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INTRODUCTION 
II 

Up to the present,. in papers concerning the invest,igation 
of the ~any-body effects within the Hubbard model, much atten
tion.has been paid to models with only inter~tomic integral U. 
Nevertheless, the intersite interactions may be impor.tant to 
the same degree as the intrasite interacti~~s, especially if 
we take in to consideration lattices with,a relatively great 
number o f the near e s t-me i ghbour s , Usua ll.y i9 models describing 
electrons in a single tight-binding band, el~ctrons of an op
posite spin interact by an on-site Coul omb repulsion and by 
nearest-neighbour sites Coulomb repulsion - it is the so-call
ed extended H~bbard modelo Hamiltonians with intersite inter
actions included have been investigated by , a great number of 
authors and interesting results were obtained for these models. 
The importance of inter-site repulsion t erms was soon realized, 
especially in attempts to describe metai~insulator transition 
in transition metal oxides I~I • Using the Green's function me
thod R.Kishore and S.K.Joshi 12'!hav~ found that one band split~ 
into three bands where the middle band occurs only upon intro
du~ing the interatomic Coulomb interactions. Their conclusions 
show that these interatomic correlations may be important for 
explaining the magnetic properties of transition metaIs . 
D.K.Ghosh:/3 ! has computed the internaI energy, chemical poten
tial and a criticaI temperature corresponding to a nearest
neighbour Coulomb repulsion of electrons of opposite spins by 
means of Green's function method. R.A.Bari /4!! has investigated 
the role of an electron-lattice interaction in a very narrow 
half-filled band on the basis of a Hamiltonian in which an 
electron part contains a term corresponding to interat~mic Cou
10mb interactions. He was able to show the existence of the 
phase-transition to the insulating state characterized by a 
charge-density wave. The extended Hubpard Hanliltonian has also 
been investigated by B.Albani et al.: / 5 ! by functional integral 
methods in the context of generalized susceptibilities and 
phase transitions from the paramagnetic phase to ferromagnetic, 
antiferromagnetic or charge ordered phases. Their conclusion 
consists in tha~ the extension of the Hubbard Hamiltinian by 

$1~,.,tr..h;t''UlÍbiÜ 1{ilCnffyT \ 
i.\. 1~ã~!~~1~X [lC C:·W~Ii~~3.m.h!; 

1: r.:..k-t~r I.' , A. 



including the interatomic Coulomb interactions permits one to 
obtain a long-range-ordered phase already in a simple approxi
mation. Recently, an extended Hubbard ,model has also been ana
lyzed for U< O in a series of papers :16,7, 8~/ , when U is thought 
of as an effective parameter taking into account either the 
interactions with phonon, or the coupling between electrons 
and intramolecular vibrations, or electronic excited states. 

In recent years much attention has been pai d to t he theory 
of correlation effects in transition metaIs. The treatment of 
d~electrons in these metals faces serious preblems. We know 
that,' for example, from photoemission spectra or magnetotrans
port experiments those electrons have to be described as delo
calized band states, but at the same time we have at hand expe
riments which indicate rather an atomlike behaviour (existence 
of spin waves above Te' and s o on) , A great number o f papers 
has been devoted to the effect of the electron correlation on 
the magnetic properties of transition metaIs using the one
band Hubbard model, two-band or many band models within T-mat
rix approximation, a random phase approxímation or irreducible 
Green's function methods 19,10.11,12:'( J.Kanamori used T-matrix 
approximation in his investigation of the Hubbard model but, 
did ~ot'obtain the effective exchange parameter l(q) in the 

, q -dependent static susceptibility as obtained by Lowde et 
a l , 113:/from the neutron scattering data for nickel. Only after 
the inclusion of interatomic interactions, the matrix 'e.l emerrt 
of the electron interaction becomes momentum-dependent as was 
obtained in works of E. Haga et a l , !/14. 15:/ and T. Kato et p.l/16;/ 
The authors show, that the comparison with the experimental 
behaviour of r(q) leads to the conclusion that the exchange 
interatomic interaction gives the contribution of about thirty 
perçent to 1(0) • The importance of interatomic interactions 
on the valence-band photoemission in Ni was also investigated 
by T.Aisaka et. al./ 17- 20:/. Especially, from several po i.n t s of 
views, Ni is the case for which the many-electron correlation 
effect cannot be ignored. The experiments of the valence-band 
photoemission in Ni have shown that the bandwidth is narrower 
by about 30% than that given by the standard one-electron cal
culation and satellite peak exists about 6 eV below the Fermi 
leveI. By the including into consideration the intetatomic in
teractions T.Aí saka et a l , /'17- 20 /have succeeded in affer'ing 
the explanation for both the degree of the band narrowing and 
the position of the satellite peak. The problem of renormali
zation of the band width by the interatomic interactions was 
also investigated by E. Heiner and J. Schneider J21:/ • 

In this paper we consider the effect of the most important 
class of interatomic interactions on the electronic properties 
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of the model Hamiltonian of the metal, especially on the elec
tron self-energy. In the following we use the equation of mo
tion method for a retarded Green function introduced by D.N.Zu
bariev'/2&~ But in contrast with the ordinary equation of mo
tion, we introduce the self-energy operator and as a consequen
ce obtained the Dyson-type equation for Green's function in 
the spirit of the method propo s ed by N.M.Plakida!23:/ and 
M. Ichiyanagi :/24/. From a formal point of v iew this method may 
be thought as a combination of t he' projection operator method 
as the so-called irreducible Green's function rnethod of 
n.M.Plakida:/23/ . In order to g~ve a simple and transparent 
picture of the electronic correlation i~ transition metaIs, 
some approximations have to be made. First of alI, we will 
assume that the metal can be described by one-band Hamiltonian 
but with inter-si te Coulomb interaction included. We expect 
this model to be a'reasonable qualítative description of 3d
series ferromagnetic transition metaIs. Secondly, in order to 
continue the calculations as far as possible we make a rather 
drastic approximation witbin the self-energy operator. TQis 
enables us to calculate the Green function and self-energy in 
a closed forme 

The organization of the present paper is as follows. Irt the 
next section we introduce the model Hamiltonian. In Sec.3 we 
present the derivation of the Dyson equátroR' for the Green 
function within a formalism of the equation of motion method 
connected with the projection operator method. In Sect.4 we 
present the electronic states in the mean-field approximation 
and expression for an electron self-energy. 

2. THE HAMILTONIAN OF THE MODEL 

The major feature of the Hubbard Hamiltonians is its expli
cit treatment of the one-site interaction U ~etween electrons 
in the same bando Interband and intersite interactions do not 
appear explicitly and May enter only through the Hartree-Fock 
field. As has been mentioned in the Introduction we shall con
sider a model one-band Hamiltonian with the intersite Coulomb 
and exchange integraIs exp l í.c i t Iy .inc l.uded , This Harniltonian 
may be written most generally in the tight-binding model as 

+ 1 1 + +
H = 2. t" a, a, + - 2. <i j \-1 k ~ >a. a. , a ka,ara ' ( 1) 

i j a I J la JCT 2 i j k ea~ , r lU JC1 

where li> is a Wannier function a t t he i-th site <I>(t- Ri') 
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1 ...... .... -~ ... ~ 1 ... ~ ...-+<i j 1-- I k P> = .[ rd r d r ~. <l> * ( r - R - ) <l> * (r ' - R. ) -~_> <!l(r '-Rk)<l>(l'- R p), 
r '. -	 1 J [r _ r ' I 

(2) 
2 

...,. -+ ~ P -+ -)I -)I -)I 

ti j = I d r <l> :+: (r - R i ) [ 2m +, V ( r ) ] <l> (r - R i ) d r ,	 (3) 

and V(;) is the efiective potential composed of the ionic po
tentials of singIe atoms. 

As a hext step we retain in the HamiItonian.(]) only contri 
butions coming from a ane-centre and two-centre integraIs of 
various 'kinds. Let us introduce the abbreviations for these 
integraIs as follbws: 

<11.. 11 I"11 >:= U < 1J .. lI! H.. U'..	 (4a)- , - >:= , r	 ' r' lJ 

< lJ.. ,I- I"i j > == I;j , <li ,-.lI jj > == I .~'	 (4b)r	 r lJ 

where reIations (4a) correspond to the direct on-site ~nd in
tersite CouLomb integraIs and reIations (4b) correspond to 
the exchange, Coulomh interactions. 

The Ham~ltonian defined by Eq.(l) now takes the following 
form: 

H = L r.. a,
+ 

a. + --1 U L n . n. +.!... L
la	 1-<7 (1 - ôi j HUi1 - lij )nian ja+i j a 1J 10 Ja 2 ia 2 ija 

I l ( o)' l ,,+ +	 (5.)
+ 2.. 1 - ij V i j n i a nj-a + 2..L (1- ôi j )I ij aiaai-aa j-a& ja ' 

lJa	 lJa 

where we omitted the i~tersite exchange interactions with a = 
=-a " ca Ll.ed sp í.rr-fLí.p terms 125~/, and .where l'ij = I ij for 
working -with a r eal l-Jannier functions. In addi tion to the i nt> 
rasite Coulomb interaction U which is the only interactiop pre
sent in the Hl,lbbard.model, the Hami\toni?-n given by Eq.(S) con
tains three more intersite interactions, nameIy the intersite 
Coulo:mb and intersi-te exchange interactions. As has been men
tioned in Hubbard's paper 'lb/, especially term with V ij can 
be very important in describing the correlation effects in me
taIs. lf we consider only the short-range interactions such às 

<ijl~lke> r = U s..
I,) 

0kPo.o
1 r 

, the Hamiltonian (5) just redu
i	 • 

ces to the form of the Hubhard HamiItonian. 
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3.	 THE DYSON EQUATION FOR THE ON~-~LECTRON TWO-TlME
 
GREEN FUNCTIONS
 

In the following, we consider the so-caIled band limit,i.e. 
U/\\ « I, W - the band wid th, andfor that reason i tis con-
venient to work with the two-time Green functions defined 
by	 /22/: 

G~	 (t-t"):=:«a. (t); a: (t'»> =-iO(t-t')<[a. (t), a: (t')] >, (6)
1J la . JO"	 la p + 

where O(t) is the step function, unity for positiv:e and zero 
for negative val ue of time" < ••• > denote an average wi th 
respect to the canonical density matrix of the system descri 
bed by time-independent HamiItonian (5) and temperature T: 

--1 -f3 H	 -f3H 
<A > = Z Tr e A , Z = Tr e , f3 = 1 / k BT , 

(7)
iHt -iHt 

A( t ) e Ae 

In	 practice it is convenient to work with the Fourier trans
form of the Green function G~ (t) with respect ,to the energy 
E: 

+ 
-iE t O" +. 

«aia Iata »E + == Grj (E) = r e G ij (t ) dt. E = E + 10, 

+00 

(8)	 . 

for which we obtain equation of motion in the form: 

E G~j (E) = <I a ia ' a;a ] .> + « i a ia Ia 7a » .	 (9) 

The righ-hand side of Eq.(9) contains higher-order Green func
tions and now we could go further and write the Iatter Green 
functions again in terms of higher ones, and generally speak
ing we would obtain a sequence of coupled equations. In order 
to obtain an approximate solution one tries to truncate this 
systern of equations at a certain leveI by decoupling the high
er-order Green functions into the Iower-order ones. In practi 
ce it is rather difficult to make such a decoupling and this 
decoupling process is of course an approximation, the meaning 
of which is not immediately transparente For these reasons, 
the equation of motion rnethod for the two-time Green functions 
has been generally criticized for being based on weakly defin
ed decoupling schemes and thus producing ambiguous results/2&~ 
Despite of ,these difficulties, a great number of papers appea
red in which the method of equations for Green's functions was 
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app1ied and decoup1ing process at VariOUB stages of the hierar
chy of equations was done. Taking into consideration the dis
cussion given above, there are methods in which one is trying 
to obtain Dyson-type equations for Green's function in an exact 
way. For examp1e app1ying tlle projection operator method 
Yu.A.Tsercovnikov obtained an infinite system of equations of 
the Dyson type and exp1icit formulas for corre1ation functions 
which enter into the mass operator of the equations of the 
chain under consideration. N.M.P1akida!2al obtained the Dyson
type equation for Green's function introducing the so-ca11ed 
irreducib1e parts of some operators and was ab1e to give a c1o
sed equation for the mass operator. The same method was app1i
ed by A.L.Kuzemsky~/2~1 for a simp1e Hubbard mode1 (see, e.g., 
a1sd!12.27 -e&1. 

In the fo110wing we adopt the method presenteà by M.lchiya
nagí / 24 ! . Strict1y speaking, this method is a certain combina
tion of the equation of motion method with differentiation 
with respect to the first and second time variab1e, the projec
tion operator method and irreducib1e Green's function method. 
It a110ws us to obtain a Dyson equation which determines an 
irreducib1e proper se1f-energy parto The resu1tin7 representa
tion for the se1f-energy operator is not exact:!32 , and fur
ther ca1cu1ation requires some approximations. Neverth1ess, 
these approximations wi11 be done on a 1ater stage of ca1cu1a
tions 112.27- 29;1 in comparison with the ordinary equation of mo
tion method. For the sake of comp1eteness, a orief review show
ing the way of obtaining the Dyson eq. a10ng the projection 
operator and Ichiyanagi: / 24 :1 methods is given be Low, 

We represent the operator iaia from the righ-hand side of 
Eq.(9) in the forro resu1ting from using the projection opera
tor P of Ichiyanagi or Tsercovnikov having the property of 
projecting out that part of any operator which is contained 
in the Hilbert space spanned by variab1es aia • We have: 

iá ia == P(i~ia) + (1-:P)(i~'ia) = r w~j aja + (1- P)ia ia • 
(lO) 

where w~ wi11 be given be10w. Now Eq.(9) may be represented 
in the forro: 

U· 
LJ{ .. . lJ
,) 

a· 
G. (E)=ô.JO 10 

. 
+«(l-P)ia l· rT 

u 

+!a »,oa' (11 ) 

where 
a· 

J{ij = E 
a 

- W ij (12) 
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Wri ting, in turn, equation of motion for «(1-P) i ~ia I a~a », 
we obtain: 

E«(l-P)i~l'rTlaJ'rr »=<[(l-P)i~. ~a: ]+>+~«l-P)i~. I(i~. t»~·u : u la jo la Ja 
.. ... (t 3)

The proj ec t í.on operator 1S de f i ned i n such a way that the . 
first term in the right-hand side of Eq.(13) disappears :/24! 

(see a1so/23.27-29J), i.e., W~j from Eq.(12) takes the fo rm e 

(2) (2)t. + U(1)W a < n _ > + I U. o o.. <no >+U .. <a. a~ >+,ijij í] i a f 1 L lJ [ a lJ la j o 

(14) 
(3) (4) + 

+ I u. o o" <no > + U . . <a . a . > , e Ir. lJ r. -c lJ J-a l-a 

where 

U (2)U~ ~) 
lJ U Ô ij , ij (l-o i j HUÚ·,-I.;j i, 

(15)
U(3) ( 4) I " (1 . - oij ) U lj , U . . = - (1 - ô i j ) .ijij lJ 

lf one introduces the projection operator into the right-hand 
side of Eq.(9), then after introducing the genera1ized mean
fie1d Green functions G~a (E) defined by equation:lJ . , 

I J{ a oo 
j ij G jn = Ô io (16) 

for fuI1 Green functions G i~ (E) we have: 

a oo o o a.' oo 
Q... (E) ~ G lj ( E) + 1: G . f' To ( E ) G . (E),
lJ' eo 1 L.O OJ (17.) 

where the scattering operator T fo(E) reads: 

a . • + 
T D (E) = «(l-P)af l(l-P}a »E+. ( 18)

L o a no 

As a next step we want to obtain the Dyson-type equation for 
the Green functions G ~ (E) and an exp1icit expres s i on for 
the se1f-energy operator. Fo11owing the method of M.lchiyana
gi·'24! after introducing "the force" Ki(t) = (l-P)iá andi(t)
considering the time evolution equation for it, we obtain: 

a a ~ . . + a 
T .. (E) = M i · (E) + k «(l-Pha'ia la. a»M j(E), . (19)

lJ J j 1 ,J1 J. 1 
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o
where Mij (E) i.s the Four í er' t.ransform of M~ (t ) (1,4) (4) 

+ ~ .. , i ik U.k .1.1.1,11 1 

(2) (2,1) (1)' (2,2)
] + U fi. [~fI" .. 'U .k + ~ a.: k i íLJ lJJ,Il1 1 lJJ, 11 

(2) (2,3)
U, k + ~l fi " k i í1 l.JJ. 11 

(3)
U, k1 + 

M~, 
1.1 

(E)
' 

+06 

= f 
o -ir,) t. 

dt M ij (t) e (2t?) (2,4) (4) (3) (3,1) (l} (3,2) (2) (3,3) (3) 
+ :D fI .. "kU'k ]+UfI. [:DfI .. ". U'k + :DfI .. k i i U' k + :DfI .. k" U'klJJ, 11 1 lJ lJJ,l11 1 lJJ, 11 1 t,lJ, 11 1 + 

and (24) 

i(l-P)Lt i(l-P)Lt.' + 
M?: (t - t ' ) = - i e(t - t ' ) <[ e K. (O), {e K ,(O) I ] >. (21 ) r 

1J	 1 .I + 

f' 
Eq. (19) permits on~ to rewrite Eq.(ll) in the form 6f the 
Dyson equation 

o~ (E) := G ?,O ( E) + L O ?kO M °k fi ~ E ) O ~, (E ) . 
JJ 1.1 k f 1 [ f .I	 (22) 

From these f orrnul.as we can say that M ~ (E) contains, in the 
1anguage of the diagram method, the irreducib1e diagrams whose 
representation yie1ds the reducib1e expression Tf (E)/24/(see 
a1.so/ 23,27- 29/). The se1f-energy formu1ae enteringJ into the 
Dyson eq. requires considerab1e approximationso Appro~imations 
are possib1e and these are made to obtain resu1ts which are 
ré1at'Íve1.y easy to ca l cula t e and ana1yze. In the fo Ll.ow í ng , 
in order to give à simp1é and transparent picture of the e~ec
tronic cor r e l a t-i ons , we approx í.mat;e the Fourier t rarís'fo'rm ioE 
M rj (t - t') by (in i1 symbo1ic notation) 

I 

• . c
 
M.~ (E) -- «i a, 1 (i a. ) + »E + . (23)


1.1	 10 .Io ' , 
í 

Eqo(23) denotes, unfortunately, that we remove from se1f-ener
gy given by Eq , (21) a l.mo st a I l, tnformation which has 'been in
troduced by the projection operator. Some information in a 
Dyson equation about the way of introducing the projection 
operator remains in the form of' the 'mean fie1ds contained in 
O ft (E) • 0, 

It shou1d be noticed that the above approximatiqn is equi
va1ent to the one used in papers/ 12,27- 29~ Further d i scus s í.on 
of t herva Lí.d í t y iof this approximation wi11 bé given in t.he 
next section. ~ r-

After a I I tbe"mauipu1a'tions have beén 'pe r f ormed , we c an re- I

J
,present the se1f~energy '6perator in the fotm:	 . 

; ( ; I 

...... I'Moa:	 (E) =: L {U(l)[:D(l,1) U(1) + ~ (1,2) U(2) ~ (1/3) U(.3) l 

Ek ij Cj jjj,iii ik jjj,kii i k + jjj.k i i k +í 

8 

+ :D(3,4) u(4)] + U(4)[:D (4,1) U(1) + :D(4,2) U(2) +. 
Cjj,iik ik Ej jEj,iii ik jCj,kii ik 

(4.3) (3) (4.4) (4) 
+ ~jEj,kii U i k + ~jEj.iik U i k 11, 

'\"hcre we denoted 

ffi(n,m) _ + + + c 
.!Ji	 ' " ' . , == <<.. a. a. a ' I a, a, a . » (25)

11213,141516 1 1° 1	 .12°2 13°3 14°4 15°5 16°6 

The spin indices have signs as fo110ws (in a symbo1ic notation): 

«tH Itu »«1'H,! r r r »«1' J..l.lu,j.» «tUI.l.H» 

«ft'f'it,j.,j. » «'f't'tl 1'1'1'» «1'1'1' [tu» «tttl.l.1'.I.» 
g) --. 

° 1°2'°3 ,°4 a5 °6 I	 . « 1'. H .1 p ,j.,» « l' H I tt l' » « 'I' .j..j. f 1'U » «t H 1.l.1'~ » 

« u l' IH ,j. »« ,j.,j. l' I 1''1' l' » « ,j. .I. l' IH,j. » « ,j..l.1' tio 1'.1. » 

40	 ELECTRONIC STATES IN MEAN-FIELD APPROXlMATION
 
AND ELECTRONIC QUASI-PARTICLES
 

Now we are going to consider the renorma1ized spectrum of 
the mean-field Green functions O~~ (E) and damping of the qua
sipartic1e resu1ting from fu11 Gr~en functions O~ (E) o It 
is a convenient pass with the he1p of the Fourier transform 
to the momentum space using the transformations 'of the creat
ion and annihi1ation operators as we11 as O~j (E) ,O f{ (E ) and 
M~. (E) accord ing to the formulas: 

1.1 

--. --. 
N° llz i k· R i	 No .1/ 2 'Ç' -1 ' k· R,+a, - 'Ç'	 "- e 1 +a,10	 - "- e ' _~ a --.a k o 10--.	 k k o 

k 

--. --. 
N -112 - i k- R, ,+ N0\! L ikoR. (26) 

a--. = e 1 +L e 1 aio' .a--.	 a . 
ko	 10 'ko 
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o ~ i~ ~ --t 
G (k; E) e k'(Ri -Rj)ofj (E) N- 1 L 

~ 

k 
~ ~ (27) 

-i k.(R i - R j) G?: (E).Go ( 
~ 

k ; E) = N~ 1 L e 1J
 
ij
 

,I 

and similar t r ansf'ormatíon for Gft (E) and M~" (E) • This trans

formation to momentum space enables us to rewrite Eq.(16) in
 
the form:
 

~ ~GOO(k;E) I E+ - (("k) + N- 1 L [U' (k - fi ) I ' (k - q)] x 
q 
~ 

(28)
 
x < n'+
 

qo > - N-
1 
~ I.'~(k +q)< n-q -a> -[U :t-'U'(O)]< n_o> -lutO) -ItO)]<no>r~ 
q 

where 

-j k.di ' - li . ) 
c (k 

~ 

) == N- 1 !. t e 1,J
ij	 (29)

ij 

and U'(k' ,I'(k) ,I"(k) are Fourier transfonns of interatomic
 
integraIs.
 

The renormalized energies EO (k) have the'form:
 

EO(k) = E-f(k) -U<n :-- +~l L [U'(k-~)-I'(k-;'~]<n-+> 
~ -+	 qif

q 

(30) 
_N-l ~ I~'(k+q)<nq_a> -U'(O)<n_o>-[U'(O)-I'(O~]<no> 

q 

where 

N- 1 :1:< no> ... < nqo >. 
q 

The band splitting now reads as 

t -+ '" ~	 -L ~ ~ 
E (k) - E (k) = [U - I '(0) ]( <n ~ > - <n r > ) + N	 ~ [U'( k _ q) _ 

q 

- I ' ( k- ~;) + l"(k +q)]< n ... - n ...	 
(31) 

> . 
q~ q t 
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In the case of 1'= U'= I" = O we obtain	 k -independent re
sult of the Hartree-Fock theory. Eqs.(30)-(31) generalize the 
Hartree-Fock renormalized energies ando band-splitting. 

Now we are going to consider the electronic quasiparticles 
and their damping.~We can write the formal solution of the 
Dyson Eq.(22) (in k -representation) as follows: 

[Goo(k:E)-lGO(k; E) = _ MO(k; E)]-l.	 (32) 

I To find an expression for the mass operator we proceed in the 
1 saroe way as previously.l12/, i.e~ we express the Green function' 

entering into the operator MO(k; E) through the correlation 
functions using the spectral theorem~/22/. These correlation 
functions are decoupling in the pair approximation (valid for 
a smal1 density of quasiparticles) in the following way: 

+	 +. + c +<a; ( t ) a.... ( t ) a ~ ( t ) Ia~ a... a ~ > "3 <a- ( t ) a~ > x 
k1

0 i ktT2 k30'S k 4(T,j, k 50 5 kiJC16 k l0 i k fi 

+ + 
x <a., ( t ) a ~ ,> <a k~ ( t ) a ~k > D-!k k~ ~k k~ ok~ k~ oo o' o0" o 00 , 0'+ 

30'3k 20'2 k 20'2 g!78 1 4 2 5 3	 6 1 4 2 5 3 6 

(33) 
+ 

+ <a --)k ,( t ) a k~ > <a k~ ( t ) a ~k ,> < a k--) C1 (t) a k~ o >' x 
303	 202 2023 oS	 1 1 1 1 

x 8 ~ ~ o~ ~ 8 ~ --) 8 'o o 
k 3 k 4 k 2 k 5 k 1 k6 .. 0 3 0 4 O2 0 5 0 1 0 6 ' 

where we form alI posstble one-particle averages with diffe
rent times. The simultaneous averages have been taken into 
account by using the projection operators. As previously not
ed, we do not retain spin~flip-type correlation functions. 

After lengthy algebraic manipylations, the resulting expres- • 
sion for a self-energy can be written as follows: 

o ~ -2 ~ , ~ ~ ~ .... 
M (k;E) =N L on	 +'m (k;E)x(k;E)f 1(k,p,q)....~ -ao~	 -a-oo 

pq 

1

~~~ ~ ~~~ (34)
 

X f 2 ( k , P , q:) + 'TI o ao( k ; E) f 3 ( k , P , li;) ] ,
 
~ 

where 

Cb7, z, 1 +00 dÚ>ldcu2dÚ>3 
JIloi020S (k, E) = -3 rIr + I n(ú> 1 )[ 1 - n(Ú>2 )] x (35) 

1T -00 E +Ú>1-Ú>2-w3 
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x[1-n(w
3)l+[1-n«(ü 1 

) ] [1 -n(w2')]n(w3)}ImGat(~ 

02 -. -+ , . a3 ~.
x Im G (p + q , (iJ 2 ). II!l G (q, w 3 ), 

+k;(
1 

) x 

and 

4 -+-+ --+ -+ -40 -+ ....,. -+2,. ,. ---Jo ....,. 

fi (k, P,q ) = U 2 + UU '( p ) + UI / (k + p + q) + UU /( P ) + U l-p) + U /(p) I N (k + p + q) , 

(36)
-lo..... -. -+ -lo -. ..... -+ -> ~ -> -> ~ ~ 2 

f 2 ( k, P ,q) c-: UI //( k + p ~ q ) + 1//( k f- P + q)U /( k - q) + 1//( k + p + q) , 

I: 

; ~ 

f 3 (k I P, q) = [I '(p)- U/(P)1[U'( k- q) - 1/( k- ~) ]+ [O /(p) - 1/ (p )] 2 • 

In the case of a simple Hubbard model we obtain from Eqs.(34
-36) the self-energy in the form found in Iffil • In order to 
determine the Green function in a fully self-consistent treat
ment of the correlation problem for our Hamiltonian one would 
require the solution of a set of complex coupled equations 
(22) and (24) or (within a pair-decoupling scheme) Eqs.(22) 
and (34). It is a very difficult problem to find a solution 
of these two coupled equations. We must remember that the ex
pression for a self-energy involves tedious integrations in a 
9-dimensional space (6-dimensional integral in k -space and 1 
3-dimensional in energy space for 3-dimensional systems). In 
principIe, we can try to obtain a solution of this problem by I 
starting with the initial approximation for a Green f~nction, i 
then calculate the self-energy and as a next step calculate a !
Green function and so on. If for ~he first step we take simple 

I 

one-pole expression (this is a rather reasonable starting 
point): 

1 a..... ... 
- - Im G (k; E) _ o (E - E a (k )), (37)

17 

where Ea (k) is given by Eq.(30), than the 9-dimensional integ
ral appearing in self-energy reduces to 6-dimensional ones, I 

Iand in principIe, we can obtain the self-energy in a relative
ly simple way (it is true for the first iteration step only). 
If this first step is sufficient for the problem under conside .! 
ration, for example for U/W« 1, then we can finish the itera
tion process at the first stage and obtain the Green function J 

in an approximate way. Such a method of an approximate calcu . " 

lation of the self-energy and spectral density of states was 
used in the case of a simple Hubbard model in/~/and for the 

in / 12 / •multi-band Hubbard model In order to give a short ex-

pla~ation of an approximation accepted in Ess.(23) and (33) 
we insert Eq.(37) with substitution EO -> f(k) into Eq.(34). 
As a result, we obtain, for example in the c?se of a simple 
Hubbard Hamiltonian, an expression for self-energy the same as 
in the second-order-perturbation theory -' see for cornpa~ison 

in/ 30 1 formulas and 131/. Then our.appr~ximation contained iq 
Eqs.(23) and (33).may irt this manner"be justified to some ex
tento The numerical results and discus~ion wilí be given in a 
separate ~aper. 
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