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INTRODUCTION

i
it . ,

Up to the present, in papers concerning the investigation
of the many-body effects within the Hubbard model, much atten-
tion.has been paid to models with only interatomic integral U.
Nevertheless, the intersite interactions may be important to
the same degree as the intrasite interactions, especially if
we take into consideration lattices with ,a relatively great
number of the nearest-neighbours. Usually in models describing
electrons in a single tight-binding band, electrons of an op-
posite spin interact by an on-site Coulomb repulsion and by
nearest-neighbour sites Coulomb repulsion - it is the so-call-
ed extended Hubbard model. Hamiltonians with intersite inter-—
actions included have been investigated by.a great number of
authors and interesting results were obtained for these models.
The importance of inter-site repulsion terms was soon realized,
especially in attempts to describe metal-insulator transition
in transition metal oxides /%’ . USLng the Green's function me-
thod R.Kishore and S.K.Joshi /2’ have found that one band sp11ts
into three bands where the middle band occurs only upon intro-
ducing the interatomic Coulomb interactions. Their conclusions
show that these interatomic correlations may be important for
explaining the magnetic properties of transition metals.
D.K.Ghosh'/3/ has computed the internal energy, chemical poten-
tial and a critical temperature corresponding to a nearest-
neighbour Coulomb repulsion of electrons of opposite spins by
means of Green's function method. R.A.Bari 4*/ has investigated
the role of an electron-lattice interaction in a very narrow
half-filled band on the basis of a Hamiltonian in which an
electron part contains a term corresponding to interatomic Cou-
lomb interactions. He was able to show the existence of the
phase—transition to the insulating state characterized by a
charge-density wave. The extended Hubbard Hamiltonian has also
been investigated by B.Albani et al.”5’ by functional integral
methods in the context of generalized susceptibilities and
phase transitions from the paramagnetic phase to ferromagnetic,
antiferromagnetic or charge ordered phases. Their conclusion
consists in that the extension of the Hubbard Hamiltinian by
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including the interatomic Coulomb interactions permits one to
obtain a long-range-ordered phase already in a simple approxi-
mation. Recently, an extended Hubbard model has also been ana-
lyzed for U<O in a series of papers”®7:8/ | when U is thought
of as an effective parameter taking into account either the
interactions with phonon, or the coupling between electrons
and intramolecular vibrations, or electronic excited states.
In recent years much attention has been paid to the theory
of correlation effects in transition metals. The treatment of
d~electrons in these metals faces serious preblems. We know
that; for example, from photoemission spectra or magnetotrans-—
port experiments those electrons have to be described as delo-
calized band states, but at the same time weé have at hand expe-
riments which indicate rather an atomlike behaviour (existence
of spin waves above T,, and $o on). A great number of papers
has been devoted to the effect of the electron correlation on
the magnetic properties of transition metals using the one-
band Hubbard model, two-band or many band models within T-mat-
rix approximation, a random phase approximation or irreducible
Green's function methods #:10.11,127 J Kanamori used T-matrix
approximation in his investigation of the Hubbard model but
did not obtain the effective exchange parameter 1(gq) 1in the
. q -dependent static susceptibility as obtained by Lowde et
al. /13/from the neutron scattering data for nickel. Only after
the inclusion of interatomic interactions, the matrix -element
of the electron interaction becomes momentum~dependent as was
obtained in works of E.Haga et al.'/14.15/ and T.Kato et al./1&/
The authors show, that the comparison with the experimental
behaviour of I(a) leads to the conclusion that the exchange
interatomic interaction gives the contribution of about thirty
percent to I(0) . The importance of interatomic interactions
on the valence-band photoemission in Ni was also investigated
by T.Aisaka et al.’/17—-20:/ Especially, from several points of
views, Ni is the case for which the many—-electron correlation
effect cannot be ignored. The experiments of the valence-band
photoemission in Ni have shown that the bandwidth is narrower
by about 307 than that given by the standard one-electron cal-
culation and satellite peak exists about 6 eV below the Fermi
level. By the including into consideration the interatomic in-
teractions T.Aisaka et al.’17~20/have succeeded in affering
the explanation for both the degree of the band narrowing and
the position of the satellite peak. The problem of renormali-
zation of the band width by the interatomic interactions was
also investigated by E.Heiner and J.Schneider /21,
In this paper we consider the effect of the most important

class of interatomic interactions on the electronic properties
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of the model Hamiltonian of the metal, especially on the elec-—
tron self-energy. In the following we use the equation of mo-
tion method for a retarded Green function introduced by D.N.Zu-
bariev /?2/, But in contrast with the ordinary equation of mo-
tion, we introduce the self-energy operator and as a consequen-
ce obtained the Dyson—type equation for Green's function in
the spirit of the method proposed by N.M.Plakida ‘%3 and
M.Ichiyanagi:/24/. From a formal point of view this method may
be thought as a combination of the projection operator method
as the so-called irreducible Green's function method of
N.M.Plakida*/23/ | In order to give a simple and transparent
picture of the electronic correlation in transition metals,
some approximations have to be made. First of all, we will
assume that the metal can be described by one-band Hamiltonian
but with inter—site Coulomb interaction included. We expect
this model to be areasonable qualitative description of 3d-
series ferromagnetic transition metals. Secondly, in order to
continue the calculations as far as possible we make a rather
drastic approximation within the self-energy operator. This
enables us to calculate the Green function and self-energy in
a closed form.

The organization of the present paper is as follows. In the
next section we introduce the model Hamiltonian. In Sec.3 we
present the derivation of the Dyson equationm' for the Green
function within a formalism of the equation of motion method
connected with the projection operator method. In Sect.4 we
present the electronic states in the mean-field approximation
and expression for an electron self-energy.

¢

2. THE HAMILTONIAN OF THE MODEL

The major feature of the Hubbard Hamiltonians is its expli-
cit treatment of the one~site interaction U between electrons
in the same band. Interband and intersite interactions do not
appear explicitly and may enter only through the Hartree-Fock
field. As has been mentioned in the Introduction we shall con-
sider a model one-band Hamiltohian with the intersite Coulomb
and exchange integrals explicitly included. This Hamiltonian
may be written most generally in the tight-binding model as

+
H-3t a a +L % . <n]i—|k8>af a .a,_.a
ijo Wy ijkfoo T o %" kol S

where | i > is a Wannier function at the i-th site ¢(F1~ ﬁi)
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"r_
, . (2)
= _{d;@*(?-ﬁi)[;—m + V(D)9 (T~ R,)dr, (3)

and V(r) 1is the effective potential composed of the ionit po-
tentials of single atoms.

As a next step we retain in the Hamiltonian (1) only contri-
butions coming from a one-centre and two-centre integrals of
various 'kinds. Let us introduce the abbreviations for these
integrals as follows:

<n_\_:_111>zu, <ij1%-[jg>z U’ (4a)

D LT p D >
< — = - =
IJ'[‘ ‘1‘]> Ii'j’ <111 r Ill > 1” ’ \ (l}b)
[

where relations (4a) correspond to the direct on-site and in-
tersite Coulomb integrals and relations (4b) correspond to
the exchange Coulomb interactions.

The Hamiltonian defined by Eq. (1) now takes the following
form:

C Lt 1 1
H = t..a, . — - ~1.
ijzo ij aw a_]o + o U 2 ni(r ni—o + o ij%y (1- 3 y(u 1 Iij )“ionja+
1 _ , 1 + o+ . : (5)
+5 ]i (1 Uij LI P 2”20 1-8; 1 aioaj_qaj_aaja ,

where we omitted the intersite exchange interactions with o =
=0 ", called spin-flip terms/2%/, and .where 15 = 1] for
working with a real Wannier functions. In addition to the int-
rasite Coulomb interaction U which is the only interaction pre-
sent in the Hubbard.model, the Hamlltonlan given by Eq.(5) con-
tains three more intersite interactions, namely the intersite
Coulomb and intersite exchange interactions. As has been men-—
tioned in Hubbard's paper 'Y/, especially term with U}; can

be very important in describing the correlation eff ects in me-
tals. If we consider only the short-range interactions such as
<ij]:—|kﬂ> = U By By
ces to the form of the Hubbard Hamiltonian.
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» the Hamiltonian (5) just rédu—

3. THE DYSON EQUATION FOR THE ONE-ELECTRON TWO-TIME
GREEN FUNCTIONS

In the following, we consider the so-called band limit,i.e.
U/W << 1, W - the band width, and for that reason it is con-
venient to work with the two—time Green functions defined
by 722/,

G" (t—t )—<<a (t) a, (t I>> = —if(t-t )< [a (t), a (t” )] >, (6)
where 6(t) is the step function, unity for positive and zero
for negative value of time, < ...> denote an average with
respect to the canonical density matrix of the system descri-
bed by time—independent Hamiltonian (5) and temperature T:

-1 -PpH -pH
<A> = Z Tre/8 A, Z = Tre,3 s B = l/kBT,

iHt —iHt 2
A(t) = e Ae

In practice it is convenient to work with the Fourier trans-—
form of the Green function G?} (t) with respect to the energy
E: .

+
e B

<<a, >> EG‘;j(E) = [ e

a + .
lO’l jo 7 Gij(t)dt, E'=E +i0, (8) -

—o0c

for which we obtain equation of motion in the form:

[a?' >> (9

(24 .
G”(E)=~daw,aL]+>+<«1am io
The righ-hand side of Eq.(9) contains higher—order Green func-
tions and now we could go further and write the latter Green
functions again in terms of hiigher ones, and generally speak-
ing we would obtain a sequence of coupled equations. In order
to obtain an approximate solution one tries to truncate this
system of equations at a certain level by decoupling the high-—
er-order Green functions into the lower-order ones. In practi-
ce it is rather difficult to make such a decoupling and this
decoupling process is of course an approximation, the meaning
of which is not immediately transparent. For these reasons,
the equation of motion method for the two-time Green functions
has been generally criticized for being based on weakly defin-
ed decoupling schemes and thus producing ambiguous results’/26/,
Despite of these difficulties, a great number of papers appea-
red in which the method of equations for Green's functions was
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applied and decoupling process at various stages of the hierar-

chy of equations was done. Taking into consideration the dis-
cussion given above, there are methods in which one is trying
to obtain Dyson—-type equations for Green's function in an exact
way. For example applying the projection operator method
Yu.A.Tsercovnikov obtained an infinite system of equations of
the Dyson type and explicit formulas for correlation functions
which enter into the mass operator of the equatlons of the
chain under consideration. N.M,Plakida /2% obtained the Dyson-
type equation for Green's function introducing the so-—called
irreducible parts of some operators and was able to give a clo-
sed equation for the mass operator. The same method was appli-
ed by A.L.Kuzemsky:/?®/ for a simple Hubbard model (see, e.g.,
also/12.21 &8/,

In the following we adopt the method presentea by M.Ichiya-
nagi’/24/, Strictly speaking, this method is a certain combina-
tion of the equation of motion method with differentiation
with respect to the first and second time variable, the projec-
tion operator method and irreducible Green's function method.
It allows us to obtain a Dyson equation which determines an
irreducible proper self-energy part The resultlng representa-
tion for the self-energy operator is not exact/3%2/  and fur-
ther calculation requires some approximations. Neverthless,
these approximations will be done on a later stage of calcula-
tions /12,27- 2%/ in comparison with the ordinary equation of mo-
tion method. For the sake of completeness, a brief review show—
ing the way of obtaining the Dyson eq. along the projection
operator and Ichiyanagi'/24/ methods is given below.

We represent the operator ia;, £from the righ-hand side of
Eq.(9) in the form resulting from using the projection opera-
tor P of Ichiyanagi or Tsercovnikov having the property of
projecting out that part of any operator which is contained
in the Hilbert space spanned by variables a;, . We have:

_ . . . _ g _ A
a;, =P(ia )+ (1 -P)(ia;,) JE @iy B+ (1-Plia; , (10)

where wﬁ will be given below. Now Eq.(9) may be represented
in the form:

2}( G (B) =8, + <<(1 - Pia, |ar_ >, an
where
g o

.y . . . .' +
Wr1t1ng3 in turn, equation of motion for <<(1—P)laia|aja >>,
we obtain:

+ .
) >,

(13)
The progectlon operator is defined in such a way that the .
first term in the rlght—hand side of Eq.(13) disappears /2%’

E<«11—P)iai0]aj >» =<[(1- P)1ala, Ja‘]+>+A<<(1~P)iai0|(iajo

(see also/232%"29/) i,e., @5 from Eq.(12) takes the form:
1 2 2
334 =t.+U$) <n, >+ X U§)8” <n >+Uf) <a. al >«
ij ij j i-o 0 if ij lo ij io jo
(14)
(3) (4) +
+2 Ujp” 8y <np_, > + Uy <a;_ a7 >,
where
(1) (2) . .
Uij =0 611 ’ U ij = (1 - 81] )(Ulj'— I” ),
: (15)
(3) , , (4) .
Uy? = =8 005 0 Uy === 8401

If one introduces the projection operator into the right-hand
side of Eq.(9), then after introducing the generalized mean-
field Green functions G%p (E) defined by equation:

g (o104 ' -
Ej}}(ijcjn = 8, (16)
for full Green functions(Eg (E) we have:

(E)= G (E) +f (}p'Tgn(E)G j(E), (17)
where the scattering operator Tg (E) reads:
Ty (E) = <(1 —P)a‘;a (1 - P)ana S (18)

As a next step we want to obtain the Dyson-type equatlon for
the Green functions G ijj (E) and an explicit expression for
the self-energy operator. Following the method of M.Ichiyana-
gi'24/ after introducing "the force" K;(t) = (1-P)ia, ;(t) and
considering the time evolution equatlon for it, we obtaln.

T, (E) = M (E) + 21 <<(1—P)1a ,la ;IU»M;TIJ(E), .(19)



where M?&(Iﬂ) is the Fourier transform of M;G(t)

+oe

[9) . g —imt

Mi; (E) = [ dtMj; (t)e . : (20)
and

o i(1-P)Lt i(1-P)Lt”~
Mll.(t—t’):—ie(t—t’)<[e K, (0), te K. (0)} >.(21)

Eq. (19) permits one to rewrite Eq.(11) in the form of the
Dyson equation

[2) oo , 00 4, T !
Gij (E):Gij (E) + 2 leMkp(E)Gy (E). (22)
From these formulas we can say that M{ﬁ (E) contains, in the
language of the diagram method, the irreducible diagrams whose
representation yields the reduc1b1e expression T (E)’?4/(see
also/®3:27-29/) 'The self-energy formulae enterlng into the
Dyson eq. requires considerable approximations. Approximations
are possible and these are made to obtain results which are
relatlvely easy to calculate and analyze. In the following,
in order to give 4 simple and transparent picture of the elec-
tronic correlations, we approximate the Fourier trarvisform iof
Mﬁ} (t-t”) by (in a symbolic notation)
o L . + ¢ \
(E) — <<1aia|(1aj0) Pt ‘ (23)

I
P

Eq.(23) denotes, unfortunately, that we remove from self-ener-
gy given by Eq.(21) almost all information which has been in-
troduced by the projection operator. Some information in a
Dyson equation about the way of introducing the projection
operator remains in the form of  the mean fields contained in
GY7 (E) . ’

It should be noticed that the above approximation is equi-
valent to the one used in papers’!2:27=2/ Fyrther discussion
of the-validity of this approx1mat1on will be given in the
next section. s

After all the- manlpulatlons have beén performed, we carmn re-
present the self energy operator in the fofm:

@(12) U(2) SD(lf3) U(3)

(1) N(1,1) (1)
(E)“E QUNSE) Gikii ik T ki ik

jij.iii ik

s

o —

PR

(2:2) () (2,3) _(3)

(1,4) __(4) () o (B:1) (1)
Dy it Uje 1+ + Uy, (D +(ijj,kii ik * Jf’“ kii Uik *

Eﬂjn ik

(2,4) (4) (3) o3 1) (1) (32) (B) (3,3) _(3)
* ’(Df” iik 1k ]+Uzj ['ijj iiiUik + 'LY]J kii Uik + ED?]J an1k +
(24)
q(3:4) .(4) (4) q (41) (1) (4,2) (2)
'Lf),jj,iikUik 1+0 £ [L_]KJIIIUik fD ilj kii Uik *
(4,3) U(3) (4,4) (4) 1)
oYk Cik Y Yjfgiaik ik )
where we denoted
(n,m) 3 + + + . _c
gty giglg = <0y tigoyt 1p0g | B0, Bigoy Bigo, 7 - (25)

The spin indices have signs as follows (in a symbolic notation):

KU [Tl D> <<ttt > <<p uyrtey > <Kl >
KM H[AEL S5 <Krr] 111 2> KT [T 3D <K At >

N
0,050, ,0, O G, .
192939 Y5 % KA [TEL>> <K rad | 191 5> <4 b [ S5 <AL In >>

KA >> <K ] a1 D> <KL [T > <KLt >

4, ELECTRONIC STATES IN MEAN-FIELD APPROXIMATION
AND ELECTRONIC QUASI-PARTICLES

Now we are going to consider the renormalized spectrum of
the mean—field Green functions G 9 (E) and damplng of the qua-
siparticle resulting from full Green functions G7 ij (E) . It
is a convenient pass with the help of the Fourier transform
to the momentum space using the transformations of the creat—

1on and annihilation operators as well as G9 ij (E), G 27 (E) and
U (E) according to the formulas:
> > o
-V ik-Rj + YA —ik-R; 4
g =N § € 2% 3ig = N % e Ay
k k
- > (26)
% —ik-R ' ) ik-R
a» =N"*3 e ia, , ah = N"% 3T e al |
ko i 10 ko i o



G?j (E) =N—1§ G’ (k; E)e R
k
e s g . 27)
- _ ~ik-(R;~R; (
G (k;E) = N3 e ' ’)G;’j (E),

ij

. . ‘e .
and similar transformation for G?j” (E) and Mf} (E) . This trans-
formation to momentum space enables us to rewrite Eq.(16) in
the form:

G°7 (kiE) = HE - (k) + N1S [U(K-) - 17 - )] x
q

s (28)
. ‘l e g ’,
x <nq»0 > - N § I7(k+q )<n-é o> -[U+U10) I<n__>-[U10) _1’(0)]<na>]‘1,
q
where
O ~ik-(R;, -R.)
() = NTE e RS (29)

and U" (k) , I’(f{) I (e (iE) are Fourier transforms of interatomic
integrals.
The renormalized energies EY (k) have the form:

Eg- nd R > . e ..
(k) = E (k) ~U<n__ >+ N' 3 (U(k-q) - T"(k- Dl<ny >
3 q

_ L. ' 30)
__N 1 ’” - ’ ’ ’ (
g- Ik +a)<n. > -U'@<n_>-[0°©) - 1'©@]<n, >,
where

-1
<bz;> =N % <ng, >

The band splitting now reads as

E'(K)-E*k) = (U ~UV@N<n > ~<ny>) s N_1§ [U'(k - q) -
q

L2 > - (3')
—l k-3 I” - - >
(k-3) + 17(k +Q)l<noa —nal >
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In the case of "= U’=1"”=0 we obtain k -independent re-
sult of the Hartree-Fock theory. Eqs.(30)-(31) generalize the
Hartree-Fock renormalized energies and band-splitting.

Now we are going to consider the electronic quasiparticles
and their damping. We can write the formal solution of the
Dyson Eq.(22) (in k -representation) as follows:

U MOk E)] 7L, (32)

- g
G’ (k;E) = [G°7(k:E)
To find an expression for the mass operator we proceed in the
same way as previously'/lz/, i.e, we express the Green function
entering into the operator MY (k; E) through the correlation
functions using the spectral theorem’ 2/, These correlation
functions are decoupling in the pair approximation (valid for
a small density of quasiparticles) in the following way:

B, (D3, (D23
. 2 N

+
a» a-
171 2 kg0

¢ +
> <& t)a >
k.o, = _l; cr( ) Txir- x

(t)fay
o s %% %6% 11 i

+ +
x <a»> (t)as» ><a> (t)
koo koog

a
ksgs _};30"3> 3?{

& » 86> » 6 ., Oy 5t
kokg "k gkg 917 "95% 3%

(33)

R
1k

+
+ <az t)yap
k303( k

408 > <ag202(t)a}*{202.> <a1;>10

1

x & S )

Ry By O By s 8005 9, 00 o500y 0

where we form all possible one-particle averages with diffe-
rent times. The simultaneous averages have been taken into
account by using the projection operators, As previously not-
ed, we do not retain spin-—flip-type correlation functions.

After lengthy algebraic manipulations, the resulting expres— -

sion for a3 self-energy can be written as follows:

o —»‘ -2 > ) > > > -
M” (k;E) =N _‘;Fq; [Jﬂ_aa_o(k;E)fl(k,p,q)+°YH_0_UO(k;E)><
> > - > > (34)
xfo(k,p,a)+ M (K;E)fg(k,p,g)],
where
M. E‘E 1 +oo dwldm2dw3
010'203( ' ) = ;5" [’I m(u{ n((:)1 )[1 - n((;.)2 )] X (35)

1 2 73
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x[1-n(o)]+[1-nlo ] (1 -1, (e, MmG (P + ko, )x
x1m G2 (p + @' wy ) M G (¢ wg ),

and

(H5.4) = U2+ U0 (p)+ UL (k+ D +0) + UU(E)+ UED) + U)K+ B +8),

£, (Kp.q) = UL(R+p v @)+ 17(K +p +QUCK-Q) + 17(K+p + 0%, (36)

£,(0,8, @) = [108) - UMUK - ) - 1K -1+ [07(p) - V(»)1%.

In the case of a simple Hubbard model we obtain from Eqs.(34-
-36) the self-energy in the form found in /D7 1n order to
determine the Green function in a fully self-consistent treat-—
ment of the correlation problem for our Hamiltonian one would
require the solution of a set of complex coupled equations
(22) and (24) or (within a pair-decoupling scheme) Eqgs.(22)
and (34). It is a very difficult problem to find a solution

of these two coupled equations. We must remember that the ex-
pression for a self-energy involves tedious integrations in a
9-dimensional space (6-dimensional integral in kK -space and
3-dimensional in energy space for 3-dimensional systems). In
principle, we can try to obtain a solution of this problem by
starting with the initial approximation for a Green function,
then calculate the self-energy and as a next step calculate a
Green function and so on. If for the first step we take simple
one-pole expression (this is a rather reasonable starting
point):

-2 m G (k:E) - 5(E - E7 (k)), (37)
where Ea'(g) is given by Eq.(30), than the 9-dimensional integ-
ral appearing in self-energy reduces to 6-dimensional ones,

and in principle, we can obtain the self-energy in a relative-
ly simple way (it is true for the first iteration step only).
If this first step is sufficient for the problem under conside-
ration, for example for U/W<< I, then we can finish the itera-
tion process at the first stage and obtain the Green function
in an approximate way. Such a method of an approximate calcu-
lation of the self-energy and spectral density of states was
used in the case of a simple Hubbard model in’?®/and for the
multi-band Hubbard model in”!2/, In order to give a short ex-

12
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planation of an approximation accepted in Egs.(23) and (33)

we insert Eq.(37) with substitution E’ - ¢ (k) into Eq.(34).

As a result, we obtain, for example in the case of a simple
Hubbard Hamiltonian, an expression for self-energy the same as
in the second-order-perturbation theory - see for comparison
formulas in“30/ and 731/, Then our.approximation contained in
Egs.(23) and (33).may in this manner be justified to some ex-
tent. The numerical results and discussion will be given in a
separate paper.
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