

9-87-322

1987

В.М.Абазов, С.А.Густов, В.П.Зорин, О.Л.Климов, С.А.Кутузов, И.В.Мирохин, Г.В.Мицын, А.Г.Молоканов, О.В.Савченко, Е.П.Череватенко

ИЗМЕРЕНИЕ ПАРАМЕТРОВ ВЫВЕДЕННОГО ПРОТОННОГО ПУЧКА РЕКОНСТРУИРОВАННОГО ФАЗОТРОНА ОИЯИ

введение

В Лаборатории ядерных проблем ОИЯИ ведутся работы по реализации разветвленной системы разводки первичных и вторичных пучков, получаемых на выведенном протонном пучке реконструированного фазотрона. Различные вопросы, связанные с оптимизацией режимов работы каналов транспортировки выведенного протонного пучка на большие расстояния, а также с получением минимальных размеров первичного протонного пучка на мезонообразующих мишенях или тормозителе протонов, требуют для своего решения знания таких параметров выведенного протонного пучка, как средняя энергия и энергетический разброс, горизонтальный и вертикальный эмиттансы, абсолютное значение интенсивности.

Целью настоящей работы явилось проведение измерений и получение первых оценок указанных параметров выведенного протонного пучка реконструированного фазотрона, а также сопоставление с ранее выполненными расчетами возможных режимов формирования и транспортировки протонного пучка по IX каналу с учетом этих параметров.

ИЗМЕРЕНИЕ СРЕДНЕЙ ЭНЕРГИИ И ЭНЕРГЕТИЧЕСКОГО РАЗБРОСА ВЫВЕДЕННОГО ПРОТОННОГО ПУЧКА

Величины средней энергии и дисперсии энергетического распределения могут быть получены из анализа кривых Брэгга, измеренных на этом пучке. Средний пробег протонов R_p соответствует значению толщины поглотителя на спаде за пиком Брэгга, где мощность дозы составляет 0,82 от мощности дозы в пике Брэгга /1/. Величина дисперсии пробегов σ_R /при гауссовском их распределении/ определяет крутизну спада ионизации за пиком Брэгг га и равна интервалу толщины поглотителя, на котором происходит спад от 0,82 до 0,33 от мощности дозы в пике Брэгга.

Полная флуктуация пробегов при замедлении пучков тяжелых заряженных частиц $\sigma_{\rm R}$ является результатом немонохроматичности первичного пучка $\sigma_{\rm RE}$: страгглинга, обусловленного статистичес-кими флуктуациями потерь энергии $\sigma_{\rm RS}$ и страгглинга, обусловленного ленного многократным кулоновским рассеянием $\sigma_{\rm RK}$.

В этом случае дисперсия пробегов, характеризующая немонохроматичность первичного пучка, определяется из соотношения:

$$\sigma_{\rm RE} = \sqrt{\sigma_{\rm R}^2 - (\sigma_{\rm RS}^2 + \sigma_{\rm RK}^2)}.$$

Измерения кривых Брэгга проводились полупроводниковым кремниевым детектором в водном фантоме, расположенном в лаб. № 4 за магнитом СП-37 на на-

правлении неотклоненного пучка протонов /рис.1/.Выведенный из фазотрона пучок протонов повора-

чивался магнитами СП-35 и ОМ-1 на углы 4° и 0,5° соответственно и фокусировался дублетами квадрупольных линз Q₁ и Q₂ на центр углеродного замедлителя. Заторможенный протонный пучок ограничивался сменным коллиматором K₁ углеродного замедлителя, проходил отверстие в защитной стене и далее через

апертуру линзы ${\sf Q}_3$ и магнит СП-37 попадал на водный фантом. Измерения были выполнены при двух значениях толщины углеродного замедлителя /167,6 г/см² и 181,8 г/см² углерода/ при различных размерах коллиматора ${\sf K}_1$ /диаметром от 1 см до 8 см/, расположенного непосредственно за углеродом. Были учтены потери энергии в фольгах вакуумного канала и в воздухе, а также неводоэквивалентность детектора. На рис.2 показан один из измеренных в водном фантоме конечных участков кривой Брэгга заторможенного пучка протонов.

Погрешность определения средней энергии обусловлена погрешностью определения толщины углерода в замедлителе /0,2% - точность изготовления углеродных блоков, 0,3% - точность определения плотности углерода/ и точностью использовавшихся табличных данных зависимости пробегов от энергии в углероде ^{/2/}/1,4%/.

Полученное таким образом значение средней энергии выведенного из фазотрона пучка протонов составило:

 $T_{\rm p}$ = /659 ± 6/ M₃B.

Из измерений дисперсии пробега протонов в водном фантоме получена величина $\sigma_{\rm R(H_{2}O)}$ = /2,1 ± 0,2/ г/см², где приведенная

Рис.2.

ошибка определяется погрешностями метода и разбросом величин $\sigma_{\rm R(H_0\,O)}$ в разных сеансах. Это соответствует дисперсии пробе-

га в углероде $\sigma_{\rm RC} = /2,3 \pm 0,22/$ г/см². Страгглинг, возникающий в результате статистических флуктуаций потерь энергии в углероде по данным работы ^{/2/}, составляет $\sigma_{\rm RS} = /1,84 \pm 0,04/$ г/см². Дисперсия пробега за счет многократного кулоновского рассеяния $\sigma_{\rm RK}$ дает вклад менее 1% и им можно пренебречь. Тогда дисперсия пробега из-за немонохроматичности пучка будет равна $\sigma_{\rm RE} = \sqrt{2,3^2 - 1,84^2} = 1,38$ г/см². Это соответствует дисперсии энергетического распределения пучка $\sigma_{\rm E} =$

 $= \sigma_{\rm RE} \cdot dE/dx \cdot /660$ MaB, c/ = 1,38x2,23 = 3,1 MaB.

Относительная погрешность определения $\sigma_{\rm E}$ обусловлена в основном погрешностью измерения $\sigma_{\rm R}$ и может быть получена из формулы:

$$\frac{\Delta \sigma_{\rm E}}{\sigma_{\rm E}} \simeq \frac{1}{1 - \frac{\sigma_{\rm RS}^2}{\sigma_{\rm R}^2}} \cdot \frac{\Delta \sigma_{\rm R}}{\sigma_{\rm R}} = 0.26.$$

Отсюда $\Delta \sigma_{\rm E}$ = 0,8 МэВ, таким образом дисперсия энергетического распределения выведенного протонного пучка фазотрона равна:

$$\sigma_{\rm E} = /3, 1 \pm 0, 8 / M \Rightarrow B$$

ИЗМЕРЕНИЕ ИНТЕҢСИВНОСТИ ВЫВЕДЕННОГО ПУЧКА ПРОТОНОВ

Измерения абсолютного значения интенсивности выведенного пучка протонов осуществлялись калориметрическим методом $^{/3/}$ В новых калориметрах в качестве рабочего тела была выбрана медная пластина размером 5х20 см 2 и толщиной 1 см, что позволяет измерять абсолютную интенсивность протонных пучков в интервале от 0,03 до 10 мкА с точностью около 10%. Интенсивность пучка определялась по калибровочной формуле: I $_{\rm p}$ = 0,35 Δ T/ Δ t, где I $_{\rm p}$ - средняя интенсивность пучка в мкА, Δ T - разность показания термометра в градусах Цельсия, Δ t - время измерения в мин. В 1986 году для получения медицинских протонных пучков с энергиями 100, 130 и 200 МэВ использовалась интенсивность выведенного протонного пучка до 2 мкА, а при настройке 1X и X каналов - до 1 мкА.

ОЦЕНКА ВЕРТИКАЛЬНОГО И ГОРИЗОНТАЛЬНОГО ЭМИТТАНСОВ ВЫВЕДЕННОГО ПРОТОННОГО ПУЧКА

Эмиттанс выведенного протонного пучка определялся тремя способами:

1/ методом получения минимального значения огибающей /4/;

2/ методом трех токов '5/:

3/ методом измерения профиля пучка в трех сечениях дрейфового промежутка тракта ⁶⁷:

Профили выведенного протонного пучка интенсивностью примерно 0,2 мкА измерялись специально созданным полупроводниковым профилометром, работающим на связи с ЭВМ. Абсолютная точность измерения огибающей пучка этим профилометром не хуже 1 мм. На рис.3 показаны измеренные с помощью этого профилометра два сечения протонного пучка в месте расположения одной из мезонных мишеней.

Многократное рассеяние в воздухе учитывалось в соответствии с подходом, развитым в работах ^{/7.}.

В таблице приведены результаты оценки горизонтального - ϵ_x и вертикального - ϵ_y эмиттансов протонного пучка, соответствующих огибающей на уровне 2σ , на границе рассеянного магнитного поля фазотрона /рис.1/. Приведенные ошибки соответствуют ошиб-ке в измерении огибающей 1 мм.

В работе ^{/8/} была показана возможность транспортировки выведенного протонного пучка фазотрона ОИЯИ до мишени широкоугольной пи-мезонной линзы, при следующих характеристиках пучка на границе рассеянного магнитного поля ускорителя

Таблица

	23.04.86 /мин.огибающая/	29.09.86 /три сечения/	12.10.86 /три тока/
« _х /см∙мрад/	6,9±1,4	6,4±1,4	5,4
_{€у} /см∙мрад/	3,3±0,8	4,4±1,3	-''-

H

 $\epsilon_x \leq 7,0$ см·мрад; $\epsilon_y \leq 4,0$ см·мрад; $E \approx 660$ МэВ; $\Delta E/E \leq 1\%$. Значения горизонтального и вертикального эмиттансов, энергии и энергетического разброса выведенного протонного пучка,

измеренные в настоящей работе при интенсивности ~ 0,2 мкА, примерно укладываются в рамки сделанных в ^{/8./} предположений. Определение возможных изменений этих параметров при переходе к интенсивности выведенного протонного пучка > 1 мкА потребует применения другой методики измерения.

ЛИТЕРАТУРА

- 1. Mather R., Segre E. Phys.Rev., 1951, v.84, p.191.
- 2. Janny J.F. Proton Range-Energy Tables. Atomic Data and Nuclear Data Tables. 1982, v.27., No.2-5.
- 3. Джелепов В.П., Комаров В.И., Савченко О.В. ОИЯИ, 16-3491, Дубна, 1967.
- 4. Бенфорд А. Транспортировка пучков заряженных частиц. М.: Атомиздат, 1969.
- 5. Plass H., Blumberg L. BNL Accel.Dept.Report, ATS-DIN, 68-4, 1968.
- 6. Асеев В.Н. и др. Некоторые алгоритмы настройки магнитооптических систем. Труды IX Всесоюзного совещания по ускорителям заряженных частиц. ОИЯИ, Дубна, 1985, т.I, с.277.
- 7. Абросимов Н.К. и др. Оптика пучков в условиях многократного рассеяния в газе. Там же, т. I, с.352. Абросимов Н.К. и др. ЛИЯФ, 1170, Ленинград, 1986. Абросимов Н.К. и др. ЛИЯФ, 1171, Ленинград, 1986.
- 8. Кузьмин Е.С. и др. ОИЯИ, 9-82-406, Дубна, 1982.

Рукопись поступила в издательский отдел 8 мая 1987 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ

ИССЛЕДОВАНИЙ

Индекс	Тематика
<u></u>	_
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика