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1. Introduction
In [4) C.Foias characterizes all possible scattering ma-
trices occurring in the abstract fromework of a dissipa-
tive Lax-Phillips scattering theory developed in [6].
The aim of this paper is to continue the investigation
of the scattering matrix using a quite different ap-
proach to this object. The new approach forces a ge-
neralization of the notion of Darlington synthesis as
defined in [ 33 to the case that the contraction-valued
function is not an enalytical one. This.generalized
notion which in the paper is called an enalytically
unitary synthesis of & contrection-valued funetion re-
duces to the notion of Darlington synthesis if the
operator-~valued function is an gnalyticel one. Using
this notion we find that a strongly measurable contraction-
valued function can be regarded as the scattering matrix
of a dissipative Lax-Phillips scattering theory if and
only if the adjoint contraction-valued function admits
an anelytically unitary synthesis. Morcover, taking
into account the above mentioned relation tao the Dar-
lington synthesis we find thet a contraction-valued
functlon arises from en orthogonal dissipative Lax-Phil-
lips scattering theory if and only if the adjoint ¢ontrac-
tion-valued function is an analytical one and possesses a
Darlington synthesis.

From this point of view the conditions (f3), (ﬁ‘),
(5.5.1) = (5.5.4) of C.Foias [41 characterizing the set of
occurring scattering matrices in a necessary and sufficient

manner are equivaelent to the property that the adjoint



contraction-valued function has an analytically unitary
synthesis., If the adjoint function is an enalytical one
this means that (f3), (3,), (5.5.1) - (5.5.4) of [4]
are necessary and sufficient conditions to guarantee the
existence of a Darlington synthesis. At the end of this
peper we give ; direct proof of theqe conclugions.

Moreover, we believe that the present approach has
the advantage of a great simplicity and transparency.
Especially, this transparency eppears in the reconstruc-
tion theorem which is based on the well-known and widely
investigated reconstruction theorem of a conservative
lax~Phillips scattering theory [1,2,6].

In accordance with [4] we use a discret Lax-Phil-~
lips framework. For the convenience of the reader we re-
peat the assumptions of the dissipative Lax-Phillips scat-
tering theory in & discret framwork. A triplet {T, D, 2]
consisting of a contraction T on a separable Hilbart
space ® and two subspaces @+_of #® ig called a dissi-
pative Lex-Phillips scatterin; theory if the following
.assumptions are fulfilled.

@y zd, €D ,1™d_<c D_,

(h2) TtD_ end T*Y‘@_ are isometries,

w3 N _ mp. ={o}- N_ ap |
ne Z * Z -

+ +

%
(h4) Py g 1720, Pg::@i) ™% 50 strongly for n— + .
+ -

Let U on I be the minimal unitary dilation of T. Let

11y %, = V. outp .-

Obviously, the subspaces 72+ reduce the operator U. We

set
(1.2) Ui = Ur?a\ei.

The wave operators W, are defined by

’
*

(1.3) W_ = s-lim 7% B2 UMP
n—>+0 -

and

(1.4 ) W, = s-lim ™R P;L Ufr‘
n-—>+c0 +

The scattering operator S,
(1.5 ) S=wWw_,

acts from 2¢_ intc H£+. The operators U  are bilateral
shifts. Transforming these operators in;o their Fourier
representations we find that in these representations

the scattering operator S acts as a multiplication opera-
tor with a strongly measurable contraction-valued function
which is called the scattering matrix of the dissipative
Lax-Phillips scattering theory.

2. Conservative and noncongervative Lax-Phillips scat-~

tering theory
We say the triplet {T, D+,'@_S forms a conservative Lax-

Phillips séattering theory [5]) demanding in addition to
(1) - (h4) that T ie a unitary operator. Usually, in
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this case the condition (h4) 1s replaced By

21y NV _ D, =&,

ne?

but it is not hard to see that (h4) and (2.1) are

equivalent provided T is & unitaxry operator.

Definition 2.1, Let {T, an.@_} be a dissipative Lax-
Phillips scattering theory. If fthere exists e unitary
operator U on ® >H# as well es orthogonal incoming and

outgoing subspaces G_ and G, of U such that the conditions

%
I =
(2.2 ) P U R =17

(2.3) W=06 HFD_

are fulfilled end {U, &I, !}, D! = D, ®¢,, forms a
conservative Imx-Phillips scattering theory, then we call
{U,&Q;,;Q:},a conservative extension of {T, Z%J 2]
Proposition 2.2, Every dissipative Lax-Phillips scattering

theory {T,QD+J @_} has & conservative extension.

Proof. Let U be the minimal unitary dilation of T on XK.
Obviously, the coundition (2.2) is fulfilled. We introduce
the wendering subspaces £ = ((U - T)32)™ and iwﬂ

= ((I - UT*)3 )" in accordance with (7], we set
(2.4 ) G, = M (L)

and

(2.5 ) C_ = M(L) @M ().

Taking into account the structure of a minimal unitary

dilation we get
(206 ) ‘:}{' = G+ @Be @ G-.'

Obviously, G+ end G_ are outgoing snd incoming subspaces
of U.

Defining now the subspaces JD; in accordance with
Definition 2.1 the triplet {U,:@i,ibi} forms a conserva-
tive Lex-Phillips scattering theory if we establish the

relation

(2.7 ) W VD

L}
neZ t

But taking into account Lemmm 3 of [4] we get

(2.8 ) X

& M Bﬂ = V’ U !
+@ ( ) - ‘@I
and

(2.9 ) H

i

&* & =V oy
_®nuL,) nezu D

which completes the proof. @

Let {U, lﬁjébl} be a conservative extension of the
dissipative Lax~Phillips scattering theory {T,<D+,(D_}.
Taking into account Definition 2.1 it is not herd to see

thet U 13 a unitary dilation of T.



Using this remexrk we obtain the invariance of the
subspaces JD+ and J)_ with respect to U and U¥, respec-

tively. Hence there are wandering subspaces Jvf+ < i)+

with respeet to U such that

(2.10) D, =m0,

+

(2.11) D_ = MUH) 01 (H)
and

(2.12) ‘3£+ = m(in).

Denoting by i, and ¥, the wondering subspaces of the out-

golng and incoming subspaces (}+ and G_, respectively,

(2.13) G, = ¥,(Z)

(2.14) G = ¥(L) ©OM (L),
it is not hard to see that the subspaces
(2.15) Q = N, ®Lond o_ = N_® &,

are elso wandering subspaces obeying

(2.16) D!

) = 1, (Q,)

and

(2.17) D! = M(Q) ©M ().

Because {U, 2}, D'} forms a conservative Lax-Phillips

scattering theory we get
(2.18) H o= m(Q,).

If ¢i denotes the Fourier transformation corresponding

to the wandering subspaces Q, we find

"

(2.19)  &1d} = H(Q,)

12(q) @ H%(Q).

(2.20) $! D

Moreover, we have
(2.21) &1, = (A,

(2.22) dle, = H(B)

(2.23) b D= 1A(H) OBA(K),

(2.24) bL e = 1504, ©8(L,).



Let S' be the scattering operator of the conservative
extension of {T, ;D+,§D__?]. The operator &) S Cb_'_‘iacts as
a multiplication operator with a strongly measurable
function {Q_,Q+,S'(t)}, velues of which are isometries

from Q_ eonto Q+ {conservetive Lax~Phillips scattering

theory!). Usually, this unitary-valued function is called

the seattering matrix of the comservative Lax-Phillips

scattering theory {U, ;011, g)l}.

Provosition 2.3, Let {Jf_,-ﬂ;,s(t)} be the scattering matrix

yielded by s dissipative Lax-Phillips scattering theory
{T, iL, @_k. If {Q_,Q*,S'(t)} denotes the scattering ma-
triz of the conscrvative extension of {T, i)+, i)_}, then

both scattering matrices are related by
Q

(2.25) () =P, 7 s'(8)TI,
X,

t€[0,27) a.e..

Proof. Let W, be the wave operators of the conservative

extension defined by

n R
(2.26) Wl = s-lim.U n Py U,
b n—ieo +

Obviously, we have

'’
(2.27) wi = aewin{_t .

===

=

which implies

(2.28) P;;’ S'r¥ = s,
+
But (2.28) immediately yields (2.25). %8
In such a way Proposition 2.3 shows us that every
scattering metrix of o dissipative Lax-Phillips scat-
tering theory can be regarded as the compression of the

scattering matrix of its conservative extension.

3, Scattering matrix and analytically unitary synthesis

Every strongly measurable contraction-valued function can
be dilated to a strongly measureble unitary-velued func-
tion, Further, it is well-known that every strongly meas-
urable upitary—valued function can be regarded as the
scattering matrix of a conservative Lax-Phillips scat-
tering theory. Hence the conjecture seems to be true that
in wvirtue of Proposition 2.3 every strongly measurable .
contraction-valued function can be thought as the scat-
tering matrix of a dissipative Lax-Phillips scattering
theory. But this conjecture is false. The point is that
the scattering matrixz of a conservative extension obeys
some additional properties description of which is the
contents of the following

Propogition 3.1. Let [U, @L,.Dl} be a conservative exten-

sion of the dissipative Lax-Phillips scattering theory
{T,:D+J.D_}. It {Q_.Q+,S'(t)} denotes the scattering ma-
trix of {U, inJ i[}, then the contraction-valued func-
Q
* -
tions {¥,Q,8'())* M LYana {q,,%,,Pg, 5'(+)*} are ana-
lytic ones. Moreover, if U is a minimal unitary dilation
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of T, then the analytic contraction-valued function

{L,3,,B(X)} defined by

. Q
(3.1) Bel®) = py suny*ry
*®

for am.e. t €[0,27() coincides with the characteristic

function of T.

Proof. Taking into account the definition of the wave and

gcattering operators we find

(3.2 ) P?‘ s'FPD! = pg‘ rD* = 0.
+ +
But (3.2) yields
(3.3 ) SU(t)£(t) L H2(R)
for every £e12(Q_) @H2(Q ). Hence we obtain
(3.4 ) sT(£)e(t) L 12(q) ©E3(Q.)
for every f&Hz(?ﬂ). Consequently, {;{, ,Q_,S'(t)"' l‘!,}

forms an analytical contraction-valued function.

Using the relation -
(3.5 ) PZ'L_ st*1d; =0
Q_ p
we similarly conclude that {'Q+’i’k'P:L.S'(t) } is en

analytical contraction-valued function.

To prove the remaining part of the proposition we

10

remark that the triplet {U,c+,s_} forms another kind of
nonconservative Lax-Phillips scattering theory which is
usually called a Lax-Phillips scattering theory with
losses.'This scattering theory is an orthogonal one which
in distinction from the conservative scattering theory
does not fulfil the completeness condition (2.1). The
wave opcrators W; of this scattering theory with losses

are defined by

W

(3.6 ) Tv'+ = s-lim U%p; U™,
- n—-+0 +

Obviously, we have

(3.7) W, = WirGi.

Hence the scattering operator 5= ﬁ:ﬁ; admits the repre-

sentation
~ k2
(3.8 ) § = P, s'ha_.
A -

Taking into account the incoming end outgoing spectral
representations given by (2.22) and (2.24) we obtain

~ Q
(3.9 S(t) = Pyl S'(£)T L,
where {L‘,i,g(t)} denotes the scattering matrix of
{v,6,,6_}. But it is well-known [1] that by virtue of the

minimality of U this scattering matrix coincides with the
adjoint characteristic function {‘i,*, ‘i, ’ 9 T( A )*} of T, i.e.

11




(3.10)  B(t) = 0D
for a.e. t€[0,2). B .

On the basis of Proposition 3.1 the introduction of

the following definition seems to be useful,

Definition 3.2. Let {0}0,‘%,0,]‘((1;)} be a strongly meas-
urable operator-valued function values of which are con-
tractions acting from the separable Hilbert space 0}0

into the separable Hilbert space \tZ{o' We say{ﬁlo,"%o,li(t)}
admits an analytically unitary synthesis if there exist

three analytical corntraction-valued functions {_0(}1, ‘%O,Z( PN )} ,

{000 H10YO} 20 {9}y, %X O} s where 4 ana Y, ave

separable Hilbert spaces, such that the contraction-va-

lued function R*'(t),

(3.11) R'(t) = O — ® ,
2 R | g, ho

forms a unitary-vslued function for a.e. te [.0,2’?\:)0

We remark that if {030, ‘%O,R(t)} is also an analytical
function, then Definition 3.2 coincides with the definition
of the Darlington synthesis given in [ 3].

Now Proposition 3.1 can be formulated as follows.
Theorem3.3. Let { X _, 'Jf_I_,S(‘t;)} be the scattering metrix
of a dissipative Lax-Phillips scattering theory. Then the
adjoint contraction-valued function {J(+, J(_,S(t)"_} admits

sn analytically unitary synthesis.

12

S

———

Proof. By {Q_,Q_}_,S'(t)} we denote the scattering matrix
of a conservative extension. Teking into account (2.25)

and (3.1) we obtain

% -
(3.12) S(£)" = ] s'(t)"U(+
and
1t e *
(3.13) B(e*) = 2y st(t)t L
L3

for a.e. t €[0,270). Further we_set

: Q
CRTIEC OIS N O
and
(3.15) o, (e1t) = Py S (8T

. % e = i:* 3 +?

t € 10,27) a.e.. Because of Proposition 3.1 the contrac-
tion-valuet.i functions {i,, HN_,C(N )} and {J’+. i,*,c*( BN )}
are analytical ones. Consequently, the block-matrix re-~

presentation

Bt ¢t 2L Ly
LO— @
c(el®y s()* | W, .

+ -

(3.16) st (t)* =

defines an analytically unitery synthesis of the adjoint
%
contraction-valued function {J(_i_, X_,8(%) }

13



Congidering n<\)w an orthogonal dissipative Lax-
Phillips scattering theory (JO+.LD_) we obtain the fol-
lowing '

Corollary 3.4. Let {J('_. J('+,S(t)} be the scattering ma-
trix yielded by an orthogonal dissipative Lax-Phillips
scattering theory. Then the adjoint scattering matrix
{Jf+,Jf_,S(tj*} is an enalytical contraction-valued
function, which ‘ad.mi‘cs a Darlington synthesis.

Proof. Because of the orthogonality we find that the con-
gervative extension is an orthogonal conservative Lax-
Phillips scattering theory (Di LD!). But this implies
that the adjoint scattering matrix {,Q+,Q_,S'(t)*‘} of the
conservative extension is an inner function of both sides.

Applying Proposition 2.3 we complete the proof. B

4. Reconstruction

Our next aim is to prove the converse to Theorem 3.3.
Theorem 4,1, Let{J)_, J(+,S(t)} be a strongly measurable
contraction-valued function. If the adjoint function
{Jf+, J(‘_,S(t)’} admits an analytically unitary synthesis,
then {J('_,Jf;,s(t)} can be regarded as the scattering ma-
trix of a dissipative Lax-Phillips scattering theory.
Proof. In accordance with our assumptions we suppose that
are separable Hilbert spaces ¥, and ik as well as ana-
lytical contraction-valued functions {Bf,, L SXON )} ,
§U sy s Ce(N )} and {£, X _,c(X)] such that (3.16) de-
fines an analytically unitary synthesis of {JQ.J(_,s(t)"}.
With the help of the unitary-valued function
$0.,0,,8"(8)},a_ = H_ ® Ly end q, = N, ® %,

14

8 (elh* celt¥| I, L
(4.1) S'(t) = O—®
o, (2 s(t) Y.

we construct a conservative Lax~Phillips scattering theory
in the following way. We set = L2(Q+), ;D_:_ = H2(Q+)

and D! = 5'(12(Q_) OH2(Q_)), where S' denotes the mul-
tiplication operator from LE(Q_) into L2(Q+) induced by
the unitary-valued function {a_,Q,,8'(t)}. Denoting by U
Yon %= 1%(q,,
1t 1s not hard to see that the triplet {U,D!, D!} forms

the multiplication operator induced by e

a conservative Lax-Phillips scattering theory scattering
matrix of which coincides with {Q_,Q+,S'(t)_}.

Next we define the contraction T. To this end we in-
troduce the subspaces G, = H2(¥,) and G_ = S'(Lz(a‘,*) ®
@Hz(i,‘)). Teking into account the properties of the analy-
tically unitary synthesis (4.1) we find that the sub-
spaces G+ end G_ are orthogonal, i.e. G+.L G_. Moreover,
the subspaces G+ and G_ are invariant with respect to U
end U*, respectively. Consequently, introducing the sub-

space ¥ = Y o (G, ®G_) the relation
X
(4.2 ) T =P, UM

defines a contraction on ¥ . The operator U is a unitary

dilation of T.

The following aim is to define the invariant sub-
spaces D, and D_. We set D, = HZ(JC’_) and J_ =
= S’(Lz(J(_) @Hz(Jf_)). Obviously, we have D+_L G, and

15



D, L G_ vhich implies D, c'# , similarly, we obtain

D_LG_ and D _1G _which implies D_c .

Further we show that {T, cD+, D_} forms a dissipative
Lax-Phillips scattering theory. Obviously, the subspaces
D, end D _ are inveriant with respect to U and U*, re-
spectively. But this implies the invariance of D_._ and
,;D_ with respect to T arid‘ T*, respectively. I\‘Io'x‘e’over, we
get TTD, = UMD, and T*TD_ = U¥ND_. But this implies
(h2) and (h3).

‘To prove (h4) we note. the relation

(4.3) W= 18U @L'?(:f;-) =

Vo \/ .
neZUD@ UG

Now for ev‘er& me Z end every feHz(J('+) we find

(4.4 ) s-1im r;, p Ut Ut =0,
n—y+oo +

which implies

!R,
(4.5 ) s-1im P ur = 0
n—>+o°0 3{@@

for every f6L2(J(+). Similarly, for every m £ Z and every
gE.H2(i,) we get

. X
(4.6 ) s-lim By o vt v = 0
n—>+00 +
But (4.6) ylelds
R n_
. s-1im P Ug=0
(4.7 ) o 3t®®+
16

.

for every geLZ'(&";). Consequently, te.king into account

€4.3), (4.5) and (4.7) we obtain s-1im PEKE)SD ¥n = 0

n 5+“’°
for every he¥ . Hence we find s =1im P ™ = 0.
y T Reo,
*n
Similarly, we prove s~lim PBC@JJ T = 0.

n—s 450

Obviously, the triplet {U, SD;, D } is a conservative
extension of the dissipative Lex-Phillips scattering
theory { T, D,, D_). Taking into account Proposition 2.3
end (4.1) we obtain that the scattering matriz of
{1,D,, D_] coincides with {J_, K, ,5(+)}.n

Theorem 4.1 implies the following
Corollary 4.2. Let {J{"_, J(+,S(t)} be a strongly measurable
contraction-valued function. If the adjoint function
{Jr+, X_,s(t)*] is an analyticel one and admits. a Dar-
lington synthesis, then {JV'__, )(+,S(1;)} cen be regarded
as the scattering matrix of an orthogonal dissipative
Lax~Phillips scattering theory.
Proof. Using the considerations of Theorem 4.1 it remains .
to show that the subspaces o’O_P = Hz(Jf+) end JO_ =
= s'(LZ(J(_) @HZ(J(_)) are orthogonal. But this is obvious
in virtue of the analyticity of {Jf_*,ff_,S(t)*}. B

5. Analytically unitary synthesis and the solution of

C.Foias

An obvious consequence of Theorem 4.1 1s the following

Propogition 5.1. The strongly measurable contraction-va-

lved function {JN _, ){'+,S(t)] can be regarded as the scat-

17



tering matrix of a dissipative Lax-Phillips scattering
theory if and only if there exist analytical contraction-~
valued functions {&, ¥_,ctx )}, {Jf+,;l,*,c*(>\ )} and

{-.L - B(x )} such that the relations ’

(5.1) 1= 0GB 4 g ethro, (MY,
(5.2) 0= 8etho(ety 4 ¢, (e*)s(t),
(5.3) I = o(eltyo(ett)* 4+ s(6)¥se8)

and "
(5.4)  I= 0(etN)*0(e!t) & celty¥o(elty,
(5.5 ) 0 = c,(e*)* B (elt) + s(t)c(elty,

(5.6 ) I =c (e (el 4 set)s(t)*

are fulfilled for a.e. t €[0,23). "

Proof. Let { W _, JQ_,S(t)} be the scattering matrix of a
dissipative Lax-Phillips scattering theory. Then on
account of Theorem 3.3 there are analytical functions

L wocO0], [N, 2,00 )Y ana {L, 4,0 (M) suen
that (4.1) forms a unitary-valued function. Consequently,

we have S'(t)*s'(t) =1 ' veey®
1,@u_ ond SHNSTOT = Ty g )

for a.e. t€[0,2W ). But these relations imply (5,1) -
(5.6).

Conversely, if there are analytical contraction-va-

18

-

lued functions such that (5.1) - (5.6) are fulfilled, then
we easily check, that the operator-valued function

{:f,*@) N L, 4L e Jf+,S'(t)} performed in sccordance with
(4.1) 1s a unitary-valued one. Taking into account

Theorem 4.1 we complete the proof. B

" Proposition 5.1 immediatly yields Proposition 4,
Proposition 5 and Proposition 6 of C.Foias [4}. In order
to show Proposition 4 and Proposition 5 of [4] we intro-
duce the canonical and % ~canonical factorizations of the
analytical contraction-valued functions {Jf+, 4, ,C.(x)]
and {_:{,, H_,C(n )}, reapectively. Ve set C*(X Y = (X))
B, (X)) and C(X) = B(X)OUN), where {W,P,,B, (%)} and
{P, \)\C,B()\ )} are outer and ¥-outer functions, respecti-
vely, and {P*,&#,B()\ )} and {_B(, ,P, OL( X )} are inner and
#-inner functions, respectively. Taking into account these
factorizations we obtain that (5.3) and (5.6) imply (@)
end (f3,) of Proposition 4 of [4]. Introducing in eccor-
dance with (5.4.1) and (5'.4.7) of [4] the contraction-va-
lued function {P'P*’sred(t)} and using (5.5) we get

(5.7 ) 0 = Ds(t)ﬂc{w*(t)%(eit)* B(elty 4
+ s(H)w(t)0(et?)]

for s.e. t€[0,2% ). Because of S(t)(ima(DS(t)))" <

c (ima(DS(t)g))_ for a.e. t€[0,27 ) we obtain

(5.8 ) 0= w, (1) BIN)* ety & s(t)w (t)0L(el?)

.19



- *
for n.e. t €£[0,2% ). On account of u&(t) LU*(t) = IP

®

and m(eit)m-(eit)* = Ip for a.e t €10,2) we find

(1) = -Belty* g (eItyouetty®

(5.9 ) Sred
for g.e., t £[0,2X), which implies (5.5.3) of [ 4]. The
relation (5.5.4) follows from (5.1) and (5.4). It was
pointed out in section 6.6 of [4] that the condition
(5.5.1) is redundent, since (5.5.1) is & consequence of
() of {4].

To prove Proposition 6 of [4] it is sufficient to
show that under the asswmptions of Proposition 6 of [4]
there exist analytical contraction-valued functions
(2, w,e00), LW, g0 ) ana {2, %,,8 (0]
such that the relations (5.1) - (5.6) of Proposition 5.1
are. fulfilled. Lecause {iJ,:L*, 9A()\)} is given by Pro-
position 6 of [4] it remains to define {d,,JT_,C(x )}
and {Jf+, E N 3. we set

(5.10) € (XN) = =B(X)B ()
and
{5.11) C(X) = B(X)a(XN),,

yeizé Q: 1z < 1}. Because of ([3) and ( @*) of [4]
we obtain (5.3) and (5.6)., From (5.5.3) of [4] we get

(5.12) B0 (e oelt) = w ) sy wt)

20

e e e, S

for a.e. t €[0,23 ). Multiplying on the right by B(et®)™

we find
1t % 1t 1ty% _ * o ,
(5.13) Be )"0 (e )C(em") = W (1) 8(£)Dg 4
from which we conclude
(5.14) Bl 8etto(elt)” = B M504)
for a.e. t €[0,2%). But (5.14) yields
(5.15) B (eIt T (elt)* B (elt)o (el = -¢, (e*¥)s(t)
for a.e. t £[0,2X). On account of (5.5.4) of 4] we find
0 (e}t ) ker (B (e1)*) ¢ ker(Ou(el®)) for a.e. t €[0,2T).
Using this conclusion we obtain (5.2) from (5.15).
Similarly, we prove (5.5).
It remains to show (5.1) and (5.4). Teking into

account (5.5.4) Jf [4] we find
(5.16)  B(erH*B (elt) 0 (el B (elt) -

D (et 0 (elt) el o(el?) B (eIt R(elt)
for a.e. t €[0,2W ). By virtue of (5.5.3) of [4] we get
(5.17) B(el B 0 (eit) 9 (elt)* B(elt) -

W, (8)s(EIw (B w (67 5 (6w, (1)

2]



for a.e. t&[0,2% ). On account of (5.4.1) of [4] we

conclude

(5.18) Bt Belh) B(elt Reelt) = | :
W (£ 5(£)8(£* w, (¢)

for a.e. t €[0,2% ). But (5.18) and {5.4.1) of [4] iﬁply

(5.19)  BeM* (el Bt B(et) + B, (B, (1) -
w ¥ {se)s(e)* + p2 W lw ) = 1

for am.e. t €[0,2W ), Hence we find

(5200 BAH BN 1t Bt BeltS
c*(eit)c*(eit)*

for a.e. t €[0,2X ). Taking into account (5.5.4) of [4]

it is not hard to see that (5.20) implies (5.1). Similarly,

we prove (5.4).

In such a way we have seen that the conditions (ﬂ ),
(34)» (5.5.2), (5.5.3) and (5.5.4) of [4] are equivalent
to the assumptions of Proposition 5.1. Using the notion
of analytically unitary synthesis this means that the
conditions (P)), (p*), (5.5.2), (5.5.3) and (5.5.4)

are equivalent to the existence of an analytically unitary
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synthooio of tho oirongly measurable contraction-valued
function {uV;,~Xl,S(t)#}. Hence if {Jﬁ+,Jr_,s(tf} is

an analytioal oontrnotion-valued function, then these
conditions aro oquivalont to the existence of a Darling-
ton synthesis of {JF+,JV;,S(t)*}. The Darlington synthesis
is porformod by (5.10), (5.11) and (3.16).
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