

В.А. Морозов, Т.М. Муминов, А.Б. Халикулов

ИССЛЕДОВАНИЕ ВРЕМЕН ЖИЗНИ УРОВНЕЙ 2⁺ и 4⁺ основной ротационной полосы в четно-четных ядрах Оs, Er и Dy

1970

AFFIRM X

1450PM

В.А. Морозов, Т.М. Муминов*, А.Б. Халикулов*

P6-5201

ИССЛЕДОВАНИЕ ВРЕМЕН ЖИЗНИ УРОВНЕЙ 2⁺ и 4⁺ основной ротационной полосы в четно-четных ядрах Ов, Ег и Dy

84 24/2 yr

CONSTRUCTION CONTRACTOR

Исследования времен жиэни уровней ротационной полосы в четночетных ядрах вызывают значительный интерес в связи с тем, что такие исследования позволяют провести проверку ряда модельных представлений о строении ядра.

Экспериментальные значения периодов полураспада $T_{1/2}$ эксп. уровней ротационной полосы основного состояния позволяют определить приведенные вероятности переходов B(E2), внутренние электрические квадрупольные моменты Q_0 , параметры деформации ядер β и т.д.

Схемы возбужденных состояний исследуемых четно-четных ядер относительно хорошо изучены /1/.

Времена жизни первых возбужденных состояний 2^+ и 4^+ рассматриваемых ядер, за исключением ¹⁸⁴Os , были определены различными методами /2-29/. В ряде случаев результаты различных работ существенно различаются между собой. Большинство измерений проведено методом задержанных совпадений с использованием сцинтилляционных спектрометров, которые не позволяют провести четкое выделение каскадных излучений, и, поэтому на результаты таких измерений могли повлиять времена жизни других состояний. Поэтому было целесообразно повторить эти измерения методом $e-\gamma$ – задержанных совпадений. Использование магнитного β -спектрометра с хорошим энергетическим разрешением существенно повыщает надежность результатов.

1. Аппаратура

Измерения проводились на установке для измерений времен жизни возбужденных состояний ядер ^{/30/}, собранной на базе магнитно-линзового

 β -спектрометра ^{/31/}. Времена жизни уровней 4⁺ измерялись с применением системы контроля аппаратурных нестабильностей ^{/30/}. Собственное временное разрешение установки на источнике ⁶⁰ Со для разных измерений составляло 2 $\tau_0 = 0,6-1,2$ нсек. Измерения проводились при энергетическом разрешении β -спектрометра $R \approx 2\%$.

2. Обработка экспериментальных результатов

Экспериментальные результаты измерений времен жизни уровней обрабатывались по методу наименьших квадратов на ЭВМ БЭСМ-4 и БЭСМ-6. Погрешности определения экспериментальных результатов включают в себя, помимо статистической ошибки, ошибку абсолютной калибровки цены канала временного анализатора.

3. Получение радиоактивных источников

Радиоактивные источники для исследования времен жизни уровней в ядрах Dy и Er были получены в результате реакций глубокого расщепления тантала при облучении его протонами с энергией E_p =660 Мэв на синхроциклотроне ОИЯИ. Время облучения для разных измерений составляло 0,5-4 часа.

Выделение радиоактивных препаратов из облученных мишеней производилось методом хроматографического разделения /32/.

Измерение времени жизни уровня 4⁺ в ядре ¹⁸⁴Os проводилось с источниками радиоактивных изотопов иридия, полученных при облучении золота в течение четырех часов протонами с энергией E_p = 660 Мэв на синхроциклотроне ОИЯИ и выделенных радиохимическим методом ^{/33/}.

4. Условия измерений

Условия измерений времен жизни первых возбужденных состояний 2⁺ и 4⁺ в исследуемых ядрах приведены в таблице 1.

Условия измерений времен жизни уровней 2⁺ и 4⁺ основной ротационной полосы в четно-четных ядрах Dy, Et и Os

Таблица 1

Ядро	Еўр кэв. 1 7	Радио- актив- ный пре- парат источника		Время Т от конца облу- чения до на- чала измере- ний	Совпадения, в которых определяется Т _{I/2} уровня
156 _{Ду}	I38	2+	Но	І.5 часа	(L-I38)(Е _f =300+900 кэв)
158 _{Ду}	99	2+	Er	5 часов	(1-99) (Е ₅ =300 : 950 кэв)
160 _{Ду}	87	2+.	Er	4 часа	(187)(Е ₁ =300 : 800 кэв)
160 _{Ду}	284	′¦+	Er	20 часов	(K-197)(E,=600+900 KBB)
162_{Er}	I02	2*	Ув	І час	(L-IO2)(E;=4CO+900 кэв)
164 _E r	91	2+	Ув	I vac	(L-9I) (E _f =400:900 кэв)
166. _{Er}	8I	.2+	Ув	30 часов	(1-81)(Е; =400:900 кэв)
166 _{Er}	265	-4+	Ув	30 часов	(L-I84)'(E _r =600+900 кэв)
¹⁸⁴ 0s	384	4+	Ir	3 часа	(К-264)(Е _г =650+900 кэв)

Значение периодов полураспада исследуемых уровней представлены в таблице 2.

5. Обсуждение экспериментальных результатов

В таблице 2 представлены значения величин В(Е2), Q_0 и β , определенных по экспериментальным временам жизни первых возбужденных состояний 2⁺ и 4⁺ четно-четных ядер Dy с A = 156,158,160,162, Ег с A = 162,166,168 и Os с A = 184,186,188,190,192. Там же приведены теоретические значения некоторых из этих величин.

Таблица 2

Периоды полураспада первых возбужденных состояний 2⁺ и 4⁺, приведенные вероятности переходов, внутренние квадрупольные моменты, параметры деформации для четно-четных ядер Dy, Er - и Os

	I56 60 ^{Dy} 90	158 66 ^{Dy} 92	160 66 ^{Dy} 94	I62 66 ^{Dy} 96
I. E _r (2+) K9B /I/	I38	99	86;8	80,7
2. E _K (4+) K3B /I/	404,4	371,1	283,8	265,9
3. E _Y (4+→2+) /I/	266,4	218,1	197	185,2
4. Ҳполн. (2+-→0+) /4 /1	4/, 42/ 0,86	2,80	4,65	6,27
5. 🗘 полн. (4+>2+)/4	[,42/ 0,09	0,19	0,26	0,32
6. Т _{1/2} (2+)эксп., 10 ⁻⁹ сек.	0,90+0,08	I,63 ⁺ -0,08	I,76±0,08	2,25±0,07 ^{a)}
7. Т _{I/2} (4+)эксп., 10 ^{-II} сек.		7,48±0,83 ^{B)}	9 ,5 ±1,0	13,2±0,8 ^{a)}
8 уск.	I34±12	187 - 9	229±12	190 ± 7
 9. B(E2 ;2+→0+) эксп. 10⁻⁴⁸ cu⁴ 10 10 P(E2 /4+>2+) эксп. 	, 0,673‡0,060	0,957±0,047	I,191±0,	054 I,005 <u>+</u> ± 0,032
10. D(E2,4+->2+) ORCII.	• • • • • • • • • • • • • • • • • • •	T 27±0 T3	T.59±0.T7	T.48±0.10
II. $B(E2,4+\rightarrow 2+)/B(E2,4)$	2+->0+)	1,33±0,21	1,33±0,22	I,47±0,15
12. (4	0,38	0,27	0,21	0,20
13. /, град.	I3,6	12,1	II , 5	II , 7
14. Qэксп. 10 ⁻²⁴ см ²	5,81 - 0,25	6,94±0,10	7,75±0,19	7,11±0,12
15. Qc4 10 ⁻²⁴ cm ² *	5 , 8I	5,73	5,72	5 , 72
16. Q.KE/35/ 10 ⁻²⁴ cm ²	gant e 📻 dan	•		
17. Q. Г /36/ 10 ⁻²⁴ см ²	4,7	5,3	5,6	6,2
18. В эксп.	0,268±0,008	0,315±0,006	0,348±0,00	6 0,318±0,004

	I6 6	2 E 7 8 94	164 _{E7} 68 96	166 _{E7} 68 98	168 _E 68 ^E 7 100
I.	10	2	91,5	80,6	79,8
2.	33	8	299	264,9	264,3
3.	23	6	208	184,4	184,5
4.	2,	84	4,37	6,94	7,33
5.	0,	I6	0,23	0,33	0,33
6.		17±0,10	I,48±0,08	1,99±0,09	I,90±0,06 ^{a)}
7.	and sy saine in Huay (a Taona 1997) - Taona Sina Sina Sina Sina Sina Sina Sina Si		8,59±0,83 ^{B)}	II,I <u>+</u> I,0	12,1±0,8 ^{a)}
8.	21	4 ± 2I	205±18	192±10	186 ± 8
9.	I,	133±0,097	I,I04±0,060	I,048±0,048	I,037±0,034
IO.			1,36±0,13	I,79±0,15	I,64±0,II
II.	-		1,23±0,20	I,70±0,24	1,58±0,18
12.	0,	25	0,18	0,16	0,10
I3 .	13 IS	9 4	12,8	12,6	12,3
I4.	7,	58±0,30	7,45±0,27	7,27-0,15	7,23±0,11
I5•		72	5,72	5,72	5,74
I6.		an an Angeland An Angeland an Angeland An Angeland an Angeland	 The second se Second second sec	ikana pada se se se ang ₩	
17.	6,0	0	6,3	7,0	7,5
18.	0,	328±0,009	0,320±0,006	0,310±0,005	0,306±0,003

Продолжение таблицы 2

1100404888888888888	
mpodowno rooming c	• '

	and the second				
	184	186	188 01	190	192
	76 I08	76 <u>110</u>	76 II2	76 II4	76 116
I.	II9,8	137 , 2	155,0	186,7	105,7
2.	384	434	478	548	5580
3.	264	296,8	323,5	361	374,6
4.	2,14	I,26	0,80	0,42	0,26
5.	0,14	0,09	0,07	0,05	0,04
6.	I,18 [±] 0,05 ^{Д)}	0,84±0,05 ^{I)}	0,71±0,03 ^{II)}	0,33±0,02 ⁰⁾	0,275±0,018 ⁰⁾
7.	4,6 ± I,3	2,24 ^{r)}	I,90 ^{r)}	I,7 ^{r)}	I,4 ^{P)}
8.	.I02 ± 5	95 - 5	76+3	83 - 6	66 - 4
9.	0,615±0,030	0,6I0±0,40	0,493±0,020	0,529±0,035	0,441±0,030
0.	0,840±0,240	0,995±0,150	0,789±0,II8	0,645+0,096	0,528-0,028
[].	I,37±0,45	I,63±0,40	I,60±0,35	I,25±0,30	I,20 ⁺ 0,30
[2.	0,28	0,26	0,26	0,26	0,16
[3.	I3,5	16,5	19,0	21,8	25,2
[4.	5,56±0,10	5,54±0,15	4,96-0,08	5,15=0,15	4,71±0,15
[5.	5,74	5,73	5,73	5,72	5,70
[6.	• • • • • • • • • • • • • • • • • • •	5,45	5,23	5,II	5,09
[7.	5,6	5,6	5,3	5,3	•
[8,	0,201±0,002	0,200±0,003	0,176±0,002	0,182±0,003	0,167-0,003

а) Значения Т_{1/2} взяты из /8/.

б) Значения Т_{I/2} взяты из /37/.

в) Значения Т_{1/2} взяти из /38/.

г) Значения Т_{1/2} определены по величине В(Е2) из /39/.

д) Значения Т_{1/2} определены в /40/.

* Относительные значения Q. нормированы по экспериментальному значению Q. Эксп.

По временам жизни уровней 2^+ и 4^+ ротационной полосы основного. состояния можно проверить, как выполняются соотношения между приведенными вероятностями переходов 4^+ , 2^+ и 2^+ , 0^+ .

$$\frac{B(E_{2};I_{i}+2 \rightarrow I_{i})}{B(E_{2};I_{i}\rightarrow I_{i})} = \frac{\begin{bmatrix} C_{i}I_{i} \\ I_{i}+2;k;L;k-k \end{bmatrix}^{2}}{\begin{bmatrix} (I_{i}k \\ I_{i}k;L,k-k \end{bmatrix}^{2}}, \quad (1)$$

где в квадратных скобках стоят коэффициенты Клебша-Гордана, I₄ = 2, I_f =0, K=0.

Сравнение экспериментальных и теоретических отношений приведенных вероятностей переходов между уровнями одной ротационной полосы может дать ценную информацию о структуре ядра. Так, например, в обобщенной модели допускается, что в состояниях 2^+ , 4^+ и т.д. основной ротационной полосы к волновой функции, имеющей K = 0, присоединяется волновая функция с K = 2 (примесь от γ -вибрационной полосы). Такое смешивание должно привести к небольшим изменениям значений приведенных вероятностей E2-переходов. В переходах $4^+ \rightarrow 2^+$, $6^+ \rightarrow 4^+$ и т.д. не запрещены компоненты M3 и E4, которые также могут повлиять на величину B(E2).

Однако следует отметить, что в настоящее время точность измерения времен жизни возбужденных состояний ядер не позволяет обнаружить эти отклонения. Отношения B(E2 ; $4^+ \rightarrow 2^+$)/B(E2; $2^+ \rightarrow 0^+$) в пределах экспериментальных ошибок совпадают со значением 1, 43, вытекающим. из равенства (1).

Вероятности переходов между уровнями ротационной полосы в рассматриваемых ядрах ускорены по отношению к одночастичным оценкам на величину порядка ≈10², что свидетельствует о коллективной природе этих состояний. В соответствии с оболочечной моделью ядра значения факторов ускорения уменьшаются на краях области деформации 150≤А≤190 (см. рис. 1).

Значения квадрупольных моментов рассматриваемых ядер, определенных из значений $T_{1/2}(2^+)_{3KCR.}$ и $-T_{1/2}(4^+)_{3KCR.}$ в пределах экспериментальных ошибок совпадают друг с другом.

Интересно сравнить экспериментальные эначения внутренних квадрупольных моментов (или параметров деформации) рассматриваемых ядер с соответствующими теоретическими эначениями. Относительные эначения

квадрупольных моментов, вычисленных на основе неадиабатического варианта теории неаксиальных ядер Давыдова, недостаточно хорошо описывают ход изменения экспериментальных эначений квадрупольных моментов в зависимости от массового числа А исследуемых ядер. Теоретические значения Q_{0D} определялись по параметрам неаксиальности у и неадиабатичности μ в теории Давыдова /34/. Значения параметров у и μ определялись по экспериментальным значениям энергий возбужденных состояний 2⁺ и 4⁺ ротационной полосы основного состояния и гаммавибрационного уровня с характеристиками I π K = 2+2.

В работе Кумара и Беранже /35/ на основе нелинейной адиабатической теории, учитывающей парные плюс квадрупольные остаточные взаимодействия, вычислены значения приведенных вероятностей переходов с уровней 2⁺ и 4⁺ основной ротационной полосы для четно-четных ядер Os : Os лежат в переходной области, где можно ожидать измене-Изотопы ния ядерных свойств при переходе от сильнодеформированных к сферическим ядрам. Как видно из рассмотрения таблицы 2 и рис. 1,2, для изотопов осмия характерно скачкообразное изменение факторов ускорения F(E2) уск. и квадрупольных моментов Q_{0 эксп.} в зависимости от числа нейтронов в ядре. Эти отклонения выходят за пределы экспериментальных ошибок. Наблюдаемые отклонения можно пытаться объяснить немонотонным характером изменения параметров, используемых в теории, от А в отличие от плавного, как это принималось, а также отклонениями от адиабатического приближения. Кроме того, расчет минимальной энергии деформации для изотопов осмия показал /35/, что при переходе от А = 186-188 к А = 190-192 вид кривой потенциальной энергии деформации меняется от симметричной к асимметричной. Возможно, этот переход является причиной скачкообразного изменения стабильной формы ядра.

Характер изменения экспериментальных значений квадрупольных моментов четно-четных ядер осмия в зависимости от массового числа А довольно хорошо описывается значениями квадрупольных моментов, вычисленными с использованием схем уравшений потенциала Саксона-Вудса в работе Гареева и др. ^{/36/}. Для ядер Ег и Dy характер изменения теоретических значений квадрупольных моментов ^{/36/} не соответствует эк-

спериментальным. Очевидно, это связано с недостаточно полным учетом динамических свойств ядер в теории.

Проведенное сравнение экспериментальных результатов с теоретическими еще раз указывает на необходимость дальнейшей разработки теории деформированных ядер и дальнейшего экспериментального изучения свойств деформированных ядер переходной области.

В заключение авторы благодарят Г.Т. Брагина, В.И. Разова и Ф. Хамраеву за помощь на отдельных этапах работы.

Литература

- 1. C.M. Lederer, J.H. Hollander, I. Perlman. "Table of isotopes" (1968).
- 2. H. Abou-heila, J. Treherne, J. Phys., 27, 1-2, 5-7.
- 3. J. Bjerregard, B. Elbek, O. Hansen, P. Salling. Nucl.Phys., <u>44</u>, 280 (1963).
- 4. E.G. Funk, H.J. Prask, J.W. Mihelich. Phys. Rev., <u>141</u>, 1200 (1966).
- 5. F.K. McGowan. Phys. Rev., 85, 142 (1952).
- 6. Э.Е. Берлович, Ю.У. Гусев, В.В. Ильин, М.К. Никитин. ЖЭТФ, 43, 1625 (1962).
- 7. F.W. Richter, D. Wiegandt, Z. Naturforschg, 17a, 638 (1962). 8. C.Li. Angela, A. Schwarzohild. Phys.Rev., <u>129</u>, 2664 (1963).
- 9. D.B. Fossan, B. Herskind . Nucl.Phys., <u>40</u>, 24 (1963).

10. Th.J. De Beor, E.W. Ten Napel, J. Blok. Physica 29, 1013 (1963).

- C. Günther, G. Strube, U. Wehmann, W. Engels, H. Blumberg, H. Luig, R.M. Lieder, E. Bodenstedt, H.J. Körner, Z.Phys, <u>183</u>,472(1965).
 W. Meiling, F. Stary. Nucl. Phys., <u>74</u>, 113 (1965).
- С.В. Страдубцев, Р.Б. Бегжанов, Д.А. Гладышев, Х.М. Садыков, К.Т. Тешабаев. Сб. электромагнитные переходы в ядрах. Ташкент, "ФАН" (1966) 94-101.

- 14. K.M.M.S. Ayyangar, V. Lakshminarayana, Swami Inanananda. Indian, J.Phys., <u>40</u>, N7, 432 (1966).
- 15. H.N. Brown, R.A. Becker. Phys. Rev., 96 (1372) (1954).
- 16. B. Sethi, S.K. Mukherjce. Phys.Rev., 166, 1227 (1968).
- 17. F.K. McGowan. Phys.Rev., <u>80</u>, 923 (1950).
- 18. M. Birk, G. Goldring, Y. Wolfson. Phys. Rev., <u>116</u>, 730 (1959).
- 19. Э.Е. Берлович, В.В. Ильин, М.К. Никитин, Т. Бэдикэ. Изв. АН СССР, сер. физ., 24, 1492 (1960).
- 20. E. Bashandy, M.S.El-Nesr. Ark.Fys., <u>22</u>, 341 (1962).
- 21. K.K. McGowan. Phys.Rev., <u>81</u>, 1066 (1951).
- 22. Э.Е. Берлович. ЖЭТФ 33, 1522 (1957).
- 23. F.E. Durham, D.H. Rester, C.M. Class. BAPS, 4, 98 (1959).
- 24. E. Bodenstedt, H.-J. Rörner, G. Strube, C. Günther, J. Radeloff, E. Gerdau. Z.Phys., <u>163</u>, 1 (1961).
- 25. E. Bashandy, El-Nesr. Nucl.Phys., <u>34</u>m 483 (1962).
- 26. F.K. McGowan, P.H. Stelson. Phys.Rev., <u>109</u>, 901 (1958). Phys.Rev., 122, 1274 (1961).
- 27. R. Barloutaud, P. Lehmann, A. Leveque Compt.rend. <u>245</u>, 653 (1955).
- 28. J. Burde, M. Rakavy, Nucl. Phys., 28, 172 (1961).
- 29, J. Burde, M. Rakavy. Nucl. Phys., 28, 172 (1961).
- 30. В.А. Морозов, Т.М. Муминов. Препринт ОИЯИ, 13-4625, Дубна, 1969.
- 31. В.А. Морозов, Т.М. Муминов. Препринт ОИЯИ, Р13-3437, Дубна, 1967.
- 32. Н.А. Лебедев, Н.С. Толстой, В.А. Халкин. Радиохимия VII , 115,1965.
 - 33. И. Дема, Н.Г. Зайцева, Ким Хон Сил, В.П. Новиков. Тезисы докладов 15-го всесоюзного совешания по ядерной спектроскопии, 73, изд. "Наука", М-Л, 1965.
 - 34. А.С. Давыдов. "Возбужденные состояния атомных ядер". Атомиздат, М., 1962.
- 35. K. Kumar, M. Baranger. Nucl.Phys., <u>A122</u>, 241 (1968).

- 36. F.A. Gareev, S.P. Ivanova, V.V. Pashkewitch. Preprint JINR, E4-4704, Dubna, 1969.
- 37. Б.С. Джелепов, Сб. "Структура сложных ядер", 184, Атомиздат, М., 1966.
- 38. Ben-Zvi, A.E. Blaugrund, Y. Dar, G. Coldring, J. Hess, M.W. Sachs, E.Z. Skurnik, Y. Wolfson. Nucl. Phys., <u>A117</u>, 625 (1968).
- 39. R.F. Casten, J.S. Greenberg, G.A. Burginyon, D.A. Bromley, Contr. to the Tokyo Conf. on Nucl.Str. (1969).
- 40. Т. Бэдикэ, Н.Г. Зайцева, В.А. Морозов, Т.М. Муминов, С. Сэледжану. Препринт ОИЯИ, 6-4350, Дубна, 1969.
- 41. R.S. Hager, E.C. Seltzer. Nucl. Data, A4, 1,2 (1968).
- 42. O. Dragoun, H.C. Pauli, F. Schmutzler. Nucl.Data, A6, 3 (1969).

Рукопись поступила в издательский отдел 23 июня 1970 года,