

Sec. 19. 19. 19.

NHKHE

AABODATODMA TEOPETHUE(KOM

P-1993

20/11-65

Доан Нхыонг

НЕКОТОРЫЕ ЭФФЕКТЫ ПСЕВДОСКАЛЯРНОГО МЕЗОНА С НУЛЕВОЙ МАССОЙ

1965

P-1993

Доан Наыонг

30/2/2 20.

НЕКОТОРЫЕ ЭФФЕКТЫ ПСЕВДОСКАЛЯРНОГО МЕЗОНА С НУЛЕВОЙ МАССОЙ

p 1.

.

43 S 4 S 4

272011362

В последнее время обсуждалась $^{/1,2,3/}$ возможность существования псевдоскалярного поля с нулевой массой, которое будем обозначать через ξ . В работе $^{/4/}$ рассмотрены некоторые следствия существования ξ – поля. В ней на основании экспериментальных данных оценивались верхние пределы его константы связи с фермионными полями. Мною рассмотреи ряд эффектов в ξ – поле и обсуждены их отличия от аналогичных эффектов максвелловского поля. Цель заметки – предсказать те своеобразные характеристики этих эффектов, которые могли бы помочь детектировать это, пока гинотетическое, излучение.

1. Упругое рассеяние Е -мезона на электроне

Предположим, что ξ -поле взавмодействует с электроном с максимальной константой взаимодействия, допускаемой $\frac{4}{2}$, $\xi_{+} = -\xi_{+} = -$.

Дваграмма этого пропесса представлена на рис. 1.

P m c. 1.

Для матричного элемента имеем следующее выражение:

$$\mathbf{M}_{1f} = (2\pi)^{4} \delta^{4} (\mathbf{p}_{1} + \mathbf{q}_{1} - \mathbf{p}_{2} - \mathbf{q}_{2}) \frac{\mathbf{g}^{2}}{\sqrt{4} \mathbf{q}_{1}^{2} \mathbf{q}_{2}^{2}} \overline{\mathbf{u}} (\vec{\mathbf{p}}_{2}) \left[\gamma_{5} \frac{\mathbf{i}(\vec{\mathbf{p}}_{1} + \hat{\mathbf{q}}_{1}) - \mathbf{m}}{(\mathbf{p}_{1} + \mathbf{q}_{1})^{2} + \mathbf{m}^{2}} \gamma_{5} + \gamma_{5} \frac{\mathbf{i}(\vec{\mathbf{p}}_{1} - \hat{\mathbf{q}}_{2}) - \mathbf{m}}{(\mathbf{p}_{1} - \mathbf{q}_{2})^{2} + \mathbf{m}^{2}} \gamma_{5} \right] \mathbf{u} (\vec{\mathbf{p}}_{1}),$$

здесь g - константа связи ξ -мезона и электрона, m -масса электрона. С помощью элементарных вычислений получаем для полного сечения формулу

$$\sigma = \frac{g^4}{32 \pi E^2} \left[\frac{5 E^2 + m^2}{E^2} + \frac{4 m^2}{E^2 - m^2} \ln \frac{E}{m} \right]$$

В таблице 1 представлены некоторые значения сечения в зависимости от полной энергии системы (в с.ц.м.)

·Таблица 1

q ₁ (^{Мэв})	е (Мэв)	G (cm ²).10 ³³	
2	1,52	21,6 0	
4	2,08	12,70	
6	2,52	9,12	
8	2,85	7,45	
10	3,27	5,90	

Здесь q₁-импульс
$$\xi$$
 -мезона в лабораторной системе, где электрон покоится.

Для сравнения со случаем фотона найдем угловое распределение этого процесса.

$$\frac{d\sigma}{d\Omega} = \frac{f^2}{4m^2} \left(\frac{q_0^2}{q_1^0}\right)^2 \left[\frac{q_0^2}{q_1^0} + \frac{q_1^2}{q_2^0} + 2\right]$$

Здесь $f = \frac{g^2}{4\pi}$, q_1^o , q_2^o - энергия ξ -мезона до и после рассеяния.

Отличие от случая рассеяния фотонов^{/5/} состоит в том, что для ξ -мезона угловое распределение изотропно, в то время как угловое распределение комптоновского рассеяния неизотропно.

2. Неупругое рассеяние 💈 -мезона на электроне

Мы рассмотрим процесс $\xi + e^{-x} y + e^{-x}$

диаграмма которого представлена на рис. 2.

Матричный элемент для этого процесса есть

 $\mathbf{M}_{if} = (2\pi)^{4} \delta^{4} (\mathbf{p}_{i}^{-} + \mathbf{q}_{i}^{-} - \mathbf{p}_{2}^{-} - \mathbf{q}_{2}^{-}) \frac{\mathbf{e} \mathbf{g}}{\sqrt{4} \mathbf{q}_{1}^{\circ} \mathbf{q}_{2}^{\circ}} \overline{\mathbf{u}}(\vec{\mathbf{p}}_{2}^{-}) [\hat{\mathbf{e}} \frac{\mathbf{i}(\vec{\mathbf{p}}_{1}^{-} + \vec{\mathbf{q}}_{1}^{-}) - \mathbf{m}}{(\mathbf{p}_{1}^{-} + \mathbf{q}_{1}^{-})^{2} + \mathbf{m}^{2}} \mathbf{y}_{5} + \gamma_{5} \frac{\mathbf{i}(\vec{\mathbf{p}}_{1}^{-} - \vec{\mathbf{q}}_{2}^{-}) - \mathbf{m}}{(\mathbf{p}_{1}^{-} - \mathbf{q}_{2}^{-})^{2} + \mathbf{m}^{2}} \hat{\mathbf{e}}^{-}] + \mathbf{u}(\vec{\mathbf{p}}_{1}^{-}) \mathbf{z}_{5} + \mathbf{u}(\vec{\mathbf{p}}_{1}^{-} - \mathbf{q}_{2}^{-})^{2} + \mathbf{u}(\vec{\mathbf{p}}_{1}^{-})^{2} + \mathbf{u}(\vec{\mathbf{p$

Полное сечение этого процесса

 $\sigma = \frac{e^2 g^2}{16 \pi E^2} \left[\frac{m^2 - 3E}{E^2}^2 + \frac{4 E^2}{E^2 - m^2} \ln \frac{E}{m} \right],$

где Е - полная энергия системы (в с.п.м.). В таблице 2 представлены некоторые значения полного сечения, соответствующие различным значениям энергии.

Таблица 2

q ₁ (Мэв)	<u>в</u> (Мэв)	G (cm ²).10 ³⁰
2	1,52	21,26
4	2,08	17,02
6	2,52	14,00
8	2,85	12,35
10	3,27	10,54

Б

Здесь q₁ -импульс, 5 -мезона в лабораторной системе. Угловое распределение имеет

BEA:

$$\frac{d\sigma}{d\Omega} = \frac{af}{2m^2} \left(\frac{q_2^{\circ}}{q_1^{\circ}} \right)^2 \left[\frac{q_2^{\circ}}{q_1^{\circ}} + \frac{q_1^{\circ}}{(q_2^{\circ})^2} - \frac{m}{q_1^{\circ}} - 3 + \left(1 + \frac{q_1^{\circ}}{q_2^{\circ}} \right) \cos \theta \right],$$

$$e^2$$

$$e^2$$

$$e^2 = 0$$

где $a = \frac{e^2}{4\pi}$ и q_1° , q_2° = энергия соответственно ξ -мезона и γ -кванта.

3. Рассеяние Е-мезона на протоне

Для этого процесса получим также выражения полного сечения и углового распределения, как и в случае рассеяния на электроне. Мы будем рассматривать два случая: либо взаимодействие ξ -мезона является универсальным, либо цеуниверсальным. В таблице 3 представлены некоторые значения полного сечения этого процесса.

Та	б	л	H	Ц	а	3
----	---	---	---	---	---	---

	و المراجع اليام الي	، من من جديد من	
д ₁ (МЭв)	E (МЭВ)	G(cm ²).10 ²⁹	G (cm ²).10 ²⁴
	940,2	8,9	2,69
2	942,2	10,6	3,20
4	944,2	10,8	3,24
8	946,2	5,4	1,63
10	948,2	3,6	1,10

x) /4/ Константа связи дана в работе .

4. "Фотоэффект" 5 -мезона

Матричный элемент этого процесса есть $\mathbf{M}_{if} = \int_{\mathbf{v}} \hat{\psi}_{f}(\vec{r}) \gamma_{g} e^{-i\vec{k}\cdot\vec{r}} \psi_{i}(\vec{r}) d\vec{r},$

здесь \mathbf{k} -жмпульс ξ -мезона, ψ_i (\mathbf{f}) ж $\bar{\psi}_i$ (\mathbf{f}) -волновые функции в начальном и конечном состояниях. В случае a.x < 1 имеем:

$$\mathbf{H}_{if} = \mathbf{N}_{i} \cdot \vec{\mathbf{N}}_{f}^{*} \cdot \vec{\mathbf{u}} \cdot (\vec{p}) \{ \gamma_{g} \mid J_{0} + \gamma_{g} \mid \gamma_{4} \mid (\vec{y} \mid \vec{J}_{1} \mid) + (\vec{y} \mid \vec{J}_{2} \mid) \gamma_{4} \cdot \gamma_{g} \mid |u_{0}|.$$

Здесь

27

$$J_{0} = \int_{1} e^{i(\vec{k} - \vec{p} \cdot)\vec{r}} - \eta_{\vec{r}} F[it, 1, i(pr + :\vec{p} \cdot \vec{r})] \cdot d\vec{r} ,$$

$$J_{1} = -: \frac{\eta}{2} a \cdot x \int_{1} e^{i(\vec{k} - \vec{p} \cdot)\vec{r}} - \eta_{\vec{r}} \frac{\vec{r}}{r} F[it, 1, i(pr + :\vec{p} \cdot \vec{r})] d\vec{r} ,$$

$$J_{2} = -: \frac{1}{2\epsilon} \int_{1} e^{i(\vec{k} - \vec{p} \cdot)\vec{r}} - \eta_{\vec{r}} \nabla F[it, 1, i(pr + :\vec{p} \cdot \vec{r})] \cdot d\vec{r} ,$$

$$N_{1} = \sqrt{\frac{z^{8}}{\pi a_{0}^{8}}}, \quad a_{0} = \frac{\hbar}{\pi e^{2}};$$

$$N_{f} = \left(\frac{2\pi t}{1 - e^{2\pi t}}\right)^{\frac{1}{2}}, \quad n = \frac{1}{t}.$$

С помощью элементарных вычислений получаем следующее выражение для полного сечения

$$\sigma = g^2 z^5 a^2 - \frac{m}{k^\circ} ,$$

где k° - энергия 🖇 -мезона.

Эта формула применима только в крайнерелятивистском случае и для легких ядер. В случае тажелых ядер по методу /6/ также можно найти подобноше выражение, но оно довольно сложное.

6. Образование электронно-позитронных пар в поле ядра

7

Для процесса $\xi + A \rightarrow e^{-} + e^{+} + A$ имеем две следующие диаграммы (см. рис. 3).

$$\begin{split} \mathbf{M}_{if} &= 2 \pi \, \delta \, \left(\, \epsilon_{+} + : \epsilon_{-} - : \mathbf{k}^{\circ} \, \right) \, \frac{z \, e^{2} \, g}{\sqrt{2 \, \mathbf{k}^{\circ}}} - \frac{1}{\left(\mathbf{p}_{+} : + : \mathbf{p}_{-} - \mathbf{k} \, \right)^{2}} \\ &\times \, \mathbf{u} \, \left(\, \vec{p}_{-} \, \right) \, \left[: \gamma_{\delta} \, \frac{\mathbf{i} \left(\, \hat{p}_{-} - \mathbf{k}^{\circ} \right) - \mathbf{m}}{\left(\, \mathbf{p}_{-} - \mathbf{k} \, \right)^{2} + : \mathbf{m}^{2}} \, \gamma_{4} \, + : \, \gamma_{4} \, \frac{\mathbf{i} \left(- \, \hat{p}_{+} + \mathbf{k} \, \right) - ? \mathbf{m}}{\left(- \, \mathbf{p}_{+} \, \right)^{2} + : \mathbf{m}^{2}} \, \gamma_{5} \, \left] \cdot \mathbf{v} \, \left(- \, \vec{p}_{+} \, \right) \, \right] \, . \end{split}$$

С помощью элементарных вычислений найдем

$$d\sigma = \frac{z^{2} \alpha^{2} f}{2 \pi k^{\circ}} - \frac{p_{+} p_{-} d\epsilon_{+} d(\cos \theta_{+}) d(\cos \theta_{+}) d\phi_{+}}{q^{4}} \times \frac{1}{q^{4}} \times \frac{1}{(p_{-}^{\circ} - p_{-} \cos \theta_{-})^{2}} (-p_{+} p_{-} \cos \theta_{+} \cos \theta_{-} - p_{+}^{\circ} p_{-} \cos \theta_{+} p_{-}^{\circ} p_{+} \cos \theta_{+} + \epsilon_{+} \epsilon_{-}) + \frac{1}{(p_{-}^{\circ} - p_{-} \cos \theta_{-})^{2}} (p_{+}^{\circ} - p_{+} \cos \theta_{+} \sin \theta_{-} \cos \phi_{+} + p_{+} p_{-} \cos \theta_{+} \cos \theta_{-} - m^{2}) + \frac{1}{(p_{+}^{\circ} - p_{-} \cos \theta_{-}) (p_{+}^{\circ} - p_{+} \cos \theta_{+})^{2}} + \frac{1}{(p_{+}^{\circ} - p_{-} \cos \theta_{-}) (p_{+}^{\circ} - p_{+} \cos \theta_{+})^{2}} + \frac{1}{(p_{+}^{\circ} - p_{-} \cos \theta_{-}) (p_{+}^{\circ} - p_{+} \cos \theta_{+})^{2}} + \frac{1}{(p_{+}^{\circ} - p_{+} \cos \theta_{-})^{2}} + \frac{1}{(p_{+}^{\circ} - p_{+} \cos \theta_{-})^{$$

8

Здесь θ_+ -углы между \vec{p}_+ и \vec{k} , ϕ_+ - угол между плоскостями (\vec{p} , \vec{k}), (\vec{p} , \vec{k}); \vec{p}_+° , \vec{p}_-° , \vec{p}_-° , \vec{p}_+° , \vec

$$d\sigma = 8 \frac{z^2 a^2 f k^0}{m q^4} P_+ P_- v^2 u^2 t \eta d\theta_+ d\theta_- d\epsilon_+$$

rge $u = \frac{p_- \theta}{m}, v = \frac{p_+ \theta_+}{m}, t = \frac{1}{1 + u^2}, \eta = \frac{1}{1 + v^2}$

Отличие от случая фотона ^{/5/} состоит в том, что угловое распределение здесь не зависит от угла ϕ_+ между плоскостями (\vec{p}, \vec{k}) и (\vec{p}, \vec{k}).

Выражаю глубокую благодарность М.А. Маркову за постановку задачи и Нгуен Ван Хьеу за ценные обсуждения.

Литература

- 1. J.Goldstone. Nuovo Cim., <u>14</u>, 154 (1961).
- 2. Y.Nambu, G.Jona-Lasinic. Phys. Rev., <u>127</u>, 965 (1962).
- 3. М.А. Марков. Нейтрино. Москва, Изд-во "Наука", 1964.
- 4. Нгуен Ван Хьеу. ЖЭТФ, <u>47</u>, 116 (1964).
- 5. А.И. Ахиезер, В.Б. Берестецкий. Квантовая электродинамика. Физматгиз, 1959.
 6. H.R.Hulme. Proc of the Royal Society. <u>138</u> 643 (1932).

Рукопись поступила в издательский отдел 6 февраля 1965 г.