

P7-85-902

В.Н.Бугров, В.Г.Виноградов, С.А.Карамян

ЭКСПЕРИМЕНТ

ПО ОПРЕДЕЛЕНИЮ ВРЕМЕНИ ПРОТЕКАНИЯ РЕАКЦИИ ДЕЛЕНИЯ ЯДЕР 22 Ne + 238 U

Направлено в журнал "Ядерная физика"

1985

ВВЕДЕНИЕ

Механизм деления ядер урана под действием тяжелых ионов не выяснен в деталях. Считается вероятным, что кроме деления составного ядра возможен немалый вклад процессов с неполной передачей импульса. Деление составного ядра содержит некоторую долю эмиссионного деления после испускания нейтронов, а также заряженных частиц. Используются предположения о вкладе распада неравновесной системы и об эволюции двойной ядерной системы непосредственно из долины слияния в долину деления. Относительные сечения перечисленных процессов не определены достаточно точно. Некоторые результаты получены методом измерения угловой корреляции пары осколков деления /1-4/, сделаны попытки оценить механизм реакции на основе измерения углового распределения осколков /5-7! Анализ результатов, полученных в последнем случае, содержится в ^{/8,9}. Для взаимодействия свинца и урана с ядрами элементов тяжелее титана недавно определена /10,11 временная длительность реакций в диапазоне /3 10 -21- 10 -20 / с и обоснован механизм квазиделения как процесса энерго- и массообмена в двойной системе. При взаимодействии ионов типа ⁴⁰Ar , ⁵⁰ Ti с тяжелыми ядрами возможно описание процесса в терминах деления составного ядра и квазиделения 1,9,12/. В случае реакций с участием более легких ядер от ¹²С до ²⁷А1 не получено явных указаний на отличие механизма деления от традиционной концепции деления составного ядра с некоторым вкладом деления продуктов неупругих реакций. Такое положение обуславливает необходимость дальнейшего выяснения механизма реакций с помощью различных экспериментальных методов. В настоящей работе реакция деления ²²Ne + ²³⁸U изучена с помощью эффекта теней, позволяющего определить вклад долгоживущей / т ~ 10 - 17 с/ ветви деления и получить новые данные о механизме реакции. Подобные опыты впервые были выполнены ранее /13/ однако получен материал, недостаточный по объему, здесь восполняется этот недостаток.

1. ЭКСПЕРИМЕНТ ПО НАБЛЮДЕНИЮ ЭФФЕКТА ТЕНЕЙ

Схема эксперимента показана на рис.1. Пучок ионов ²²Ne, выведенный из циклотрона У-300 ЛЯР ОИЯИ, проходил через коллиматор с последней диафрагмой диаметром 1 мм, тормозящие фольги, и попадал на монокристаллическую мишень. Использованы образцы монокристаллов, изготовленные методом ^{/14/}. Грань (100) монокри-

оъсявненный институт васрина исследования **GNE**JHOTEK

1

Рис.1. Схема эксперимента. 1 - пучок, 2 - диафрагмы, 3 тормозящая фольга, 4 - монокристаллическая мишень, 5 - детекторы.

сталла подвергалась механической и химической обработке. Кристаллографическая ось <100 > направлялась под углом около 150° к пучку ионов, при этом пара осей <110> и <110> имела углы около 105 и 165° по отношению к пучку. Плоскость (001) составляла угол около 5° с пучком. Теневые минимумы в пространственном распределении осколков деления фиксировались стеклянными трековыми детекторами, перекрывающими широкий угловой диапазон. Был выполнен целый набор облучений, в том числе: ряд последовательных экспозиций одного участка мишени с целью получения зависимости параметров теневых минимумов от дозы ионов, несколько облучений свежих участков монокристалла при изменении угла ориентации мишени /энергия ионов 172 МэВ/, а также экспозиции монокристалла при других значениях энергии ионов. В ходе работ выяснилось, что различине участки монокристалла, в том числе в пределах одного образца, дают теневую картину различного качества. Поэтому при получении результатов выход в теневом минимуме Х по абсолютной величине сравнивается только для экспозиций одного и того же участка монокристалла, а результаты, полученные для разных точек мишени, сопоставляются только по разности выходов $\Delta \chi$ для пары идентичных осей.

Необходимо было выяснить вопрос о допустимой величине интенсивности пучка. Монокристалл прикреплялся серебряной пастой к массивному металлическому держателю, что обеспечивало эффективный отвод тепла. Тем не менее, ограничение интенсивности пучка имеет существенное значение, так как добавочные опыты показали, что увеличение плотности потока ионов ²²Ne до значений >1012 см -2 с -1 ведет к изъязвлению облучаемой поверхности типа радиационного травления. Foree того, облучение ионами ⁴⁰Ar /220 МэВ/ при плотности п. 2 ·10 12 см -2 с-1 приводит к образованию кратера в месте попадания пучка на UO2 монокристалл. Далее было установлено, что достаточно высокая интенсивность пучка ионов ²²Ne способствует образованию макротрещины на границе области облучения. т.е. в зоне максимального градиента потока частиц. Макротрещина могла образоваться в процессе облучения, удалось наблюдать также ее появление через несколько часов после окончания облучения. Это объясняется возникновением больших механических напряжений внутри образца, постепенным выходом их на поверхность и разрядкой путем образования трещины. Поскольку наблюдавшиеся язвы радиационного травления, а также кратер имели неровные, неоплавленные края, то можно думать, что их появление также объясняется, главным образом, механическими напряжениями, генерируемыми пучком, и в меньшей степени – его тепловым воздействием. Не исключена также некоторая роль электростатических сил, так как UO₂ обладает низкой электропроводностью. В результате этих опытов была установлена максимально допустимая интенсивность пучка ≈10¹⁰ с⁻¹ ионов ²²Ne с энергией 172 МэВ. Ей отвечает тепловая мощность пучка около 0,3 Вт и плотность потока ионов - около 10¹² см⁻² с⁻¹.Соответствующее увеличение макротемпературы образца не превышает нескольких десятков градусов, согласно оценке.

2. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ТЕНЕВЫХ МИНИМУМОВ

При ограниченной интенсивности пучка по мере увеличения интегрального потока ионов происходит постепенное накопление радиационных дефектов в объеме облучаемой области монокристалла. что сопровождается изменением параметров теневых минимумов с ростом дозы ионов, Результаты получены путем сканирования теневых минимумов в пространственном распределении осколков деления, записанном на трековом детекторе за время экспозиции. Контроль повреждения кристалла по эффекту теней проводится в данном случае непосредственно в процессе накопления дефектов. На рис.2 показана полученная зависимость угловой ширины /на половине глубины/ 2 $\psi_{1/2}$ минимумов для двух осей типа <110 > и оси <100>. Характер зависимости соответствует установленному ранее в случае облучения монокристаллов W и Ce^{15,16}На рис.3а.б показано, как увеличивается выход в теневом минимуме с ростом дозы для оси (100 к пары осей типа (110 / дано среднее значение/ соответственно. Величина χ_{pag} по определению равна χ_{pag} = $= 1 - (1 - \chi_{3KCR}) (1 - \chi_0)^{-1}$, где χ_0 - выход в случае необлученного кристалла, $\chi_{эксл}$ - измеренный при определенной плотности дозы І. Величина І представляет собой среднее по экспозиции значение. По результатам рис. За, б путем экстраполяции можно определить значения повреждающей дозы $I_{0,2} = /1,3+0,3/10^{16}$ см⁻² и /1,8+0,4/ 10¹⁶ см⁻² в случае осей <110> и <100, соответственно. Приведенные погрешности включают как неточности, связанные с измерением X рад. так и с определением дозы I по выходу осколков деления. Величина I0.2 введена в работе 17/ как доза, при которой выход в минимуме возрастает до значения Храд = 0,2. Полученные здесь численные значения I_{0,2} находятся в хорошем соответствии с установленной ранее '17/ систематикой повреждающего воздействия тяжелых ионов на монокристаллы.

Представляет интерес сравнить параметры теневых минимумов осей 110> и 00>. Отношение угловой полуширины минимумов согласуется с закономерностями, обсуждавшимися в работе ^{/18/}. Выход

Рис.2. Зависимость угловой ширины теневых минимумов от дозы ионов ²²Ne для кристаллографических осей $UO_2 < 110 >$, < 110 >, < 100 > - a, 6, в соответственно.

Рис.3. Зависимость от дозы ионов величины χ_{pag} для осей типа <100 > и <110> - а,б соответственно, а также разности Δ_Y - в.

в минимуме для оси <100> оказался существенно меньше, чем для <110>. Если произвести усреднение измерений X при минимальных дозах, то получим $\chi_{<110>} = 0.433$, в то время как $\chi_{<100>} = 0.366$. К тому же повреждающее воздействие ионов сильнее сказывается на увеличении χ для оси <110>, чем <100>, что ясно из приведенных значений I_{0.2}. Ранее такая же особенность < 110> минимумов отмечалась /19/ по отношению к минимумам <111> и была объяснена различием в расположении атомов кислорода относительно урана. Объяснение состояло в том, что в случае оси <110> атомы кислорода образуют отдельные ряды, расположенные между рядами урана, что приводит к добавочному рассеянию частиц, движущихся в канале, в отличие от оси <111>, в которой атомы U и О образуют общие ряды. В данном случае такое объяснение неприменимо.В осях <110> и <100> атомы U и O образуют отдельные ряды, тем не менее ось <100> дает более глубокий и более устойчивый к повреждению теневой минимум, чем <110>. Это достаточно выраженное различие, возможно, не связано с ролью атомов кислорода, оно, по-видимому, относится к еще не понятым особенностям структуры атомного потенциала осей различных индексов в UO ".

3. ВЛИЯНИЕ ДЛИТЕЛЬНОСТИ РЕАКЦИИ НА ТЕНЕВЫЕ МИНИМУМЫ

Как известно, временная задержка реакции, приводящая к смещению распадающегося ядра из кристаллографической оси или плоскости, различным образом сказывается на выходе X для кристаллографических направлений, составляющих различные углы heta с пучком. При изменении θ меняется значение нормального смещения V, t_{*} которое определяет глубину теневого минимума. Поэтому эффект времени протекания реакции следует искать в наблюдении разности выходов $\Delta \chi$ для двух идентичных осей типа <110>. Величину $\Delta \chi$ определим следующим образом: $\Delta \chi = 1 - (1 - \chi_2)(1 - \chi_1)^{-1}$ где X2 - выход для оси, ориентированной под углом около 105° а X1 - под углом около 165° к пучку. В процессе исследования повреждающего воздействия ионов ²²Ne на UO₂ эксперимент многократно повторялся при энергии ионов 172 МэВ, в каждом из них определено значение $\Delta \chi$. Величины $\Delta \chi$ представлены на рис.3в в зависимости от дозы ионов І. Видно, что не наблюдается монотонного изменения Δ_X с дозой, поэтому можно считать величину Δχ не зависящей в первом приближении от степени повреждения монокристалла. Таким образом, получено статистически обеспеченное, отличное от нуля, среднее значение $\Delta \chi = 0.056+0.018$. которое следует приписать влиянию временной задержки реакции. При энергиях ионов 128 и 146 МэВ /на входе в мишень/ разность ΔХ не обнаружена в пределах абсолютной погрешности +0.04.

Во введении перечислен ряд возможных механизмов реакции деления. Необходимо выяснить, какому из них отвечает сравнительно долгоживущий компонент процесса, ответственный за наблюдаемую величину Δx . Для получения ответа были выполнены добавочные эксперименты. Измерена зависимость величины $\Delta \chi$ от угла поворота пары осей <110> относительно пучка. Поворот осуществлялся в плоскости реакции, так что угол между осью № 1 и пучком θ_1 менялся в пределах от 158° до 168°. Это приводит к изменению соотношения между нормальными смещениями v_1 τ для двух осей и должно влиять на разность $\Delta \chi$. На рис.4 показана зависимость величины $\Delta \chi$ от угла θ_1 , а также от средней по толщине мишени энергии ионов \vec{E}_L . Точки на диаграмме $\Delta \chi(\vec{E}_L)$ не противоречат полученным ранее результатам работы $^{/13}$, видно, что $\Delta \chi$ увеличивается с ростом \vec{E}_1 . Зависимость $\Delta \chi$ (θ_1) оказалась слабой.

Рис.4. Величины $\Delta \chi$, полученные при разных значениях угла θ_1 между осью <110 > и пучком в случае $E_L = 172$ МэВ /а/, а также при $\theta_1 = 158^\circ$ в зависимости от средней энергии ионов E_L /б/. Точки: о – результаты настоящих измерений, • – работы ^{/13/}. Кривые показывают вычисленные значения отношения v_L (2)/v_L (1).

Второй добавочный эксперимент состоял в сравнении результатов для двух реакций 12 C /81 MэB/+ 288 U и 22 Ne/172 MэB/+ 238 U. При облучении одного и того же участка монокристалла ионами 12 C и 22 Ne сравнивались соответствующие теневые минимумы, определено значение ΔX , причем X_1 - выход в минимуме, зафиксированный в первой реакции, X_2 - для той же оси во второй. Получено среднее для трех осей значение $\overline{\Delta X} = 0,047+0,028$.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Представленный выше набор экспериментальных данных дает основу для анализа вклада различных механизмов в полное сечение деления. Согласно полуэмпирической систематике /8/, длительность распада возбужденного ядра ²⁶⁰102 при E*>60 МэВ составляет $\tau < 10^{-19}$ с и убывает с ростом E*, Абсолютная величина τ и его зависимость $\tau(\mathbf{E}^*)$ не соответствуют результатам измерения ΔX . Анализ вклада в $\Lambda\chi$ эмиссионного деления для реакции 22 Ne = 238 U сделан ранее 20. Оказалось, что при выборе параметров статистической модели. близких к традиционным /модель ферми-газа с а = = 0.1 А. убывание барьера деления В (Е*) и т.п./, не удается достичь согласия с экспериментальными /13 значениями ΔX по порядку величины. Значительное изменение параметров позволяет порядку величина, оне 20 за счет довольно большого вклада в $\sigma_{f_{21}}$ процесса деления после испускания 3-5 нейтронов. В работе экспериментально показано, что вклад эмиссионного деления убывает с ростом Z делящегося ядра при Z = 92-96. Таким образом, на основе эмпирических данных, теоретических оценок и расчетов величин ΔX ясно, что интерпретация данных на основе эмиссионного деления затруднена.

Довольно естественна попытка описать полученные значения χ вкладом деления продуктов реакций с неполной передачей импульса. В частности, разность $\Delta \chi$, обнаруженная при сравнении реакций 12 С + 238 U и 22 Ne + 238 U, может быть объяснена, так как вклад этих процессов значительно больше во второй реакции, чем в первой ${}^{(1,2)}$. Попытаемся объяснить и другие результаты измерений. Мишенеподобные продукты неупругого взаимодействия /делящиеся ядра/ имеют достаточно широкое угловое распределение в л.с., зависящее от энергии ионов. Оно может быть вычислено на основе известных в литературе распределений легких продуктов неупругого взаимодействия и углу/см., например, обзор ${}^{(22)'}$ /. Можно вычислить также средний импульс делящегося ядра по нормали к кристаллографической оси Р, с помощью формулы:

 $\overline{\mathbf{p}_{\perp}^{2}}(\theta_{0}) = 2\pi\sigma^{-1}\int_{0}^{\pi} [\sin^{2}\theta_{0}(\mathbf{p}_{0}-\mathbf{p}\cos\theta)^{2} + \frac{1}{2}\mathbf{p}^{2}\sin^{2}\theta(1+\cos^{2}\theta_{0})] \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\sin\theta \,\mathrm{d}\theta,$

где σ и $d\sigma/d\Omega$ - интегральное и дифференциальное сечения для легкого продукта неупругого взаимодействия, р и θ - его средний импульс и угол вылета в л.с., р₀ - импульс бомбардирующей частицы, θ_0 - угол между кристаллографической осью и пучком. Вычисленные значения среднеквадратичного поперечного импульса р₁ позволяют определить значения нормальных составляющих скорости $v_1(1)$ и $v_1(2)$ для двух кристаллографических осей, их отношение определяет получаемое в опыте значение ΔX . На рис. 4 показано, как зависит отношение $v_1(2)/v_1(1)$ от энергии ионов E_1 и от

угла θ_1 . Слабая зависимость $\Delta\chi(\theta_1)$ /несмотря на изменение $\frac{v_L(2)}{v_L(1)}$ / может быть объяснена с учетом углового распределения осколков целения продуктов неупругих реакций $^{/9'}$. Увеличение вклада этого компонента деления при приближении θ_1 к 180° сглаживает зависимости $\chi_1(\theta_1)$ и $\Delta\chi(\theta_1)$. Возрастание $\Delta\chi$ с энергией \overline{E}_L , возможно, объясняется функцией возбуждения обсуждаемого процесса. Однако следует заметить, что имеются трудности в получении соответствия между расчетом и экспериментом по абсолютным значениям $\Delta\chi$. В работе $^{/23/}$ сделаны вычисления вклада в $\Delta\chi$ деления, следующего за неупругой реакцией, и процесса (22 Ne, af), при энергии ионов 175 МэВ получено суммарное значение $\Delta\chi = 0,01$, в то время как измеренное $\Delta\chi = 0,056$. Не исключено, что вариация параметров расчета может уменьшить отмеченное расхождение.

Имеется еще одна возможность интерпретации данных - связать их с образованием и распадом в канал деления долгоживущей двойной ядерной системы, типа наблюдавшейся $^{/24/}$ для системы 20 Ne+Ge. Рассмотрение показывает, что характер зависимостей $\Delta\chi(\theta_1)$ и $\Delta\chi(E_L)$ не противоречит такому механизму. На основе измеренных значений $\Delta\overline{\chi}$ можно определить количественные характеристики долгоживущей ветви деления: $\tau = 2,2 \ 10^{-17}$ с; $\sigma^f_{\rm ДОЛГ} / \sigma^f_{\rm ПОЛH} = 0,12$; $A^f_{\rm ДОЛГ} = 1,5 \ A^f_{\rm ОСНОВН}$, где A - параметр угловой анизотропии. Оценки сделаны при использовании временного распределения событий деления в гауссовской форме $^{/25/}$ при выборе параметра $\sigma = 0,5r$.

Таким образом, измерения, выполненные с помощью эффекта теней для осколков деления в реакции 22 Ne + 238 U, позволяют сделать вывод о заметном вкладе долгоживущего / $r \approx 2.10^{-17}$ с/компонента деления.

Авторы благодарны Г.Н.Флерову и Ю.Ц.Оганесяну за интерес к работе, А.Ф.Тулинову за предоставление монокристаллической двуокиси урана.

ЛИТЕРАТУРА

 Sikkeland T., Haines E.L., Viola V.E., Jr. Phys.Rev., 1962, 125, p.1350; Sikkeland T. Phys.Lett., 1968, B27, p.277.

- 2. Карамян С.А. и др. ЯФ, 1969, 9, с.715.
- 3. Lesko K.T. et al. Phys.Rev., 1983, C27, p.2999.
- 4. Зодан Х. и др. В сб.: Краткие сообщения ОИЯИ, 1984, № 4, с.15.
- 5. Back B.B. et al. Phys.Rev.Lett., 1983, 50. p.818.
- Ramamurty V.S., Kapoor S.S. Phys.Rev.Lett., 1985, 54, p.178.
- 7. Rossner H. et al. Phys.Rev., 1983, C27, p.2666.
- 8. Vaz L.C., Alexander J.M. Z.Phys., 1983, A312, p.163.
- 9. Карамян С.А., Бугров В.Н., Спиридонов Н.И. ЯФ, 1986, 43, № 2.
- 10. Bock R. et al. Nucl. Phys., 1982, A388, p.334.
- 11. Toke J. et al. Nucl. Phys., 1985, A440, p.327.
- 12. Lützenkirchen K. et al. GSI-Scient.Rep., 1983, p.25; 1984, p.37.
- 13. Бугров В.Н. и др. ЯФ, 1977, 25, с.713.
- 14. Кордюкевич В.О. и др. АЭ, 1977, 42, с.131.
- 15. Бугров В.Н., Карамян С.А. ЯФ, 1984, 40, с.857.
- 16. Бугров В.Н. и др. Изв.АН СССР, сер.физ., 1985, 49, с.855.
- 17. Бугров В.Н., Карамян С.А. ОИЯИ, Р14-84-731, Дубна, 1984.
- 18. Бугров В.Н., Карамян С.А. Изв.АН СССР, сер.физ., 1984, 48, с.989.
- 19. Gibson W.M., Nielsen K.O. Proc. Second Int.Symp. on Phys. and Chem. of Fission. IAEA, Vienna, 1969, p.861.
- 20. Каманин В.В., Карамян С.А. ЯФ, 1978, 28. с.403.
- 21. Заика Н.И. и др. ЯФ, 1980, 31, с.43.
- 22. Волков В.В. ЭЧАЯ, 1975, 6, с.1040.

8

- 23. Бугров В.Н., Карамян С.А. ЯФ, 1982, 35. с.558.
- 24. Карамян С.А. Письма в ЖЭТФ, 1984, 40, с.196.
- Grainer W. Proc.Int.Conf.on Nucl.Phys. Bologna, Tip.Comp., 1983, vol.2, p.635.

Рукопись поступила в издательский отдел 16 декабря 1985 года. Бугров В.Н., Виноградов В.Г., Карамян С.А. Р Эксперимент по определению времени протекания реакции деления ядер ²² Ne + ²³⁸ U

С целью определения временной длительности ядерной реакции выполнены эксперименты по исследованию эффекта теней при облучении монокристаллической мишени (100) UO₂ ионами ²²Ne и регистрации осколков деления. Прослежена зависимость параметров осевых <100 > и <110 > теневых минимумов от дозы ионов. Измерена разность выхода в минимуме $\Delta \chi$ для пары осей типа <110 >, и при энергии ионов 172 МэВ определен заметный вклад долгоживущего / $\tau \approx 2 \cdot 10^{-17}$ с/ компонента деления. Величина $\Delta \chi$ измерена при разных значениях энергии ионов и угла поворота пары кристаллографических осей относительно пучка. Проведено сравнение выходов в минимумах X для двух реакций ¹²C, ²²Ne + + ²³⁸U. Это позволяет оценить характер механизма реакции, ответственного за долгоживущий компонент деления.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ. Препринт Объединенного института ядерных исследования. Дубиа 1985

Перевод О.С.Виноградовой

=

Bugrov V.N., Vinogradov V.G., Karamian S.A. Measurement of Time Duration of the ²²Ne + ²³⁸U Nuclear Fission Reaction

The (100) UO₂ monocrystalline target was irradiated by ²²Ne ions and fission fragments were detected in order to observe the blocking effect and to estimate the time duration of the nuclear reaction. Axial <100> and <110> blocking minimum parameters were followed as a function of the ion dose. Minimum yield difference has been measured for the axes pair type <110>, and long-living ($\tau \approx 2 \cdot 10^{-17}$ s) fission component has been extracted at 172 MeV ion energy. $\Delta \chi$ value is measured at different ion energies and rotation angle of the crystallographic axes pair relatively to the beam. Minimum yields χ are compared for ^{22}C , $^{22}Ne+$ ^{238}U reactions. These results give the possibility to estimate the type of reaction mechanism responsible for long-living fission component.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1985

P7-85-902