ОбъедИненный ИНСТИTYT ядерных исследований
 дубна

E5-87-330

H.Neidhardt

ON THE DISSIPATIVE LAX - PHILLIPS SCATTERING THEORY

Submitted to ''Journal of Mathematical
Analysis and Applications"

1. Introduction

In [4] C. Foias characterizes all possible scattering matrices occurring in the abstract fromework of a dissipative Lax-Phillips scattering theory developed in [6]. The aim of this paper is to continue the investigation of the scattering matrix using a quite different approach to this object. The now approach forces a generalization of the notion of Darlington synthesis as defined in [3] to the case that the contraction-valued function is not an analytical one. Tris generalized notion which in the paper is called an analytically unitary synthesis of a contraction-valued function reduces to the notion of Darlington synthesis if the operator-valued function is an analytical one. Using this notion we find that a strongly measurable contractionvalued function can be regarded as the scattering matrix of a dissipative Lax-Phillips scattering theory if and only if the adjoint contraction-valued function admits an analytically unitary synthesis. Moreover, taking into account the above mentioned relation to the Darlington synthesis we find that a contraction-valued function arises from an orthogonal dissipative Lax-Phillips scattering theory if and only if the adjoint contrac-tion-valued function is an analytical one and possesses a Darlington synthesis.

From this point of view the conditions $(\beta),\left(\beta_{3}\right)$, (5.5.1) - (5.5.4) of C.Foias [4] characterizing the set of occurring scattering matrices in a necessary and sufficient manner are equivalent to the property that the adjoint
contraction-valued function has an analytically unitary synthesis. If the adjoint function is an analytical one this means that $(\beta),\left(\beta_{*}\right),(5.5 .1)-(5.5 .4)$ of $[4]$ are necessary and sufficient conditions to guarantee the existence of a Darlington synthesis. At the end of this paper we give a direct proof of these conclusions.

Moreover, we believe that the present approach has the advantage of a great simplicity and transparency. Especially, this transparency appears in the reconstruction theorem which is based on the well-known and widely investigated reconstruction theorem of a concorvative Lax-Phillips scattering theory $[1,2,6]$.

In accordance with [4] we use a discret Lax-Phillips framework. For the convenience of the reader we repeat the assumptions of the dissipative Lax-Phillips scattering theory in a discret framork. A triplet $\left\{T, \mathcal{D}_{+}, D_{-}\right\}$ consisting of a contraction T on a separable Hilbert space \mathcal{H} and two subspaces $\mathscr{D}_{ \pm}$of H is called a dissipative Lex-Phillips scattering theory if the following assumptions are fulfilled.
(h1) $T \mathcal{D}_{+} \subseteq D_{+}, T D_{-} \subseteq D_{-}$,
(h2) $T r D_{+}$and $T * r D_{-}$are isometries,
(h3) $\bigcap_{n \in \mathbb{Z}_{+}} T^{n} \mathscr{D}_{+}=\{0\}=\bigcap_{n \in \mathbb{Z}_{+}} T^{* n} \mathbb{D}_{-}$,
(h4) $P_{\mathcal{H} \Theta D_{+}}^{\mathcal{H}} T^{n} \rightarrow 0, P_{\notin \in D_{-}}^{\mathcal{H}} T^{* n} \rightarrow 0$ strongly for $n \rightarrow+\infty$.
Let U on \mathcal{K} be the minimal unitary dilation of T. Let
(1.1)

$$
\mathcal{X}_{ \pm}=\bigvee_{n \in \mathbb{Z}} U^{n} \mathbb{D}_{ \pm}
$$

Obviously, the subspaces $\mathscr{H}_{ \pm}$reduce the operator U. We set
(1.2) $\quad \mathrm{U}_{ \pm}=\mathrm{Ur} \mathrm{H}_{ \pm}$.

The wave operators $W_{ \pm}$are defined by
(1.3) $\quad W_{-}=\underset{n \rightarrow+\infty}{s-\lim ^{n}} T^{n} P_{D_{-}}^{P} U_{-}^{* n}$
and

The scattering operator S,
(1.5) $\quad S=W_{+}^{*} W_{-}$,
acte from \mathcal{F}_{-}intc $\mathcal{F}_{\dot{\boldsymbol{r}}}$. The operators $U_{ \pm}$are bilateral shifts. Transforming these operators into their Fourior representations we find that in these representations the scattering operator S acta as a multiplication operator with a strongly measurable contraction-valued function which is called the scattering matrix of the dissipative Lax-Phillips scattering theory.

2. Conservative and nonconservative Lax-Phillips scat-

 tering theoryWe say the triplet $\left\{T, D_{+}, \mathcal{D}_{-}\right\}$forms a conservative LaxPhillips scattering theory [5] demanding in addition to (h1) - (h4) that T is a unitary operator. Usually, in
this case the condition (h4) is replaced by
(2.1) $\quad V_{n \in \mathbb{Z}} T^{n} \mathscr{D}_{ \pm}=\nVdash$,
but it is not hard to see that (h4) and (2.1) are equivalent provided I is a unitary operator. Definition 2.1. Let $\left\{T, D_{+}, D_{-m}\right\}$ be a dissipative LaxPhillips scattering theory. If there exists a unitary operator U on $\mathcal{H} \supset \nVdash$ as well as orthogonal incoming and outgoing subspaces G_{-}and G_{+}of U such that the conditions

and
(2.3) $\quad K_{1}=G_{+} \oplus H \oplus G_{-}$
are fulfililed and $\left\{U, D_{+}^{\prime}, D_{-}^{\prime}\right\}, D_{ \pm}^{\prime}=D_{ \pm} \oplus G_{ \pm}$, forms a conservative Lax-Phillips scattering theory, then we call $\left\{U, D_{+}^{+}, D_{-}^{?}\right\}$, a conservative extension of $\left\{T, D_{+}, D_{-}\right\}$. Proposition 2.2. Every dissipative Lax-Phillips scattering theory $\left\{T, D_{+}, D_{-}\right\}$has a conservative extension. Proof. Let U be the minimal unitary dilation of T on \mathbb{K}. Obviously, the condition (2.2) is fulfilled. We introduce the wandering subspaces $\mathscr{X}=((U-T) \not \mathscr{X})^{-}$and $\mathscr{L}_{*}=$ $=((I-U T *) d e)^{-}$in accordance with [7]. We set
(2.4) $\quad G_{+}=M_{+}(\mathscr{L})$
(2.5)

$$
G_{-}=M\left(\mathcal{L}_{*}\right) \cdot{ }^{\bullet} M_{+}\left(\mathcal{L}_{*}\right) .
$$

Taking into account the structure of a mininal unitary dilation we get
(2.6) \quad 거N $=G_{+} \oplus \partial P \oplus G_{-}$.

Obviously, G_{+}and G_{-}are outgoing and incoming subspaces of U.

Defining now the subspaces $\mathcal{D}_{ \pm}^{\prime}$ in accordance with Definition 2.1 the triplet $\left\{U, D_{+}^{\prime}, D_{-}^{*}\right\}$ forms a conservative Lex-Phillips scattering theory if we establish the relation
(2.7) $\quad K=V_{n \in \mathbb{Z}} U^{n} D_{ \pm}$.

But taking into account Lemma 3 of [4] we get
(2.8) $\quad \nVdash \mathscr{X}_{+} \oplus M(\mathscr{L})=V_{n \in \mathbb{Z}}^{V} U^{n} D_{+}^{\prime}$
and
(2.9)

$$
\mathbb{H}=\mathscr{H}_{-} \oplus \operatorname{M}\left(\mathcal{L}_{*}\right)=V_{n \in \mathbb{Z}} U^{n} D^{\prime}
$$

which completes the proof.
Let $\left\{U, D_{+}, D_{-1}\right\}$ be a conservative extension of the dissipative Lax-Phillips scattering theory $\left\{T, D_{+}, D_{-}\right\}$. Taking into account Definition 2.1 it is not hard to see that U is a unitary dilation of T.

Using this remerk ve obtain the invariance of the subspaces D_{+}and D_{-}with respect to U and $U *$, respectively. Hence there are wandering subspaces $\mathcal{N}_{ \pm} \subseteq \mathcal{D}_{ \pm}$ with respect to U such that
(2.10)

$$
D_{+}=M_{+}\left(r_{+}\right)
$$

(2.17)

$$
D_{-}=\operatorname{Mi}\left(\mathscr{r}_{-}\right) \Theta M_{+}\left(\mathscr{N}_{-}\right)
$$

and
(2.12)

$$
Z_{ \pm}=1 n\left(\mathcal{N}_{ \pm}\right)
$$

Denoting by \mathcal{L} and \mathscr{L}_{*} the wandering subspaces of the outgoing and incoming subspaces G_{+}and G_{-}, respectively,

$$
\begin{equation*}
G_{+}=N_{+}(\mathcal{L}) \tag{2.13}
\end{equation*}
$$

and
(2.14)

$$
G_{-}=M\left(\mathcal{L}_{\infty}\right) \Theta M_{+}\left(\mathscr{L}_{m}\right)
$$

it is not hard to see that the subspaces
(2.15) $\quad Q_{+}=\mathcal{X}_{+} \oplus \mathcal{L}$ and $Q_{-}=\mathcal{N}_{-} \oplus \mathcal{L}_{*}$
are elso wandering subspaces obeying
(2.16)

$$
\partial_{t}^{\prime}=M_{+}\left(Q_{+}\right)
$$

and
(2.17)

$$
D_{-}^{\prime}=M\left(Q_{-}\right) \Theta M_{+}\left(Q_{-}\right)
$$

Because $\left\{U, D_{+}^{\prime}, D_{-}^{\prime}\right\}$ forms a conservative Lax-Phillips scattering theory we get
(2.18) $\quad M=M\left(Q_{ \pm}\right)$.

If $\phi_{ \pm}$denotes the Fourier transformation corresponding to the wandering subspaces $Q_{ \pm}$we find
(2.19) $\quad \phi_{+}^{\prime} D_{+}^{\prime}=H^{2}\left(Q_{+}\right)$
and
(2.20)

$$
\phi_{-} D_{-}^{\prime}=L^{2}\left(Q_{-}\right) \Theta H^{2}\left(Q_{-}\right)
$$

Moreover, we have

(2.21)	$\phi_{+}^{\prime} \cdot D_{+}=H^{2}\left(X_{+}\right)$,
(2.22)	$\phi_{+}^{\prime}{ }_{+}{ }_{+}=H^{2}(\mathscr{L})$
and	
(2.23)	$\phi_{-}^{\prime} D_{-}=L^{2}\left(X_{-}\right) \Theta H^{2}\left(X_{-}\right)$,
(2.24)	$\phi_{-}^{\prime} G_{-}=L^{2}\left(\mathcal{X}_{*}\right) \Theta H^{2}\left(\mathcal{X}_{*}\right)$.

(2.24)

Let S ' be the scattering operator of the conservative extension of $\left\{T, D_{\gamma}, D_{-}\right\}$. The operator $\phi_{+}^{\prime} S^{\prime} \phi_{-}^{-1}$ acts as a multiplication operator with a strongly measurable function $\left\{Q_{-}, Q_{+}, S^{\prime}(t)\right\}$, velues of which are isometries from Q_{-}onto Q_{+}(conservative Lax-Phillips scattering theory!). Usually, this unitary-valued function is called the seattering matrix of the conservative Lax-Phillips scattering theory $\left\{\mathrm{U}, \mathbb{D}_{+}^{\prime}, D_{-}^{\prime}\right\}$.

Proposition 2.3. Let $\left\{\mathcal{H}_{-}, \mathcal{N}_{+}, S(t)\right\}$ be the scattering matrix yielded by a dissipative Lax-Phillips scattering theory $\left\{T, D_{+}, D_{-}\right\}$. If $\left\{Q_{-}, Q_{+}, S^{\prime}(t)\right\}$ denotes the scattering matrix of the conservative extension of $\left\{T, D_{+}, D_{-}\right\}$, then both scattering matrices are related by
(2.25) $\quad S(t)=P_{r_{+}}^{Q_{+}} S^{\prime}(t) \upharpoonright \mathcal{N}_{-}$,
$t \in[0,2 \pi)$ a.e..

Proof. Let $W_{ \pm}^{\prime}$ be the wave operators of the conservative extension defined by

$$
\begin{equation*}
W_{ \pm}^{\prime}=\underset{n \rightarrow \pm \infty}{s-\lim . U^{-n}} P_{D_{ \pm}^{\prime}}^{X} U^{n} . \tag{2.26}
\end{equation*}
$$

Obviously, we have

which implies
(2.28) $P_{\gamma_{+}}^{H} S T r \mathcal{F}_{-}=s$.

But (2.28) immediately yields (2.25).
In such a way Proposition 2.3 shors us that every scattering matrix of a dissipative Lex-Phillips scattering theory can be regarded as the compression of the scattering matrix of its conservative extension.
3. Scattering matrix and analytically unitary synthesis Every strongly measurable contraction-valued function can be dilated to a strongly measurable unitary-valued function. Further, it is well-known that every strongly measurable unitary-valued function can be regarded as the scattering matrix of a conservative Lax-Phillips scattering theory. Hence the conjecture seems to be true that in virtue of Proposition 2.3 every strongly measurable contraction-valued function can be thought as the scattering matrix of a dissipative Lax-Phillips scattering theory. But this conjecture is false. The point is that the scattering matrix of a conservative extension obeys some additional properties description of which is the contents of the following
Proposition 3.1. $\operatorname{Let}\left\{U, D_{+}^{\prime}, D_{I}^{\prime}\right\}$ be a conservative extension of the dissipative Lax-Phillips scattering theory $\left\{T, D_{+}, D_{-}\right\}$. If $\left\{Q_{-}, Q_{+}, S^{\prime}(t)\right\}$ denotes the scattering matrix of $\left\{U, D_{+}^{\prime}, D_{-}^{!}\right\}$, then the contraction-valued functions $\left\{\mathcal{L}_{1}, Q_{-}, S^{\prime}(t)^{*} \Gamma \mathcal{L}\right\}$ and $\left\{Q_{+}, \mathcal{L}_{*}, P_{\mathcal{L}_{*}}^{Q_{-}} S^{\prime}(t)^{*}\right\}$ are analytic ones. Moreover, if U is a minimal unitary dilation
of T, then the analytic contraction-valued function $\left\{\mathcal{L}, \mathcal{L}_{*}, \theta(\lambda)\right\}$ defined by
(3.1) $\quad \theta\left(\mathrm{e}^{i t}\right)=P_{\mathcal{L}_{*}^{Q}}^{S_{*}} S^{\prime}(t)^{*} \Gamma \mathcal{L}$
for ε.e. $t \in[0,2 \pi)$ coincides with the characteristic function of T.

Proof. Taking into account the definition of the wave and scattering operators we find
(3.2) $\quad P_{G_{+}}^{K} S^{\prime} \Gamma D_{-}^{\prime}=P_{G_{+}}^{K} r D_{-}=0$.

But (3.2) yields
(3.3) $S^{\prime}(t) f(t) \perp H^{2}(\mathcal{L})$
for every $f \in L^{2}\left(Q_{-}\right) \Theta H^{2}\left(Q_{-}\right)$. Hence we obtain
(3.4) $\quad S^{\prime}(t)^{*} f(t) \perp L^{2}\left(Q_{-}\right) \Theta H^{2}\left(Q_{-}\right)$
for every $f \in H^{2}(\mathcal{L})$. Consequently, $\left\{\mathscr{L}, Q_{-}, S^{\prime}(t) * \mathcal{L}\right\}$
forms an analytical contraction-valued function.
Using the relation
(3.5) $\quad P_{G_{-}}^{\Psi} S^{*} M D_{+}^{\prime}=0$
we similarly conclude that $\left\{Q_{+}, \mathcal{L}_{w_{n}}, P_{\mathcal{L}_{-}}^{Q_{n}} S^{\prime}(t)^{*}\right\}$ is an analytical contraction-valued function.

To prove the remaining part of the proposition we
remark that the triplet $\left\{U, G_{+}, G_{-}\right\}$forms another kind of nonconservative Lax-Phillips scattering theory which is usually called a Lax-Phillips scattering theory with losses. This scattering theory is an orthogonal one which in distinction from the conservative scattering theory does not fulfil the completeness condition (2.1). The wave operators $\widetilde{w}_{ \pm}$of this scattering theory with losses are defined by
(3.6) $\quad \tilde{W}_{ \pm}=\underset{n \rightarrow \pm \infty}{\operatorname{s-lim}} U^{-n} P_{G_{ \pm}}^{H} U^{n}$.

Obviously, we have
(3.7) $\quad \widetilde{W}_{ \pm}=W_{ \pm} \upharpoonright G_{ \pm}$.

Hence the scattering operator $\widetilde{S}=\tilde{W}_{+}^{+} \tilde{W}_{-}$admits the representation
(3.8) $\quad \widetilde{S}=P_{G_{+}}^{x} S^{\prime r G_{-}}$.

Taking into account the incoming and outgoing spectral representations given by (2.22) and (2.24) we obtain
(3.9) $\quad \widetilde{S}(t)=P_{\mathscr{L}}^{+} S^{\prime}(t) r \mathcal{L}_{\hbar}$,
where $\left\{\mathcal{L}_{\infty}, \mathcal{L}, \tilde{s}(t)\right\}$ denotes the scattering matrix of $\left\{U, G_{+}, G_{-}\right\}$. But it is well-known [1] that by virtue of the minimality of U this scattering matrix coincides with the adjoint characteristic function $\left\{\mathcal{L}_{*}, \mathcal{L}, \theta_{T}(\lambda)^{*}\right\}$ of T, i.e.

$$
\widetilde{S}(t)=\theta_{T}\left(e^{i t}\right)^{*}
$$

for a.e. $t \in[0,2 \pi)$.
On the basis of Proposition 3.1 the introduction of the following definition seems to be useful.

Definition 3.2. Let $\left\{g_{0}, \mathscr{f}_{0}, R(t)\right\}$ be a strongly measurable operator-valued function values of which are contractions acting from the separable Hilbert space ofo into the separable Hilbert space \mathcal{y}_{0}. We say $\left\{g_{0}, \mathcal{f}_{0}, R(t)\right\}$ admits an analytically unitary synthesis if there exist three analytical contraction-valued functions $\left\{g_{1}, \xi_{0}, z(\lambda)\right\}$, $\left\{g_{0}, y_{1}, x(\lambda)\right\}$ and $\left\{g_{1}, y_{1}, x(\lambda)\right\}$, where g_{1} and $y_{y_{1}}$ are separable Hilbert spaces, such that the contraction-valued function $R^{\prime}(t)$,
(3.11) $\quad R^{\prime}(t)=\left(\begin{array}{ll}X\left(e^{i t}\right) & x\left(e^{i t}\right) \\ & \\ z\left(e^{i t}\right) & R(t)\end{array}\right): \begin{array}{lll}y_{1} & y_{1} \\ \oplus & \longrightarrow \oplus \\ y_{0} & y_{0}\end{array}$,
forms a unitary-valued function for a.e. $t \in[0,2 \pi)$.
We remark that if $\left\{g_{0}, y_{0}, R(t)\right\}$ is also an analytical function, then Definition 3.2 coincides with the definition of the Darlington synthesis given in [3].

Now Proposition 3.1 can be formulated as follows. Theorem3.3. Let $\left\{\mathcal{K}_{-}, \mathcal{N}_{+}, S(t)\right\}$ be the scatitering matrix of a dissipative Lax-Phillips scattering theory. Then the adjoint contraction-valued function $\left\{\mathcal{N}_{+}, \mathcal{N}_{-}, S(t)^{*}\right\}$ admits an analytically unitary synthesis.

Proof. By $\left\{Q_{-}, Q_{+}, S^{\prime}(t)\right\}$ we denote the scattering matrix of a conservative extension. Taking into account (2.25) and (3.1) we obtain
(3.12) $S^{(t)^{*}}=P_{\mathcal{X}_{-}}^{Q_{-}} S^{\prime}(t)^{m} \Gamma \mathcal{N}_{+}$
and

$$
\begin{equation*}
\theta\left(e^{i t}\right)=P_{\mathcal{L}_{*}}^{Q_{-}} s^{\prime}(t)^{*} r \mathcal{L} \tag{3.13}
\end{equation*}
$$

for a.e. $t \in[0,2 \pi)$. Further we set

$$
\begin{equation*}
C\left(e^{i t}\right)=P_{\mathcal{N}_{-}}^{Q} S^{\prime}(t)^{*} \Gamma \mathcal{Z} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{*}\left(e^{i t}\right)=P_{L_{*}}^{Q} S^{\prime}(t)^{*} T \mathcal{N}_{+}, \tag{3.15}
\end{equation*}
$$

$t \in[0,2 \pi)$ a.e.. Because of Proposition 3.1 the contrac-tion-valued functions $\left\{\mathcal{L}, \mathcal{N}_{-}, c(\lambda)\right\}$ and $\left\{\mathcal{V}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\right\}$ are analytical ones. Consequently, the block-matrix representation

$$
S^{\prime}(t)^{*}=\left[\begin{array}{ll}
\theta\left(e^{i t}\right) & c_{*}\left(e^{i t}\right) \tag{3.16}\\
& \\
c\left(e^{i t}\right) & \left.S_{(t}\right)^{*}
\end{array}\right] \begin{array}{ll}
\mathcal{L} & \mathcal{L}_{*} \\
: \oplus & \mathscr{N}_{+} \\
& 1
\end{array} \mathcal{N}_{-}
$$

defines an analytically unitary synthesis of the adjoint contraction-valued function $\left\{\mathcal{N}_{+}, \mathcal{K}_{-}, S(t)^{*}\right\}$. 图

Conṣidering now an orthogonal dissipative LaxPhillips scattering theory ($\mathscr{D}_{+} \perp \mathcal{D}_{-}$) we obtain the following
Corollary 3.4. Let $\left\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\right\}$ be the scattering matrix yielded by an orthogonal dissipative Lax-Phillips scattering theory. Then the adjoint scattering matrix $\left\{\mathcal{r}_{+}, \mathscr{r}_{-}, S(t)^{*}\right\}$ is an analytical contraction-valued function, which admits a Darlington synthesis.
Proof. Because of the orthogonality we find that the conservative extension is an orthogonal conservative LaxPhillips scattering theory ($D_{+}^{\prime} \perp \mathcal{D}_{-}^{\prime}$). But this implies that the adjoint scattering matrix $\left\{Q_{+}, Q_{-}, S^{\prime}(t)^{*}\right\}$ of the conservative extension is an inner function of both sides. Applying Proposition 2.3 we complete the proof.

4. Reconstruction

Our next aim is to prove the converse to Theorem 3.3. Theorem 4.1。Let $\left\{\mathscr{r}_{-}, \mathcal{N}_{+}, S(t)\right\}$ be a strongly measurable contraction-valued function. If the adjoint function $\left\{\mathscr{X}_{+}, \mathcal{X}_{-}, S(t)^{*}\right\}$ admits an analytically unitary synthesis, then $\left\{\mathcal{r}_{-}, \mathcal{N}_{+}, S(t)\right\}$ can be regarded as the scattering matrix of a dissipative Lax-Phillips scattering theory.
Proof. In accordance with our assumptions we suppose that are separable Hilbert spaces \mathcal{L} and \mathcal{L}_{n} as well as analytical contraction-valued functions $\left\{\dot{\mathcal{L}}, \mathcal{L}_{\star}, \theta(\lambda)\right\}$, $\left\{\mathcal{N}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\right\}$ and $\left\{\mathscr{L}^{\prime}, \mathcal{N}_{-}, C(\lambda)\right\}$ such that (3.16) de-
fines an analytically unitary synthesis of $\left\{\mathcal{N}_{+}, \mathcal{N}_{-}, \mathrm{S}(\mathrm{t})^{*}\right\}$. With the help of the unitary-valued function $\left\{Q_{-}, Q_{+}, S^{\prime}(t)\right\}, Q_{-}=\mathcal{N}_{-} \oplus \mathcal{L}_{*}$ and $Q_{+}=\mathcal{N}_{+} \oplus \mathscr{L}$,

$$
S^{\prime}(t)=\left(\left.\begin{array}{ll}
\theta\left(e^{i t}\right)^{*} & c\left(e^{i t}\right)^{*} \tag{4.1}\\
& \mathscr{L}_{*} \\
C_{*}\left(\mathrm{e}^{\mathrm{it}}\right)^{*} & \mathrm{~S}(\mathrm{t})
\end{array} \right\rvert\, \begin{array}{ll}
\mathscr{L} \\
: \oplus & \mathcal{N}_{-} \\
\mathcal{N}_{+}
\end{array}\right.
$$

we construct a conservative Lex-Phillips scattering theory in the following way. We set $H \quad=L^{2}\left(Q_{+}\right), D_{+}^{\prime}=H^{2}\left(Q_{+}\right)$ and $D_{-}=S^{\prime}\left(L^{2}\left(Q_{-}\right) \Theta H^{2}\left(Q_{-}\right)\right)$, where S^{\prime} denotes the multiplication operator from $\mathrm{L}^{2}\left(Q_{-}\right)$into $\mathrm{L}^{2}\left(Q_{+}\right)$induced by the unitary-valued function $\left\{Q_{-}, Q_{+}, S^{\prime}(t)\right\}$. Denoting by U the multiplication operator induced by $e^{i t}$ on $\mathcal{K}=L^{2}\left(Q_{+}\right)$, It is not hard to see that the triplet $\left\{U, D_{+}^{\prime}, D_{1}\right\}$ forms a conservative Lax-Phillips scattering theory scattering matrix of which coincides with $\left\{Q_{-}, Q_{+}, S^{\prime}(t)\right\}$.

Next we define the contraction T. To this end we introduce the subspaces $G_{+}=H^{2}(\mathscr{L})$ and $G_{-}=S^{\prime}\left(L^{2}(\mathscr{L}, *) \Theta\right.$ $\left.\Theta H^{2}\left(\mathscr{L}_{k}\right)\right)$. Taking into account the properties of the analytically unitary synthesis (4.1) we find that the subspaces G_{+}and G_{-}are orthogonal, i.e. $G_{+} \perp G_{-}$. horeover, the subspaces G_{+}and G_{-}are invariant with respect to U and U^{*}, respectively. Consequently, introducing the subspace $\mathscr{H}=\mathbb{W} \Theta\left(G_{+} \oplus G_{-}\right)$the relation
(4.2) $\quad T=P_{X}^{H} U \Gamma X$
defines a contraction on He The operator U is a unitary dilation of T.

The following aim is to define the invariant subspaces D_{+}and D_{-}. We set $\mathcal{D}_{+}=H^{2}\left(\mathscr{X}_{+}\right)$and $D_{-}=$ $=S^{\prime}\left(L^{2}\left(\mathcal{N}_{-}\right) \Theta H^{2}\left(\mathcal{N}_{-}\right)\right)$. Obviously, we have $D_{+} \perp G_{+}$and
$\mathcal{D}_{+} \perp G_{-}$which impiies $D_{+} \subseteq$ 刑. Similarly, we obtein $D_{-} \perp G_{-}$and $D_{-} 1 G_{+}$which implies $D_{-} \subseteq \mathscr{H}$.

Further we show that $\left\{T, D_{+}, D_{-}\right\}$forms a dissipative Lax-Phillips scattering theory. Obviously, the subspaces D_{+}and D_{-}are invariant with respect to U and U^{*}, respectively. But this implies the invariance of D_{+}and $D_{\text {_ }}$ with respect to T and T^{*}, respectively. Moreover, we get $T P D_{+}=U P D_{+}$and $T * \Gamma D_{-}=U^{*} P D_{-}$. But this implies (h2) and (h3).

To prove (h4) we" note the relation

$$
(4.3) \quad Y_{K}=L^{2}\left(\mathscr{K}_{+}\right) \oplus L^{2}(\mathscr{L})=
$$

$$
=V_{n \in \mathbb{Z}}^{V} U^{n} D_{+} \oplus \underset{n \in \mathbb{Z}}{V} U^{n_{G}}
$$

Now for every $\dot{m} \in \mathbb{Z}$ End every $f \in H^{2}\left(\mathcal{N}_{+}\right)$we find
(4.4) $\quad \operatorname{silm}_{n \rightarrow+\infty} P_{\partial i \in D_{+} K} U^{n} U^{m} f=0$,
which implies

$$
(4.5) \quad \underset{n \rightarrow+\infty}{s-\lim _{\mathcal{H}} P_{\mathcal{L}}^{\mathscr{L}} \mathcal{D}_{+} U^{n_{f}}=0}
$$

for every $f \in L^{2}\left(\mathcal{K}_{+}\right)$. Similarly, for every $m \in \mathbb{Z}$ and every $g \in H^{2}(\mathscr{L})$ we get

$$
\text { (4.6) } \operatorname{sim}_{n \rightarrow+\infty} \operatorname{P}_{\substack{K} \mathcal{D}_{+} U^{n} U^{n} g=0}
$$

But (4.6) yields

$$
(4.7) \quad \underset{n \rightarrow+\infty}{\operatorname{s-lim}} P^{\mathfrak{H}} \mathscr{H} \Theta D_{+} U^{n} g=0
$$

for every $g \in L^{2}(\mathcal{L})$. Consequentiy, taking into account (4.3), (4.5) and (4.7) we obtain $\underset{n \rightarrow+\infty}{\operatorname{s-lim} P^{W} \mathcal{X}_{+} D_{+}} U^{n_{h}}=0$ for every $h \in \mathcal{H}$. Hence we find $\underset{n \rightarrow+\infty}{s-\lim } P_{\mathcal{H} \Theta D_{+}}^{\not T^{n}}=0$.
Similarly, we prove $\operatorname{s-lim}_{n \rightarrow+\infty} P_{\partial \ell}^{\mu} \Theta_{-} r^{* n}=0$.
Obviously, the triplet $\left\{U, D_{+}^{+}, D_{-}^{\prime}\right\}$ is a conservative extension of the dissipative Lax-Phillips scattering theory $\left\{T, D_{+}, D_{-}\right\}$. Taking into account Proposition 2.3 and (4.1) we obtain that the scattering matrix of $\left\{T, D_{+}, D_{-}\right\}$coincides with $\left\{\mathcal{N}_{-}, \mathcal{H}_{+}, S(t)\right\}$.

Theorem 4.1 implies the following
Corollary 4.2. Let $\left\{\mathcal{K}_{-}, \mathcal{N}_{+}, S(t)\right\}$ be a strongly measurable contraction-valued function. If the adjoint function $\left\{\mathcal{N}_{+}, \mathcal{N}_{-}, S(t)^{*}\right\}$ is an analytical one and admits a Darlington synthesis, then $\left\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\right\}$ can be regarded as the scattering matrix of an orthogonal dissipative Lax-Phillips scettering theory.
Proof. Using the considerations of Theorem 4.1 it remains to show that the subspaces $D_{+}=H^{2}\left(\mathcal{N}_{+}\right)$and $\mathcal{D}_{-}=$
$=S^{\prime}\left(L^{2}\left(\mathcal{N}_{-}\right) \Theta H^{2}\left(\mathcal{N}_{-}\right)\right)$are orthogonal. But this is obvious in virtue of the analyticity of $\left\{\mathcal{N}_{+}, \mathcal{N}_{-}, S(t)^{*}\right\}$. \mathbb{a}

5. Analytically unitary synthesis and the solution of

C. Foias

An obvious consequence of Theorem 4.1 is the following Proposition 5.1. The strongly measurable contraction-vaIued function $\left\{\mathcal{r}_{-}, \mathscr{r}_{+}, S(t)\right\}$ can be regarded as the scat-
tering matrix of a dissipative Lax-Phillips scattering theory if and only if there exist analytical contractionvalued functions $\left\{\mathcal{L}, \mathscr{r}_{-}, c(\lambda)\right\},\left\{\mathscr{r}_{+}, \mathcal{L}_{*}, c_{*}(\lambda)\right\}$ and $\left\{\mathcal{L}, \mathcal{L}_{*}, \theta(\lambda)\right\}$ such that the relations
(5.1) $I=\theta\left(e^{i t}\right) \theta\left(e^{i t}\right)^{*}+C_{*}\left(e^{i t}\right) C_{*}\left(e^{i t}\right)^{*}$,
(5.2) $\quad 0=\theta\left(e^{i t}\right) C\left(e^{i t}\right)^{*}+C_{*}\left(e^{i t}\right) S(t)$,
(5.3) $\quad I=C\left(e^{i t}\right) C\left(e^{i t}\right)^{*}+S(t)^{*} S(t)$
and
\because
(5.4) $\quad I=\theta\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right)+C\left(e^{i t}\right)^{*} C\left(e^{i t}\right)$,
(5.5) $\quad 0=C_{*}\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right)+S(t) C\left(e^{i t}\right)$,
(5.6) $\quad I=C_{*}\left(e^{i t}\right)^{*} c_{*}\left(e^{i t}\right)+S(t) S(t)^{*}$
are fulfilled for a.e. $t \in[0,2 \pi)$.
Proof. Let $\left\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\right\}$ be the scattering matrix of a dissipative Lax-Phillips scattering theory. Then on account of Theorem 3.3 there are analytical functions $\left\{\mathcal{L}^{\prime}, \mathcal{N}_{-}, \mathrm{c}(\lambda)\right\},\left\{\mathcal{N}_{+}, \mathcal{L}_{*}, \mathrm{C}_{*}(\lambda)\right\}$ and $\left\{\mathcal{L}^{\prime}, \mathcal{L}_{*}, \theta(\lambda)\right\}$ such that (4.1) forms a unitary-valued function. Consequently, we have $S^{\prime}(t)^{*} S^{\prime}(t)=I_{\mathcal{L}_{*}} \oplus \mathcal{H}_{-}$and $S^{\prime}(t) S^{\prime}(t)^{*}=I_{\mathcal{L}} \oplus \mathcal{N}_{+}$. for a.e. $t \in[0,2 \pi)$. But these relations imply (5.1) (5.6).

Conversely, if there are analytical contraction-va-
lued functions such that (5.1) - (5.6) are fulfilled, then we easily check, that the operator-valued function $\left\{\mathcal{L}_{\star} \oplus \mathcal{N}_{\ldots}, \mathcal{L} \oplus \mathcal{N}_{+}, S^{\prime}(t)\right\}$ performed in accordance wi.th (4.1) is a unitary-valued one. Taking into account

Theorem 4.1 we complete the proof.

Proposition 5.1 immediatly yields Proposition 4, Proposition 5 and Proposition 6 of C.Foias [4]. In order to show Proposition 4 and Proposition 5 of [4] we introduce the canonical and *-canonical factorizations of the analytical contraction-valued functions $\left\{\mathcal{N}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\right\}$ and $\left\{\mathscr{L}, \mathcal{K}_{-}, C(\lambda)\right\}$, respectively. We set $C_{*}(\lambda)=J 3(\lambda)$. $B_{*}(\lambda)$ and $C(\lambda)=B(\lambda) O L(\lambda)$, where $\left\{\mathcal{N}_{+}, P_{*}, B_{*}(\lambda)\right\}$ and $\left\{P, \mathcal{N}_{-}, B(\lambda)\right\}$ are outer and $*$-outer functions, respectively, and $\left\{P_{*}, \mathscr{L}_{*}, B(\lambda)\right\}$ and $\{\mathscr{L}, P, O l(\lambda)\}$ are inner and *-inner functions, respectively. Taking into account these factorizations we obtain that (5.3) and (5.6) imply (β) and (β_{*}) of Proposition 4 of [4]. Introducing in accordance with (5.4.1) and (5.4.7) of [4] the contraction-valued function $\left\{P, P_{*}, S_{\text {red }}(t)\right\}$ and using (5.5) we get
(5.7) $\quad 0=D_{S(t)} *\left\{\omega_{*}(t) B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right)+\right.$

$$
\left.+s(t) \omega(t) \sigma\left(e^{i t}\right)\right\}
$$

for a.e. $t \in[0,2 \pi)$. Because of $S(t)\left(i m a\left(D_{S(t)}\right)\right)^{-} \subseteq$
\leq (ima $\left(D_{S(t)}\right)^{-}$for a.e. $t \in[0,2 \pi)$ we obtain
(5.8) $\quad 0=\omega_{*}(t) B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right)+S(t) \omega(t) O L\left(e^{i t}\right)$
for a.e. $t \in[0,2 \pi)$. On account of $\omega_{*}(t)^{*} \omega_{*}(t)=I_{P_{*}}$ and $O\left(e^{i t}\right) \sigma\left(e^{i t}\right)^{*}=I_{p}$ for a.e $t \in[0,2 \pi)$. we find
(5.9) $\quad S_{r e d}(t)=-B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) O\left(e^{i t}\right)^{*}$
for a.e. $t \in[0,2 \pi)$, which implies (5.5.3) of [4]. The rolation (5.5.4) follows from (5.1) and (5.4). It was pointed out in section 6.6 of [4] that the condition (5.5.1) is redundent, since (5.5.1) is a consequence of (β) of $[4]$.

To prove Proposition 6 of [4] it is sufficient to show that under the assumptions of Proposition 6 of [4] there exist analytical contraction-valued functions $\left\{\mathcal{L}, \mathscr{N}_{-}, c(\lambda)\right\},\left\{\mathscr{N}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\right\}$ and $\left\{\mathscr{L}, \mathscr{L}_{*}, \theta(\lambda)\right\}$ such that the relations (5.1) - (5.6) of Proposition 5.1 are. fulfilled. Decause $\left\{\mathcal{L}, \mathcal{L}_{*}, \theta(\lambda)\right\}$ is given by Proposition 6 of $[4]$ it remains to define $\left\{\mathcal{Z}_{2}, \mathcal{N}_{-}, C(\lambda)\right\}$ and $\left\{\mathcal{N}_{+}, \mathcal{Z}_{*}, C_{*}(\lambda)\right\}$. We set
(5.10) $\quad C_{k}(\lambda)=-B(\lambda) B_{k}(\lambda)$
and
(5.11) $\quad C(\lambda)=B(\lambda) G(\lambda)$,
$\lambda \in\{z \in \mathbb{C}:|z|<1\}$. Because of (β) and $\left(\beta_{*}\right)$ of $[4]$ we obtain (5.3) and (5.6). From (5.5.3) of [4] we get
(5.12)

$$
B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) \sigma\left(e^{i t}\right)=w_{*}(t)^{*} s(t) \omega(. t)
$$

for a.e. $t \in[0,2 \pi)$. Multiplying on the right by $B\left(e^{i t}\right)^{*}$ we find
(5.13)

$$
B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) C\left(e^{i t}\right)^{*}=w_{*}(t)^{*} S(t) D_{S(t)}
$$

from which we conclude
(5.14) $B\left(e^{i t}\right)^{*} \theta\left(e^{j . t}\right) C\left(e^{i t}\right)^{*}=B_{*}\left(e^{i t}\right) S(t)$
for a.e. $t \in[0,2 \pi)$. But (5.14) yields
(5.15) $B\left(e^{i t}\right) B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) C\left(e^{i t}\right)^{*}=-C_{*}\left(e^{i t}\right) S(t)$
for a.e. $t \in[0,2 \pi)$. On account of (5.5.4) of [4] we find $\theta\left(e^{i t}\right)^{*} \operatorname{ker}\left(\beta\left(e^{i t}\right)^{*}\right) \subseteq \operatorname{ker}\left(O\left(e^{i t}\right)\right)$ for a.e. $t \in[0,2 \pi)$. Using this conclusion we obtain (5.2) from (5.15). Similarly, we prove (5.5).

It remains to show (5.1) and (5.4). Taking into account (5.5.4) off [4] we find
(5.16) $B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) \theta\left(e^{i t}\right)^{*} B\left(e^{i t}\right)=$

$$
B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) O L\left(e^{i t}\right)^{*} O\left(e^{i t}\right) \theta\left(e^{i t}\right)^{*} B\left(e^{i t}\right)
$$

for a.e. $t \in[0,2 \pi)$. By virtue of (5.5.3) of [4] we get
(5.17) $B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) \theta\left(e^{i t}\right)^{*} B\left(e^{i t}\right)=$
$\omega_{*}(t)^{*} S(t) \omega(t) \omega(t)^{*} S(t)^{*} \omega_{*}(t)$
for a.e. $t \in[0,2 \pi)$. On account of (5.4.7) of [4] we conclude
(5.18) $B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) \theta\left(e^{i t}\right)^{*} B\left(e^{i t}\right)=$

$$
w_{*}(t)^{*} S(t) S(t)^{*} w_{*}(t)
$$

for a.e. $t \in[0,2 \pi)$. But (5.18) and (5.4.1) of [4] imply

$$
\begin{align*}
& B\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) \theta\left(e^{i t}\right)^{*} B\left(e^{i t}\right)+B_{*}\left(e^{i t}\right) B_{*}\left(e^{i t}\right)^{*}= \tag{5.19}\\
& \omega_{*}(t)^{*}\left\{S(t) S(t)^{*}+D_{S}^{2}(t)^{*}\right\} \omega_{*}(t)=I
\end{align*}
$$

for a.e. $t \in[0,2 \pi)$. Hence we find

$$
\begin{equation*}
B\left(e^{i t}\right) B\left(e^{i t}\right)^{*} D^{2} \theta\left(e^{i t}\right)^{*} B\left(e^{i t}\right) B\left(e^{i t}\right)^{*}= \tag{5.20}
\end{equation*}
$$

$$
C_{*}\left(e^{i t}\right) C_{*}\left(e^{i t}\right)^{*}
$$

for a.e. $t \in[0,2 \pi)$. Taking into account (5.5.4) of [4] it is not hard to see that (5.20) implies (5.1). Similarly, we prove (5.4).

In such a way we have seen that the conditions (β), $\left(\beta_{*}\right),(5.5 .2),(5.5 .3)$ and (5.5.4) of [4] are equivalent to the assumptions of Proposition 5.1. Using the notion of analytically unitary synthesis this means that the conditions (β), (β_{*}), (5.5.2), (5.5.3) and (5.5.4) are equivalent to the existence of an analytically unitary

Bynthoolo of tho otrongly measurable contraction-valued function $\left\{\mathcal{N}_{+}, \mathcal{N}_{-}, B(t)^{*}\right\}$. Henoe if $\left\{\mathcal{N}_{+}, \mathscr{r}_{-}, s(t)^{* *}\right\}$ is
an analytioal oontrootion-valued function, then these conditionv aro oquivalont to the existence of a Darlington syntheais of $\left\{\mathcal{N}_{+}, \mathcal{N}_{-}, S(t)^{*}\right\}$. The Darlington synthesis is porformod by (5.10), (5.11) and (3.16).

References

[1] V.M.Adamjan, D.Z.Arov, on unitary couplings of semiunitary operators, Mathomaticol Investigations 1(1966), no. 2, 3-64 (Rusaian).
[2] D.Z.Arov, On unitary couplings with losses (scattering theory with losses), Functional Analysis and its Application 8(1974), 5-22 (Russian).
[3] R.G.Douglas, J.W.Helton, Inner dilation of analytic matrix functions and Darlington synthesis, Acta Sci. Math. (Szeged) 34(1973), 61-67.
[4] C.Foias, on the Lax-Ph1llipa nonconservative scattering theory, Journal Punct. Analysis 19(1975) 273-301.
[5] P.D.Lax, R.S.Phillips, "Scattering Theory", Academic Press, New York, 1967.
[6] P.D.Lax, R.S.Phillips, Scattering theory for dissipative hyperbolic systems, Journal Funct. Analysis 14(1973), 172-235.
[7] B.Sz.-Nagy, C.Foias, "Harmonic Analysis of operators on Hilbert space", Akadémiai Klado, Budapest, 1970.

Received by Publishing Department
on May 12, 1987.

