcal{D}_{\pm}^{\prime} = \mathcal{D}_{\pm} \oplus \mathcal{G}_{\pm}, \text{ forms a}$ conservative Lax-Phillips scattering theory, then we call $\{U, \mathcal{D}_{+}^{\prime}, \mathcal{D}_{-}^{\prime}\}, a$ conservative extension of $\{T, \mathcal{D}_{+}, \mathcal{D}_{-}\}.$ <u>Proposition 2.2.</u> Every dissipative Lax-Phillips scattering theory $\{T, \mathcal{D}_{+}, \mathcal{D}_{-}\}$ has a conservative extension. <u>Proof.</u> Let U be the minimal unitary dilation of T on \mathcal{K} . Obviously, the condition (2.2) is fulfilled. We introduce the wandering subspaces $\mathcal{K} = ((U - T)\mathcal{H})^{-}$ and $\mathcal{L}_{\mathbf{K}}^{=}$ $= ((I - UT^{*})\mathcal{H})^{-}$ in accordance with [7]. We set

4

(2.4) $G_{+} = M_{+}(\mathcal{L})$

$$(2.5) \quad G_{-} = M(\mathcal{L}_{*}) \odot M_{+}(\mathcal{L}_{*})$$

Taking into account the structure of a minimal unitary dilation we get

Obviously, ${\rm G}_+$ and ${\rm G}_-$ are outgoing and incoming subspaces of U.

Defining now the subspaces \mathcal{D}_{\pm}^{i} in accordance with Definition 2.1 the triplet {U, \mathcal{D}_{\pm}^{i} , \mathcal{D}_{\pm}^{i} } forms a conservative Lex-Phillips scattering theory if we establish the relation

$$(2.7) \quad \mathcal{K} = \bigvee_{n \in \mathbb{Z}} u^n \mathcal{D}_{\pm}^{\prime}.$$

But taking into account Lemma 3 of [4] we get

(2.8)
$$\mathcal{K} = \mathcal{H}_+ \oplus \mathbb{M}(\mathcal{L}) = \bigvee_{n \in \mathbb{Z}} \mathbb{U}^n \mathcal{D}_+^*$$

and

$$(2.9) \quad \mathcal{H} = \mathcal{H}_{-} \oplus \mathbb{H}(\mathcal{L}_{*}) = \bigvee_{n \in \mathbb{Z}} \mathbb{U}^{n} \mathcal{D}_{-}^{\prime}$$

which completes the proof.

Let $\{U, D_{+}^{*}, D_{-}^{*}\}$ be a conservative extension of the dissipative Lax-Phillips scattering theory $\{T, D_{+}, D_{-}\}$. Taking into account Definition 2.1 it is not hard to see that U is a unitary dilation of T.

and

Using this remark we obtain the invariance of the subspaces \mathcal{D}_+ and \mathcal{D}_- with respect to U and U^{*}, respectively. Hence there are wandering subspaces $\mathcal{N}_{\pm} \subseteq \mathcal{D}_{\pm}$ with respect to U such that

$$(2.10) \qquad \widehat{\mathcal{D}}_{+} = \mathbb{M}_{+}(\mathcal{J}_{+}),$$

$$(2.11) \qquad \mathcal{D}_{-} = \mathbb{M}(\mathcal{K}_{-}) \ominus \mathbb{M}_{+}(\mathcal{K}_{-})$$

and

(2.12) $\mathcal{H}_{\pm} = \mathbb{N}(\mathcal{N}_{\pm}).$

Denoting by \mathcal{L} and $\mathcal{L}_{\underline{x}}$ the wandering subspaces of the outgoing and incoming subspaces $G_{\underline{+}}$ and $G_{\underline{-}}$, respectively,

(2.13) $G_{+} = K_{+}(\chi)$

and

 $(2.14) \qquad G_{-} = \mathbb{M}(\mathcal{I}_{*}) \odot \mathbb{M}_{+}(\mathcal{I}_{*}),$

it is not hard to see that the subspaces

(2.15)
$$Q_{+} = \mathcal{X}_{+} \oplus \mathcal{I} \text{ and } Q_{-} = \mathcal{X}_{-} \oplus \mathcal{I}_{*}$$

are also wandering subspaces obeying

(2.16)
$$\mathcal{D}_{+}^{\prime} = M_{+}(Q_{+})$$

and

(2.17) $\mathcal{D}_{-}^{\prime} = M(Q_{-}) \oplus M_{+}(Q_{-}).$

Because {U, \mathcal{D}_{+}^{\prime} , \mathcal{D}_{-}^{\prime} } forms a conservative Lax-Phillips scattering theory we get

$$(2.18) \qquad \mathcal{K} = \mathbb{M}(Q_+).$$

If ϕ_{\pm}^{i} denotes the Fourier transformation corresponding to the wandering subspaces Q₊ we find

(2.19) $\phi_{+}^{*} \mathcal{D}_{+}^{*} = H^{2}(Q_{+})$

and

(2.20)
$$\Phi_{\underline{i}} \mathcal{D}_{\underline{i}} = L^2(Q_{\underline{i}}) \oplus H^2(Q_{\underline{i}}).$$

Moreover, we have

(2.21)
$$\phi_{+} \mathcal{D}_{+} = H^{2}(\mathcal{J}_{+}),$$

(2.22)
$$\phi_{+}^{*}G_{+} = H^{2}(\mathcal{L})$$

and

(2.23)
$$\phi'_{\perp} \mathcal{D}_{\perp} = L^{2}(\mathcal{X}_{\perp}) \odot H^{2}(\mathcal{X}_{\perp}),$$

(2.24) $\phi'_{\perp} \mathcal{G}_{\perp} = L^{2}(\mathcal{Y}_{\perp}) \odot H^{2}(\mathcal{X}_{\perp}),$

Let S' be the scattering operator of the conservative extension of $\{T, D_+, D_-\}$. The operator ϕ_+^{*} S' ϕ_-^{*} acts as a multiplication operator with a strongly measurable function $\{Q_-, Q_+, S'(t)\}$, values of which are isometries from Q_ onto Q_ (conservative Lax-Phillips scattering theory!). Usually, this unitary-valued function is called the scattering matrix of the conservative Lax-Phillips scattering theory $\{U, D_+^{*}, D_-^{*}\}$.

<u>Proposition 2.3.</u> Let $\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\}$ be the scattering matrix yielded by a dissipative Lax-Phillips scattering theory $\{T, \mathcal{D}_{+}, \mathcal{D}_{-}\}$. If $\{Q_{-}, Q_{+}, S'(t)\}$ denotes the scattering matrix of the conservative extension of $\{T, \mathcal{D}_{+}, \mathcal{D}_{-}\}$, then both scattering matrices are related by

(2.25) $S(t) = P_{X_{+}}^{Q_{+}} S'(t) \upharpoonright \mathcal{X}_{-},$

t e [0,2 I) a.e..

<u>Proof.</u> Let W_{\pm}^{i} be the wave operators of the conservative extension defined by

(2.26)
$$\underset{\pm}{W'} = \underset{n \to \pm \infty}{\operatorname{s-lim}} \underbrace{U^{-n}}_{\mathcal{D}_{\pm}'} \underbrace{U^{n}}_{\mathcal{D}_{\pm}'}.$$

Obviously, we have

(2.27)
$$W_{\pm} = P_{\partial e}^{*} W_{\pm}^{*} \upharpoonright \partial e_{\pm}^{*}$$

which implies

$$(2.28) \qquad P_{\mathcal{H}_{+}}^{\mathcal{H}} \text{ sit } \mathcal{H}_{-} = s$$

But (2.28) immediately yields (2.25).

In such a way Proposition 2.3 shows us that every scattering matrix of a dissipative Lax-Phillips scattering theory can be regarded as the compression of the scattering matrix of its conservative extension.

<u>3. Scattering matrix and analytically unitary synthesis</u> Every strongly measurable contraction-valued function can be dilated to a strongly measurable unitary-valued function. Further, it is well-known that every strongly measurable unitary-valued function can be regarded as the scattering matrix of a conservative Lax-Phillips scattering theory. Hence the conjecture seems to be true that in virtue of Proposition 2.3 every strongly measurable contraction-valued function can be thought as the scattering matrix of a dissipative Lax-Phillips scattering theory. But this conjecture is false. The point is that the scattering matrix of a conservative extension obeys some additional properties description of which is the contents of the following

<u>Proposition 3.1.</u> Let $\{U, D_{+}^{\prime}, D_{-}^{\prime}\}$ be a conservative extension of the dissipative Lax-Phillips scattering theory $\{T, D_{+}, D_{-}\}$. If $\{Q_{-}, Q_{+}, S'(t)\}$ denotes the scattering matrix of $\{U, D_{+}^{\prime}, D_{-}^{\prime}\}$, then the contraction-valued functions $\{\mathcal{X}, Q_{-}, S'(t)^{*} \upharpoonright \mathcal{X}\}$ and $\{Q_{+}, \mathcal{I}_{*}, \mathcal{P}_{\mathcal{I}_{*}}^{Q} S'(t)^{*}\}$ are analytic ones. Moreover, if U is a minimal unitary dilation

of T, then the analytic contraction-valued function $\{\mathcal{L}, \mathcal{L}_{\mu}, \Theta(\lambda)\}$ defined by

(3.1)
$$\theta(e^{it}) = P_{L_{*}}^{Q_{-}} s'(t)^{*} L_{*}^{L_{*}}$$

for a.e. t \in [0,2 \Re) coincides with the characteristic function of T.

<u>Proof.</u> Taking into account the definition of the wave and scattering operators we find

$$(3.2) \qquad P_{G_{+}}^{\mathcal{H}} S' \Gamma \mathcal{D}' = P_{G_{+}}^{\mathcal{H}} \Gamma \mathcal{D}' = 0.$$

But (3.2) yields

(3.3)
$$S'(t)f(t) \perp H^2(\mathcal{L})$$

for every $f \in L^2(Q_{-}) \ominus H^2(Q_{-})$. Hence we obtain

(3.4)
$$S'(t)^{*}f(t) \perp L^{2}(Q_{-}) \ominus H^{2}(Q_{-})$$

for every $f \in H^2(\mathcal{L})$. Consequently, $\{\mathcal{L}, Q_{,S'}(t)^* \upharpoonright \mathcal{L}\}$ forms an analytical contraction-valued function.

Using the relation

(3.5)
$$P_{G_{1}}^{\mathcal{X}} s'^{*} h_{+}^{2} = 0$$

we similarly conclude that $\{Q_{+}, J_{\pm}, P_{J_{\pm}}, S'(t)^{*}\}$ is an analytical contraction-valued function.

To prove the remaining part of the proposition we

remark that the triplet $\{U, G_+, G_-\}$ forms another kind of nonconservative Lax-Phillips scattering theory which is usually called a Lax-Phillips scattering theory with losses. This scattering theory is an orthogonal one which in distinction from the conservative scattering theory does not fulfil the completeness condition (2.1). The wave operators \widetilde{W}_{\pm} of this scattering theory with losses are defined by

$$(3.6) \qquad \widetilde{W}_{\pm} = \operatorname{s-lim}_{n \to \pm \infty} U^{-n} P_{G_{\pm}}^{\mathcal{H}} U^{n}.$$

Obviously, we have

$$(3.7) \qquad \widetilde{W}_{\pm} = W_{\pm}^{\dagger} \Gamma G_{\pm}.$$

Hence the scattering operator $\widetilde{S}=\widetilde{W}_+^*\widetilde{W}_-$ admits the representation

$$(3.8) \qquad \widetilde{S} = P_{G_+}^{\mathcal{U}} S^{\dagger} C_-.$$

Taking into account the incoming and outgoing spectral representations given by (2.22) and (2.24) we obtain

(3.9)
$$\tilde{S}(t) = P_{J_{J}}^{Q_{+}} S'(t) \Gamma J_{J_{*}},$$

where $\{J_{*}, \mathfrak{L}, \widetilde{S}(t)\}$ denotes the scattering matrix of $\{U, G_{+}, G_{-}\}$. But it is well-known [1] that by virtue of the minimality of U this scattering matrix coincides with the adjoint characteristic function $\{J_{*}, \mathfrak{L}, \theta_{T}(\lambda)^{*}\}$ of T, i.e.

(3.10)
$$\widetilde{S}(t) = \theta_{T}(e^{it})^{*}$$

for a.e. t ∈ [0,2 ĭ.). ₪

On the basis of Proposition 3.1 the introduction of the following definition seems to be useful.

<u>Definition 3.2.</u> Let $\{0\}_{0}, \P_{0}, \mathbb{R}(t)\}$ be a strongly measurable operator-valued function values of which are contractions acting from the separable Hilbert space 9_{0} , into the separable Hilbert space 9_{0} . We say $\{9_{0}, \P_{0}, \mathbb{R}(t)\}$ admits an analytically unitary synthesis if there exist three analytical contraction-valued functions $\{0\}_{1}, \P_{0}, \mathbb{Z}(\lambda)\}$, $\{9_{0}, \P_{1}, \mathbb{Y}(\lambda)\}$ and $\{0\}_{1}, \P_{1}, \mathbb{X}(\lambda)\}$, where 9_{1} and 9_{1} are separable Hilbert spaces, such that the contraction-valued function $\mathbb{R}^{*}(t)$,

(3.11)
$$R'(t) = \begin{pmatrix} x(e^{it}) & y(e^{it}) \\ & & \\ z(e^{it}) & R(t) \end{pmatrix} \stackrel{0}{\underset{t}{\mapsto}} \stackrel{1}{\underset{t}{\mapsto}} \stackrel{1$$

forms a unitary-valued function for a.e. $t \in [0,2]$.

We remark that if $\{0, 0, 0, R(t)\}$ is also an analytical function, then Definition 3.2 coincides with the definition of the Darlington synthesis given in [3].

Now Proposition 3.1 can be formulated as follows. <u>Theorem3.3.</u> Let $\{\mathcal{X}_{-}, \mathcal{N}_{+}, S(t)\}$ be the scattering matrix of a dissipative Lax-Phillips scattering theory. Then the adjoint contraction-valued function $\{\mathcal{X}_{+}, \mathcal{N}_{-}, S(t)^{\#}\}$ admits an analytically unitary synthesis. <u>Proof.</u> By $\{Q_{,}Q_{+},S'(t)\}$ we denote the scattering matrix of a conservative extension. Taking into account (2.25) and (3.1) we obtain

(3.12)
$$S(t)^{*} = P_{\mathcal{X}}^{Q} S'(t)^{*} \mathcal{N}_{+}$$

and

$$(3.13) \qquad \Theta(e^{it}) = P_{J_{*}}^{Q} S'(t)^{*} t \mathcal{L}$$

for a.e. $t \in [0, 2]$. Further we set

(3.14)
$$C(e^{it}) = P_{\mathcal{K}}^{Q} S'(t)^{*} \uparrow \mathcal{L}$$

and

(3.15)
$$C_{*}(e^{it}) = P_{J_{*}}^{Q_{-}} S'(t)^{*} \mathcal{N}_{+},$$

t $\in [0,2\mathfrak{N})$ a.e.. Because of Proposition 3.1 the contraction-valued functions $\{\mathcal{L}, \mathcal{N}_{-}, C(\lambda)\}$ and $\{\mathcal{N}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\}$ are analytical ones. Consequently, the block-matrix representation

(3.16)
$$S'(t)^* = \begin{pmatrix} \theta(e^{it}) & C_{\mu}(e^{it}) \\ & & \\ C(e^{it}) & S(t)^* \end{pmatrix} \stackrel{\mathcal{L}}{\xrightarrow{}} \stackrel{\mathcal{L}} \stackrel{\mathcal{L}} \stackrel{\mathcal{L}}{\xrightarrow{}} \stackrel{\mathcal{L}} \stackrel{\mathcal{L}$$

defines an analytically unitary synthesis of the adjoint contraction-valued function $\{\mathcal{N}_+, \mathcal{N}_-, S(t)^*\}$.

Considering now an orthogonal dissipative Lax-Phillips scattering theory ($D_+ \perp D_-$) we obtain the following

<u>Corollary 3.4.</u> Let $\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\}$ be the scattering matrix yielded by an orthogonal dissipative Lax-Phillips scattering theory. Then the adjoint scattering matrix $\{\mathcal{N}_{+}, \mathcal{N}_{-}, S(t)\}$ is an analytical contraction-valued function, which admits a Darlington synthesis. <u>Proof.</u> Because of the orthogonality we find that the conservative extension is an orthogonal conservative Lax-Phillips scattering theory $(\mathcal{D}_{+}^{*} \downarrow \mathcal{D}_{-}^{*})$. But this implies that the adjoint scattering matrix $\{Q_{+}, Q_{-}, S^{*}(t)^{*}\}$ of the conservative extension is an inner function of both sides. Applying Proposition 2.3 we complete the proof.

4. Reconstruction

Our next aim is to prove the converse to Theorem 3.3. <u>Theorem 4.1.</u> Let $\{\mathcal{X}_{-}, \mathcal{N}_{+}, S(t)\}$ be a strongly measurable contraction-valued function. If the adjoint function $\{\mathcal{X}_{+}, \mathcal{N}_{-}, S(t)^{*}\}$ admits an analytically unitary synthesis, then $\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\}$ can be regarded as the scattering matrix of a dissipative Lax-Phillips scattering theory. <u>Proof.</u> In accordance with our assumptions we suppose that are separable Hilbert spaces \mathcal{X} and \mathcal{L}_{*} as well as analytical contraction-valued functions $\{\mathcal{X}, \mathcal{L}_{*}, \Theta(\lambda)\}$, $\{\mathcal{N}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\}$ and $\{\mathcal{L}, \mathcal{N}_{-}, C(\lambda)\}$ such that (3.16) defines an analytically unitary synthesis of $\{\mathcal{N}_{+}, \mathcal{N}_{-}, S(t)^{*}\}$. With the help of the unitary-valued function $\{Q_{-}, Q_{+}, S'(t)\}, Q_{-} = \mathcal{N}_{-} \oplus \mathcal{L}_{*}$ and $Q_{+} = \mathcal{N}_{+} \oplus \mathcal{L}_{*}$

(4.1)
$$S'(t) = \begin{pmatrix} \theta(e^{it})^* & C(e^{it})^* \\ \vdots & \vdots \\ C_*(e^{it})^* & S(t) \end{pmatrix} \stackrel{\mathcal{L}_*}{\xrightarrow{}} \stackrel{\mathcal{L}_*} \stackrel{\mathcal{L}_*}{\xrightarrow{}} \stackrel{\mathcal{L}_*} \stackrel{\mathcal{L}_*}{\xrightarrow{}} \stackrel{\mathcal{L}_*} \stackrel{\mathcal{$$

we construct a conservative Lax-Phillips scattering theory in the following way. We set $\mathcal{W} = L^2(\mathbb{Q}_+)$, $\mathcal{D}_+^{*} = H^2(\mathbb{Q}_+)$ and $\mathcal{D}_-^{*} = S'(L^2(\mathbb{Q}_-)) \oplus H^2(\mathbb{Q}_-))$, where S' denotes the multiplication operator from $L^2(\mathbb{Q}_-)$ into $L^2(\mathbb{Q}_+)$ induced by the unitary-valued function $\{\mathbb{Q}_-,\mathbb{Q}_+,S'(t)\}$. Denoting by U the multiplication operator induced by e^{1t} on $\mathcal{W} = L^2(\mathbb{Q}_+)$, it is not hard to see that the triplet $\{\mathbb{U},\mathcal{D}_+^{*},\mathcal{D}_-^{*}\}$ forms a conservative Lax-Phillips scattering theory scattering matrix of which coincides with $\{\mathbb{Q}_-,\mathbb{Q}_+,S'(t)\}$.

Next we define the contraction T. To this end we introduce the subspaces $G_{+} = H^{2}(\mathcal{L})$ and $G_{-} = S'(L^{2}(\mathcal{L}_{*}) \oplus$ $\bigoplus H^{2}(\mathcal{L}_{*}))$. Taking into account the properties of the analytically unitary synthesis (4.1) we find that the subspaces G_{+} and G_{-} are orthogonal, i.e. $G_{+} \perp G_{-}$. Moreover, the subspaces G_{+} and G_{-} are invariant with respect to U and U*, respectively. Consequently, introducing the subspace $\mathcal{H} = \mathcal{K} \bigoplus (G_{+} \oplus G_{-})$ the relation

$$(4.2) \qquad \mathbf{T} = \mathbf{P}_{\mathbf{H}}^{\mathbf{K}} \mathbf{U} \upharpoonright \mathbf{H}$$

defines a contraction on $\ensuremath{\mathbb{H}}$. The operator U is a unitary dilation of T.

The following aim is to define the invariant subspaces \mathcal{D}_+ and \mathcal{D}_- . We set $\mathcal{D}_+ = H^2(\mathcal{N}_+)$ and $\mathcal{D}_- =$ = S'(L²(\mathcal{N}_-) \bigcirc H²(\mathcal{N}_-)). Obviously, we have $\mathcal{D}_+ \perp G_+$ and $\mathcal{D}_+ \perp \mathbb{G}_-$ which implies $\mathcal{D}_+ \subseteq \mathcal{H}$. Similarly, we obtain $\mathcal{D}_- \perp \mathbb{G}_-$ and $\mathcal{D}_- \perp \mathbb{G}_+$ which implies $\mathcal{D}_- \subseteq \mathcal{H}$.

Further we show that $\{T, \mathcal{D}_+, \mathcal{D}_-\}$ forms a dissipative Lax-Phillips scattering theory. Obviously, the subspaces \mathcal{D}_+ and \mathcal{D}_- are invariant with respect to U and U^{*}, respectively. But this implies the invariance of \mathcal{D}_+ and \mathcal{D}_- with respect to T and T^{*}, respectively. Moreover, we get $T \upharpoonright \mathcal{D}_+ = U \upharpoonright \mathcal{D}_+$ and $T^* \upharpoonright \mathcal{D}_- = U^* \upharpoonright \mathcal{D}_-$. But this implies (h2) and (h3).

To prove (h4) we note the relation

(4.3)
$$\mathcal{W} = L^{2}(\mathcal{X}_{+}) \oplus L^{2}(\mathcal{X}) =$$
$$= \bigvee_{n \in \mathbb{Z}} U^{n} \mathcal{D}_{+} \oplus \bigvee_{n \in \mathbb{Z}} U^{n} G_{+}.$$

Now for every $m \in \mathbb{Z}$ and every $f \in H^2(\mathcal{N}_+)$ we find

$$(4.4) \qquad \underset{n \to +\infty}{\text{s-lim}} \overset{\mathcal{W}}{\underset{i \in \mathcal{D}}{P_{i \in \mathcal{D}}}} \overset{\mathcal{U}^{n}}{\underset{i \in \mathcal{D}}{U^{n}}} U^{m} f = 0,$$

which implies

$$(4.5) \qquad s-\lim_{n \to +\infty} \mathbb{P}_{\mathcal{X} \ominus \mathcal{D}_{+}}^{\mathcal{X}} \mathbb{U}^{n} f = 0$$

for every $f \in L^2(\mathcal{K}_+)$. Similarly, for every $m \in \mathbb{Z}$ and every $g \in H^2(\mathcal{L})$ we get

(4.6)
$$s-\lim_{\mathcal{R} \to \mathcal{N}} \mathcal{P}_{\mathcal{R} \to \mathcal{O}_{+}}^{\mathcal{M}} \mathcal{U}^{n} \mathcal{U}^{n} g = 0$$

 $n \to +\infty$
But (4.6) yields

(4.7)
$$\underset{n \to +\infty}{\operatorname{s-lim}} P_{\mathcal{H} \ominus} \mathcal{D}_{+} U^{n} g = 0$$

for every $g \in L^{2}(\mathcal{Z})$. Consequently, taking into account (4.3), (4.5) and (4.7) we obtain $\underset{n \to +\infty}{s-\lim_{n \to +\infty}} P^{\mathcal{X}}_{\mathcal{A}} \oplus \mathcal{D}_{+} U^{n}h = 0$ for every $h \in \mathcal{X}$. Hence we find $\underset{n \to +\infty}{s-\lim_{n \to +\infty}} P^{\mathcal{X}}_{\mathcal{A}} \oplus \mathcal{D}_{+} T^{n} = 0$. Similarly, we prove $\underset{n \to +\infty}{s-\lim_{n \to +\infty}} P^{\mathcal{H}}_{\mathcal{A}} \oplus \mathcal{D}_{-} T^{n} = 0$.

Obviously, the triplet $\{U, \mathcal{D}_{+}^{*}, \mathcal{D}_{-}^{*}\}$ is a conservative extension of the dissipative Lax-Phillips scattering theory $\{T, \mathcal{D}_{+}, \mathcal{D}_{-}\}$. Taking into account Proposition 2.3 and (4.1) we obtain that the scattering matrix of $\{T, \mathcal{D}_{+}, \mathcal{D}_{-}\}$ coincides with $\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\}$.

Theorem 4.1 implies the following <u>Corollary 4.2.</u> Let $\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\}$ be a strongly measurable contraction-valued function. If the adjoint function $\{\mathcal{N}_{+}, \mathcal{N}_{-}, S(t)^{*}\}$ is an analytical one and admits a Darlington synthesis, then $\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\}$ can be regarded as the scattering matrix of an orthogonal dissipative Lax-Phillips scattering theory.

<u>Proof.</u> Using the considerations of Theorem 4.1 it remains to show that the subspaces $\mathcal{D}_{\mu} = H^2(\mathcal{N}_{+})$ and $\mathcal{D}_{-} = = S'(L^2(\mathcal{N}_{-}) \oplus H^2(\mathcal{N}_{-}))$ are orthogonal. But this is obvious in virtue of the analyticity of $\{\mathcal{N}_{+}, \mathcal{N}_{-}, S(t)^*\}$.

5. Analytically unitary synthesis and the solution of C.Foias

An obvious consequence of Theorem 4.1 is the following <u>Proposition 5.1.</u> The strongly measurable contraction-valued function $\{\mathcal{K}_{-}, \mathcal{K}_{+}, S(t)\}$ can be regarded as the scattering matrix of a dissipative Lax-Phillips scattering theory if and only if there exist analytical contractionvalued functions $\{\mathcal{L}, \mathcal{N}, C(\lambda)\}, \{\mathcal{N}_+, \mathcal{L}_*, C_*(\lambda)\}$ and $\{\mathcal{L}, \mathcal{L}_*, \theta(\lambda)\}$ such that the relations

(5.1)
$$I = \Theta(e^{it}) \Theta(e^{it})^* + C_*(e^{it})C_*(e^{it})^*$$

(5.2)
$$0 = \theta(e^{it})C(e^{it})^* + C_*(e^{it})S(t),$$

(5.3)
$$I = C(e^{it})C(e^{it})^* + S(t)^*S(t)$$

and

(5.4)
$$I = \Theta(e^{it})^* \Theta(e^{it}) + C(e^{it})^* C(e^{it}),$$

(5.5)
$$0 = C_{*}(e^{it})^{*} \theta(e^{it}) + S(t)C(e^{it}),$$

(5.6)
$$I = C_*(e^{it})^* C_*(e^{it}) + S(t)S(t)^*$$

are fulfilled for a.e. $t \in [0, 2\pi)$.

<u>Proof.</u> Let $\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\}$ be the scattering matrix of a dissipative Lax-Phillips scattering theory. Then on account of Theorem 3.3 there are analytical functions $\{\mathcal{L}, \mathcal{N}_{-}, C(\lambda)\}, \{\mathcal{N}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\}$ and $\{\mathcal{L}, \mathcal{L}_{*}, \theta(\lambda)\}$ such that (4.1) forms a unitary-valued function. Consequently, we have $S'(t)^{*}S'(t) = I_{\mathcal{L}_{*}} \oplus \mathcal{N}_{-}$ and $S'(t)S'(t)^{*} = I_{\mathcal{L}_{*}} \oplus \mathcal{N}_{+}$, for a.e. $t \in [0, 2\tilde{\lambda}]$. But these relations imply (5.1) = (5.6).

Conversely, if there are analytical contraction-va-

lued functions such that (5.1) - (5.6) are fulfilled, then we easily check, that the operator-valued function $\{ \bot_{*} \oplus \mathscr{N}_{-}, \pounds \oplus \mathscr{N}_{+}, \mathbb{S}^{*}(t) \}$ performed in accordance with (4.1) is a unitary-valued one. Taking into account Theorem 4.1 we complete the proof. B

Proposition 5.1 immediatly yields Proposition 4, Proposition 5 and Proposition 6 of C.Foias [4]. In order to show Proposition 4 and Proposition 5 of [4] we introduce the canonical and *-canonical factorizations of the analytical contraction-valued functions $\{\mathcal{N}_+, \mathcal{L}_*, \mathcal{C}_*(\lambda)\}$ and $\{\mathcal{L}, \mathcal{N}_-, \mathcal{C}(\lambda)\}$, respectively. We set $\mathcal{C}_*(\lambda) = 3\mathfrak{I}(\lambda)$. $\mathbf{B}_*(\lambda)$ and $\mathcal{C}(\lambda) = \mathbf{B}(\lambda)\mathcal{OL}(\lambda)$, where $\{\mathcal{N}_+, \mathbf{P}_*, \mathbf{B}_*(\lambda)\}$ and $\{\mathbf{P}, \mathcal{N}_-, \mathbf{B}(\lambda)\}$ are outer and *-outer functions, respectively, and $\{\mathbf{P}_*, \mathcal{L}_*, \mathbf{B}(\lambda)\}$ and $\{\mathcal{L}, \mathbf{P}, \mathcal{OL}(\lambda)\}$ are inner and *-inner functions, respectively. Taking into account these factorizations we obtain that (5.3) and (5.6) imply (\mathfrak{I}) and (\mathfrak{I}_*) of Proposition 4 of [4]. Introducing in accordance with (5.4.1) and (5.4.7) of [4] the contraction-valued function $\{\mathbf{P}, \mathbf{P}_*, \mathbf{S}_{red}(t)\}$ and using (5.5) we get

(5.7)
$$0 = D_{S(t)} * \{ \omega_{*}(t) \mathcal{B}(e^{it})^{*} \theta(e^{it}) +$$

+
$$S(t) w(t) OL(e^{it})$$

for a.e. $t \in [0,2\mathfrak{I}]$. Because of $S(t)(\operatorname{ima}(D_{S(t)}))^{-} \subseteq (\operatorname{ima}(D_{S(t)}))^{-}$ for a.e. $t \in [0,2\mathfrak{I}]$ we obtain

(5.8) $0 = \omega_{*}(t) \mathcal{B}(e^{it})^{*} \theta(e^{it}) + S(t) \omega(t) \mathcal{O}(e^{it})$

for a.e. $t \in [0,2\Im]$. On account of $\omega_{*}(t)^{*}\omega_{*}(t) = I_{P_{*}}$ and $\mathcal{O}(e^{it})\mathcal{O}(e^{it})^{*} = I_{P}$ for a.e $t \in [0,2\Im]$ we find

(5.9) $S_{red}(t) = -\mathcal{B}(e^{it})^* \theta(e^{it}) \mathcal{R}(e^{it})^*$

for a.e. $t \in [0,2\mathbb{X}]$, which implies (5.5.3) of [4]. The relation (5.5.4) follows from (5.1) and (5.4). It was pointed out in section 6.6 of [4] that the condition (5.5.1) is redundant, since (5.5.1) is a consequence of (β) of [4].

To prove Proposition 6 of [4] it is sufficient to show that under the assumptions of Proposition 6 of [4] there exist analytical contraction-valued functions $\{\mathcal{L}, \mathcal{N}, C(\lambda)\}, \{\mathcal{N}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\}$ and $\{\mathcal{L}, \mathcal{L}_{*}, \Theta(\lambda)\}$ such that the relations (5.1) - (5.6) of Proposition 5.1 are fulfilled. Because $\{\mathcal{L}, \mathcal{L}_{*}, \Theta(\lambda)\}$ is given by Proposition 6 of [4] it remains to define $\{\mathcal{L}, \mathcal{N}_{-}, C(\lambda)\}$ and $\{\mathcal{N}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\}$. We set

(5.10)
$$C_{\mu}(\lambda) = -\mathcal{B}(\lambda)B_{\mu}(\lambda)$$

and

(5.11)
$$C(\lambda) = B(\lambda) O(\lambda),$$

 $\lambda \in \{z \in (: |z| < 1\}$. Because of (β) and (β_{*}) of [4] we obtain (5.3) and (5.6). From (5.5.3) of [4] we get

(5.12)
$$\mathcal{B}(e^{it})^* \Theta(e^{it}) \mathcal{O}(e^{it}) = \omega_*(t)^* S(t) \omega(t)$$

for a.e. $t \in [0,2 \ensuremath{\widetilde{k}}\xspace)$. Multiplying on the right by $B(e^{\ensuremath{\text{it}}\xspace})^{*}$ we find

$$(5.13) \qquad \mathcal{B}(e^{it})^* \Theta(e^{it}) C(e^{it})^* = \omega_*(t)^* S(t) D_{S(t)}$$

from which we conclude

U

(5.14)
$$\mathfrak{B}(e^{it})^* \theta(e^{it}) C(e^{it})^* = B_*(e^{it}) S(t)$$

for a.e. $t \in [0,2\tilde{\lambda}]$. But (5.14) yields

(5.15)
$$\mathcal{B}(e^{it})\mathcal{B}(e^{it})^* \Theta(e^{it})\mathcal{C}(e^{it})^* = -\mathcal{C}_{*}(e^{it})\mathcal{S}(t)$$

for a.e. $t \in [0,2\tilde{\lambda}]$. On account of (5.5.4) of [4] we find $\theta(e^{it})^* \ker(\mathfrak{B}(e^{it})^*) \subseteq \ker(\mathfrak{A}(e^{it}))$ for a.e. $t \in [0,2\tilde{\lambda}]$. Using this conclusion we obtain (5.2) from (5.15). Similarly, we prove (5.5).

It remains to show (5.1) and (5.4). Taking into account (5.5.4) δf [4] we find

(5.16)
$$\mathcal{B}(e^{it})^* \theta(e^{it}) \theta(e^{it})^* \mathcal{B}(e^{it}) =$$

 $\mathcal{B}(e^{it})^{*} \theta(e^{it}) \mathcal{O}(e^{it})^{*} \mathcal{O}(e^{it}) \theta(e^{it})^{*} \mathcal{B}(e^{it})$

for a.e. $t \in [0,2i]$. By virtue of (5.5.3) of $[4^{\cdot}]$ we get

(5.17)
$$\mathcal{B}(e^{it})^* \theta(e^{it}) \theta(e^{it})^* \mathcal{B}(e^{it}) =$$

ພ_{*}(t)^{*}S(t)ພ(t)ພ(t)^{*}S(t)^{*}ພ_{*}(t)

for a.e.
$$t \in [0,2\tilde{1})$$
. On account of (5.4.1) of [4] we conclude

(5.18)
$$\mathcal{B}(e^{it})^* \theta(e^{it}) \theta(e^{it})^* \mathcal{B}(e^{it}) =$$

$$\omega_{t}(t)^{*}S(t)S(t)^{*}\omega_{t}(t)$$

for a.e. $t \in [0,2\tilde{\lambda})$. But (5.18) and (5.4.1) of [4] imply

(5.19)
$$\mathbb{B}(e^{it})^* \Theta(e^{it}) \Theta(e^{it})^* \mathbb{B}(e^{it}) + \mathbb{B}_{*}(e^{it})\mathbb{B}_{*}(e^{it})^* =$$

 $\omega_{*}(t)^* \{ S(t)S(t)^* + \mathbb{D}_{S(t)}^2 \} \omega_{*}(t) = I$

for a.e. $t \in [0, 2\mathbb{X}]$. Hence we find

(5.20)
$$\mathcal{B}(e^{it})\mathcal{B}(e^{it})^* D^2_{\theta(e^{it})^*} \mathcal{B}(e^{it})\mathcal{B}(e^{it})^* = C_*(e^{it})C_*(e^{it})^*$$

for a.e. $t \in [0,2\tilde{\lambda}]$. Taking into account (5.5.4) of [4] it is not hard to see that (5.20) implies (5.1). Similarly, we prove (5.4).

In such a way we have seen that the conditions (β), (β_{*}), (5.5.2), (5.5.3) and (5.5.4) of [4] are equivalent to the assumptions of Proposition 5.1. Using the notion of analytically unitary synthesis this means that the conditions (β), (β_{*}), (5.5.2), (5.5.3) and (5.5.4) are equivalent to the existence of an analytically unitary synthesis of the strongly measurable contraction-valued function $\{\mathcal{N}_+, \mathcal{N}_-, \mathbf{S}(t)^{\#}\}$. Hence if $\{\mathcal{N}_+, \mathcal{N}_-, \mathbf{S}(t)^{\#}\}$ is an analytical contraction-valued function, then these conditions are equivalent to the existence of a Darlington synthesis of $\{\mathcal{N}_+, \mathcal{N}_-, \mathbf{S}(t)^{\#}\}$. The Darlington synthesis is performed by (5.10), (5.11) and (3.16).

References

11

1

- [1] V.M.Adamjan, D.Z.Arov, On unitary couplings of semiunitary operators, Mathematical Investigations 1(1966), no. 2, 3-64 (Russian).
- [2] D.Z.Arov, On unitary couplings with losses (scattering theory with losses), Functional Analysis and its Application 8(1974), 5-22 (Russian).
- [3] R.G.Douglas, J.W.Helton, Inner dilation of analytic matrix functions and Darlington synthesis, Acta Sci. Math. (Szeged) 34(1973), 61 - 67.
- [4] C.Foias, On the Lax-Phillips nonconservative scattering theory, Journal Funct. Analysis 19(1975)
 273 - 301.
- [5] P.D.Lax, R.S.Phillips, "Scattering Theory", Academic Press, New York, 1967.
- [6] P.D.Lax, R.S.Phillips, Scattering theory for dissipative hyperbolic systems, Journal Funct. Analysis 14(1973), 172-235.
- B.Sz.-Nagy, C.Foias, "Harmonic Analysis of operators on Hilbert space", Akadémiai Kiado, Budapest, 1970.

Received by Publishing Department on May 12, 1987.