

Addentiopnis Alender IIPotalen

А.А. Абдумаликов, А.А. Абдуразаков, С.Б. Бурибаев, К.Я. Громов, Н.А. Лебедев

новые данные о распаде се 135

1965

P-2235

3463far 20.

А.А. Абдумальков, А.А. Абдуразаков, С.Б. Бурибаев, К.Я. Громов, Н.А. Лебедев

НОВЫЕ ДАННЫЕ О РАСПАДЕ Се¹³⁵

Направлено в журнал "Ядерная физика"

OGLE, BHELLER MITTON

Спектр конверсконных электронов, возникающих при распаде радиоактивного изотопа Се 135 (17 час), изучался при помощи β -снектрографа с постоянным магнитным полем $^{/1/}$.

Исследованию спектра конверсионных электронов изотопа Ce¹³⁵ посвящено несколько работ^{/2-7/}. При этом обнаружено более 20 у - переходов.

Измеревы у – у – совпадения между у –переходами La¹³⁵ /5,13/ и e⁻ – e⁻ –совпадения между линнями конверсионных электронов /6,7/. В работе /5/ предлагается схема распада Ce¹³⁵ → La¹³⁵.

В наших исследованнях использована фракция церия. Радноактивный изотоп Се¹³⁵ (вместе с другими изотопами церия) образовался при облучении металлического тантала, окиси эрбия и гадолиния протонами с энергией 660 Мэв на синхроциклотроне. Облучение материала мишени протонами в ускорителе длилось обычно 2-4 часа. После облучения мишени цериевая фракция выделялась хроматографическим путем /8/.

При исследовании периевой фракции использовалось два источника.

Спектр конверсконных электронов исследовался в области энергий от 20 до 800 кэв. Разрешающая способность прибора была - 0,07%. Градуировка по энергиям проводилась по известным конверсконным линиям Yb и Ho¹⁶⁰, для которых энергии переходов измерены с большой точностью (~0,02%) в работах ^{/10,11/}. Таким образом построенная градуировочная кривая обеспечивала определение энергии конверсионных электронов с погрешностью лучше чем 0,1%. Для некоторых линий точность в определении энергии составляла 0,05%. Энергии ряда переходов очень хорошо совнадают с данными И.Ф.Учеваткина и др. ^{/12/}.

Относятельные интенсивности конверсионных линий определены по плотности /8/ почернения

Экспериментальные результаты исследования спектра конверсконных электронов 135 Се представлены в таблице 1. В пользу того, что линии, приведенные в этой таблице, возникают при распаде Се¹³⁵ можно привести следующие аргументы:

3

1. Оценка периода полураспада конверсновных линий по убыванно их интенсивности в последовательно экспонированных фотопластинках и сопоставление совокупных экспериментальных данных, полученных при исследовании препаратов церия, с данными, имеющимися в литературе, позволили нам надежно выделить линии конверснонных электроков, принадлежащие Се

2. Заряд ядра, в котором происходит у -переход, определен но разности энергии конверсионных линий К , L , , L , М .

В наших опытах обнаружен 21 у -переход, из имх у -переходы с энергией 86,80 кэв; 146,0 кэв; 200,7 кэв и 267,5 являются новыми.

На основании энергий у -переходов, приведенных в таблице 1 и в работе /4/, у - у-совпадений /5,13/ и е- е-совпадений /6,7/ можно составить схему расша-135 135 да Се - с - совпадений /6,7/ можно составить схему расша-

При составлении схемы распада мы учитываем следующее:

1. Энергетический баланс.

Энергия у -переходов измерялась с точностью лучшей чем 0,1%. Поэтому сравнивая энергии прямых и каскадных переходов, можно установить следующие уровии: 119,5; 206,4; 265,4; 300,0; 783,3; 871,8 и 1171,0 кэв (табл. 3).

2. у - у - совпадения.

В работах ^{/5,13/} измерены $\gamma - \gamma$ - совпадения между γ -переходами La¹³⁵ и найдены совпадения между переходами с энергиями: 265-515; 265-602; 265-901; 300-569 или 570,5; 300-865 кэв^{/5/} и 86-(621+665); 120-(621+665); 206-(572+576+606+ +621); 206 (621+665); 206-(964+983); 265-(572+576+606+621); 265-(783+809+827); 265-(871+905)^{/13/}.

3. е - е - совпадения.

Учеваткиным и др. /6,7/ обнаружены совпадения между линиями конверсионных

Таблица 1

1

Энергии у -переходов и относительные интенсивности конверсионных Э**лектронов** Ce 135

		Or	носитель	HNE MHTENC	NBHOCTN		Мульти-
Ey , 1	кэв к	L 1	L 11	L 111	M	N	юльность
86,80	38	C.AOXH.	2,0	2,0	слаб.	-	E2 + M1
88,60	47,0	5,3	< 0,5	< 0, I	слаб.	-	ML
118,00	10,6	⊥,3	<0,13	-	-	-	MT
I19,45	34,0	4,0	~0,35	~0,2	1,0	слаб.	MI+E2
132,8	2,0	слаб.	-	-	-	-	-
146,0	~ 0,5	-	-	-	-	-	-
200,7	~ 0,4	-	-	-	-	-	-
206,4	40,0	$5,0^{x}$	-	< 0,1	1,3	~ 0,5	MI
265,4	100	15,0 ^{x)}	-	20,3	3,8	I,0	MT
267,5	I,8	-	-	-	-	-	-
300,0	36,0	6,0 ^x)	-	1,5	2,2	1,2	E2
379,6	1,7	-	-	-	-	-	-
387,5	0,7	-	-	-	-	-	-
397,8	0,6	-	-	-	-	-	-
483,4	I,3	-	-	-	-	_	-
517,7	7,0	~1,0 ^{x)}	-	-	-	-	-
572,0	4,5	1,5 ^x)	-	-	-	-	-
576,8	2,3	-	-	-	-	-	-
606,3	7,0	~1,0 ^{x)}	-	-	-	-	-
665,4	~ 1,0	-	-	-	-	- 1	-
783,3	2,3	-	-	-	-	-	-
828,0	~1,1	-	-	-	-	-	-

х) Указаны интенсивности суммы L₁+L₁₁

	Curromone)	Экспери-		E	e o p M	R			Mynb TRIIOAE
Ren , Y	аинатонто	MeHT	ΕI	E 2	E3	I W	M2	M3	HOCTA
36, 80	K:L ₁₁	0,61	56,0	3.83	0,77	18°66	46,37	20,0	E2 + M1
		I,0	0,76	0,88	0,96	4,60	0,60	0,20	
	K:L1	8,8	10°0	II, 85	12,85	7,98	5,58	3,40	
38,60	L,: L,	>10	5,72	0,34	0,06	10° ET	8,80	6,0	MT
		~ 5,0	0,80	06 *0	0,96	4,62	79 °0	0,22	1
	K : L ,	8,0	9.80	06°01	I2,30	8,0	5, 90	3,90	LA
I8, 00		>10	7,30	0,50	0,09	I3,48	8,60	5,88	
	K :L,	8,3	9.80	10° 90	12,30	8,05	5,90	3, 40	
24°61	L,: L,,	~I2	7.40	0,52	0,13	13 ^{,50}	8,60	5,90	MI + E2
		2"T -	0,74	0,94	90 °T	4,60	0,72	0,26	
	K : L ,+ L	8,0	8,40	5,81	2,6	7,42	5,90	4,70	
06.4	K : L	> 400	77,0	I6,3	4,8	564,0	86,0	I7,40	TW
	L ₁ +L ₁₁ :L ₁₁₁	>50	0.6	2,70	5,0	74,0	I0,20	2,50	
	K : L, + L .	6,6	8,50	6, 20	3,20	7,40	6,3	5,25	
65,4	K :L	> 340	93,0	24,6	6.4	594,0	120,0	27,40	TW
	L+ L, i L	> 50	11,2	3,70	2,40	7,9	I8,6	5,20	
	K:L +L	6,0	8,20	6,55	3,60	7,5	6,50	5,4	
00,00	$K : L_{111}$	24	100,001	28, I	I0,3	6I0°0	0*0+T	35,0	E'2
	L ₁ +L ₁ ;L ₁₁₁	4,0	I2,20	4,30	2,80	82,IO	9"T>	6,20	

6

Энергетическ	ий баланс в схеме уровней La ¹³⁵
ргия уровня, кэв	Сумма энергий переходов, кэв
119,5	119,5
206.4	206,4
2009 1	119,5+ 86,80 = 206,3
	265,4
265,4	TI9,5+ I46,0 = 265,5
300,0	300,0
783,3	783,3 II9,5 + 86,80 + 576,8 = 783,I 206,4+576,8 = 783,2 II9,5 +I46,0 + 5I7,7 = 783,2 265,4 +5I7,7 = 783,I 300,0+ 483,4 = 783,4 II9,5 + 86,80 + 665,4 = 871.7
871,8	206,4+665,4=871,8 119,5+146,0+606,3=871,8 265,4+606,3=871,7 300,0+572,0=872,0
	88,60 +783,3 = 871,9
1171,0	I77I,0 TI9,5 + 86,80 + 964 = II70.3 206,4 + 964 = II70,4 II9,5 +I46,0 + 905 ==II70,5 265,4 +905 = II70,4 300,0 +87I,0 = II7I,0 783,3 +387,5 = II70,8

7

Таблица ٦ электронов (L + M) 88-(K,L + M) 120 кэв^{/ 6/} ж К 206,4 - (K,L+ M) 576; К 206,4 - (K,L+ M) 665 кэв^{/7/}.

На основе этих данных можно считать установленными возбужденные уровни с энергиями 119,5; 206,4; 265,4; 300,0; 783,3; 871,8 и 1171,0 кэв (см.рис. 1).

Спин и четность основного состояния La¹³⁵, как это следует из распада La¹³⁵ в Ba¹³⁵, по-видимому, 5/2+. Четность уровней с энергизми 119,5 кэв, 206,4 кэв, 265,4 кэв и 300,0 кэв положительна. Этот вывод следует из экспериментально определенных мультипольностей γ -переходов, идущих с этих уровней. Возможные значения спинов этих уровней указаны на схеме рис. 1. Оценка баланса интенсивностей γ -переходов в схеме рис. 1 показывает, что уровни с энергизми 783,3 кэв, 871,8 кэв и 1171,0 кэв также имеют положительную четность, так как интенсивность ряда γ переходов с этих уровней на нижние уровни, вычисленные по интенсивности конверсконных линий при предположении мультипольности E1, оказывается больше интеисивности переходов, идущих с инжинх уровней.

Авторы выражают свою благодарность И.Ф. Учеваткину за полезные обсуждения и предоставление результатов своих исследований до опубликования.

Лптература

1. А.А. Абдуразаков, Ф.М. Абдуразакова, К.Я. Громов, Б.С. Джеленов, Г.Я. Умаров. Изв. АН Уз. ССР, серия физико-математических наук № 3 (1961).

- 2. Б.С. Джелевов, Б.К. Преображенский и П.А.Тишкин. Изв. АН СССР сер.физ. 22, 931 (1958).
- Б.С. Джелепов, А.И. Медведев, И.Ф. Учеваткин, С.А.Шестопалова. Изв. АН СССР сер. физ. 27, 204 (1963).
- 4. Б.С. Джелепов, А.И. Медведев, А. Местер, И.Ф.Учеваткин, С.А. Шестопалова. Материалы У1-го совещания по ядерной спектроскопни нейтронодефицитных изотопов и теории ядра. Преприит ОИЯИ Р-1536, Дубиа 1964 г. стр. 45.
- 5. K.Takahashi, M.Fujioka and K.Hisatake. Journal of the Phys. Society of Japan, v.19, n. 11, 1014 (1964).
- Б.С. Джелепов, П.А. Тишкик, И.Ф. Учеваткин, И.А. Шишелов. Материалы У11 -го совещания по ядерной спектроскопии вейтронодефицитных изотопов и теории ядра.стр.3 Препринт ОИЯИ 1915, Дубиа 1964 г.
- Б.С. Джелепов, Л.Н. Москвин, П.А. Тишкин, И.Ф. Учеваткин, И.А. Мишелов. Программа и тезисы докладов ХУ ежегодного совещания по ядерной спектроскопии и структуре атомного ядра. Минск 1965 г. стр. 47. Изд-во "Наука".
- 8. Б.К.Преображенский, А.В.Калямин, О.М.Лилова. Раднохимия, 2, 2, 239 (1960).
- 9. А.А. Абдумаликов, А.А.Абдуразаков, Ф.М. Абдуразакова, К.Я.Громов, Г.Я.Умаров. Изв. АН Уз. ССР серия физико-мат. наук 1, 37 (1962).

- 10. E.Hatch, P.Marmier, F.Boehm. J. Du-Mond. Phys. Rev., 104, 745 (1956).
- 11. G.T.Ewan, K.L.Graham, J.S.Geiger. Nucl. Phys., 22, 610 (1961).
- Е.П. Григорьев, Б.С. Джеленов, Ю.С. Егоров, А.В. Золотавин, В.О. Сергеев, М.И. Совцов, И.Ф. Учеваткин. Материалы VII совещания по здерной сцектросколни нейтронодефицитных изотопов и теории здра. Преприят ОИЯИ 1915, Дубна 1964, стр. 38.
- 13. В.С. Бекренев, Б.С. Джеленов, М.А. Долгобородова, В.А. Сергненко, И.Ф. Учеваткин. Программа и тезисы докладов XV ежегодного совещания по ядерной спектроскопни и структуре атомного ядра. Минск 1985, стр. 47. Издательство "Наука".

Руконись поступила в издательский отдел 23 июня 1965 г.

Рис.1. Схема распада Се135.