4.3.1964

C 332 K-207

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Эдвард Капусцик

P-1560

О ДВУХФОТОННОЙ ДИАГРАММЕ В РАССЕЯНИИ ЭЛЕКТРОНОВ НА ПРОТОНАХ Эдвард Капусцик^{X/}

2289/3 yg.

١

О ДВУХФОТОННОЙ ДИАГРАММЕ В РАССЕЯНИИ ЭЛЕКТРОНОВ НА ПРОТОНАХ

x/ Постоянный адрес: Институт ядерной физики, Краков, Польша.

P

Во многих случаях в качестве экспериментальной проверки достаточности для описания e - p рассеяния только одной однофотонной диаграммы рассматривают линейную зависимость сечения этого процесса от $\tan^2 \frac{\theta}{2}$ (θ - угол рассеяния в лабораторной системе координат). Однако, как будет показано ниже, к этому критерию надо относиться с определенной осторожностью.

Рассмотрим для этого амплитуду е - р рассеяния

где q_1 и q_2 – импульсы электрона до и после столкновения, p_1 и p_2 – аналогичные импульсы протона, индексами σ_1, σ_2 и s_1, s_2 отмечены спиновые состояния соответственио электрона и протона.

Если ограничимся рассмотрением лишь электромагнитного е – р взаимодействия, то матричный элемент (1) можно разложить по степеням заряда е , и для двух первых членов разложения получим следующее выражение:

В этой формуле D[°](x) и S[°](x) - причинные функции соответственно фотона и электроиа.

Подставляя выражение (2) в (1) и переходя к импульсному представлению, получаем:

$$-e^{2}\int d^{4}k_{1} d^{4}k_{2} \overline{u} (q_{2}) [\gamma_{\mu} \frac{i(\xi_{1}-\xi_{1})-m}{(q_{1}-k_{1})^{2}+m^{2}} \gamma_{\nu} +$$

$$+\gamma_{\nu} \frac{i(\xi_{1}+\xi_{2})-m}{(q_{1}+k_{2})^{2}+m^{2}} \gamma_{\mu}] u(q_{1}) \cdot \frac{1}{k_{1}^{2}} \cdot \frac{1}{k_{2}^{2}} \times$$

$$\times \overline{v} (p_{2}) T_{\mu\nu} (p_{2},k_{2};p_{1},k_{1}) v (p_{1})] . \qquad (3)$$

Здесь спиноры $\overline{v}(p_2)$ и $v(p_1)$ описывают нуклон, $F_1(Q^2)$ и $F_2(Q^2)$ – обычные электромагнитные формфакторы нуклона, $T_{\mu\nu}(p_2,k_2;p_1,k_1)$ – амплитуда виртуального комптон-эффекта на нуклоне, k_1 и k_2 – импульсы виртуальных фотонов и $Q_{\mu} = (q_1 - q_2)_{\mu} = (k_1 - k_2)_{\mu}$.

Если учитывать только первый член разложения (3), то получим известную формулу Розенблюса. Как хорошо известно, при фиксированном значении передаваемого импульса $4E^2 \sin^2 \frac{\theta}{2}$

 $Q^{2} = \frac{4E^{2}\sin^{2}\frac{\theta}{2}}{1 + \frac{2E}{M}\sin^{2}\frac{\theta}{2}}$

(E - энергия электрона в лабораторной системе координат), отношение розенблюсовского сечения $\left(\frac{dq}{d\Omega}\right)_R$ к сечению меллеровского рассеяния $\left(\frac{d\sigma}{d\Omega}\right)_M$ линейно зависит от величины tan $2\frac{d}{d}$.

Считается, что учет следующих членов разложения (3) (т.е. двухфотонных диаграмм) даст отклонения от этой зависимости. Чтобы ответить на этот вопрос, необходимо прежде всего знать амплитуду виртуального комптон-эффекта на нуклоне $T_{\mu\nu}$ ($p_2, k_2; p_1, k_1$). Как известно, эта амплитуда разлагается на 18 линейно независимых градиентно-инвариантных структур^{/1/}. Для экономии места мы не будем их здесь выписывать, предполагая для них тот же вид, что и в работе^{/1/}. Поскольку для нашей цели достаточно знать точно тип членов, возникающих в сечении вследствии учета виртуального комптон-эффекта, мы не будем выписывать также и полного выражения для сечения, а рассмотрим лишь существенные члены. Для этого, кроме вектора Q_{μ} , определим еще два вектора, ортогональные к ξ :

$$P_{\mu} = (p_1 + p_2)_{\mu}$$

 $\Delta_{\mu} = (q_1 + q_2)_{\mu} \cdot$

Воспользовавшись теоремой о главном вкладе в радиационные интегралы из областн инфракрасной катастрофы^{/2/}, получим для сечения выражение следующего типа:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_R + \frac{e^6}{4\epsilon_1 \epsilon_2 E_1 E_2 J} \left\{A(Q^2) \cdot (P\Delta)^3 + B(Q^2) \cdot (P\Delta)^2 + C(Q^2) \cdot (P\Delta) + (4) + D(Q^2)\right\}.$$

При выводе этого выражения не сделано никаких предположений о характере амплитуды виртуального комптон-эффекта, и поэтому к исследованию следствий, возинкающих отсюда, следует прежде всего подходить экспериментально. Функции $A(Q^2), B(Q^2), C(Q^2)$ и $D(Q^2)$ являются очень сложными, не зависимыми друг от друга функциями всех 18 амплитуд виртуального комптон-эффекта и формфакторов F_1 и F_2 .

В лабораторной системе координат:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{R} + e^{2} \left(\frac{d\sigma}{d\Omega}\right)_{M} \left[\tilde{A}(Q^{2}) + \frac{1}{\tilde{B}(Q^{2})} \tan^{2}\frac{\theta}{2} + \tilde{C}(Q^{2})\left[\tan^{2}\frac{\theta}{2} + \frac{1+\tan^{2}\frac{\theta}{2}}{\frac{E}{M}}\right] + \tilde{D}(Q^{2})\left[\tan^{2}\frac{\theta}{2} + \frac{1+\tan^{2}\frac{\theta}{2}}{\frac{E}{M}}\right] + \frac{1+\tan^{2}\frac{\theta}{2}}{\frac{E}{M}} \left[1\right], \qquad (5)$$

где функции $\tilde{A}(Q^2)$, ..., $D(Q^2)$ получаются из функции $A(Q^2)$..., $D(Q^2)$ путем соответствующих преобразований, связанных с переходом в лабораторную систему координат.

Из формулы (5) видно, что в отличие от $\left(\frac{d\sigma}{d\Omega}\right)_R$, кроме членов, линейно зависящих от $\tan^2\frac{\theta}{2}$, здесь имеются также члены с другой зависимостью. Однако легко увидеть, что для энергии E >> M эти члены будут малы по сравнению с остальными. Даже для $E \sim M$ значительные отклонения от линейности должны проявиться лишь при $\tan^2\frac{\theta}{2} < 1$.

Действительно, первый из членов, нарушающих линейность, приблизительно линейно зависит от $\tan^2\frac{\theta}{2}$, а второй мал при $\tan^2\frac{\theta}{2} > 1$. Только в случае E < Mотклонения от линейности могут быть велики для всех углов. Но в этом случае малы доступные значения Q^2 , и поэтому главную роль в выражении (5) будет играть член $(\frac{d\sigma}{d^2})_R$. Отсюда следует, что без детальной оценки величины функций

4

 $A(Q^2)$, ..., $D(Q^2)$ на основании экспериментальных данных о сечении $\frac{d\sigma}{d\Omega}$ нельзя однозначно ответить на вопрос о вкладе двухфотонного обмена в e-p рассеяние, если пользоваться только критерием линейности. Необходимо поэтому обратиться к другим экспериментальным критериям, которые освободят нас от фона, связанного с $(\frac{d\sigma}{d\Omega})_R$, например, к определению разницы сечений рассеяния электронов и позитронов на нуклонах или к измерениям поляризации нуклонов отдачи.

В заключение выражаю благодарность В.С. Барашенкову за ценные обсуждения работы.

Литература

1. В.К. Федянин. Кинематика процессов с двумя фотонами. Препринт МИАН СССР. Москва, 1961.

2. R.D.Yennie, S.C. Frautschi and H.Suura. Annals of Phys., 13, 379 (1961).

Рукопись поступила в издательский отдел 12 февраля 1964 г.