СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

AAGOPATOPMS TEOPETHUELKOM OMIMKN

Пубна

a

Sinterin and

E2 - 4983

29/iv

B.M. Barbashov, S.P. Kuleshov, V.A. Matveev, A.N. Sissakian

THE ACCOUNT OF RADIATION CORRECTIONS FOR THE EIKONAL SCATTERING AMPLITUDE IN QUANTUM FIELD THEORY MODEL

1970

E2 - 4983

B.M. Barbashov, S.P. Kuleshov, V.A. Matveev, A.N. Sissakian

f

THE ACCOUNT OF RADIATION CORRECTIONS FOR THE EIKONAL SCATTERING AMPLITUDE IN QUANTUM FIELD THEORY MODEL

8293/2 pc.



Барбашов Б.М., Кулешов С.П., Матвеев В.А., Сисакян А.Н. E2-4983

Учет радиационных поправок для эйкональной амплитуды в модели квантовой теории поля

В работе методом функционального интегрирования выведено эйкональное представление для амплитуды рассеяния с учетом радиационных поправок. В используемом приближении суммирование радиационных поправок приводит к появлению в амплитуде рассеяния мультипликативного фактора, зависящего только от передачи импульса.

## Сообщения Объединенного института ядерных исследований Лубна, 1970

Barbashov B.M., Kuleshov S.P., Matveev V.A., E2-4983 Sissakian A.N.

The Account of Radiation Corrections for the Eikonal Scattering Amplitude in Quantum Field Theory Model

The eikonal representation for the scattering amplitude taking into account the radiation corrections is obtained by means of the functional integration method. In the approximation used the summation of the radiation corrections leads to the appearance in the expression for the scattering amplitude of the multiplicative factor depending only on the momentum transfer.

## Communications of the Joint Institute for Nuclear Research. Dubna, 1970

I. In the authors' paper  $^{1/}$  a method has been proposed for the derivation of a closed relativistically invariant and cross-symmetrical expression for the scattering amplitude of two high-energy particles in the scalar model  $\mathcal{L}_{int} = g: \psi^2(x) \phi(x):$  in the framework of the functional integration method. In the limit of asymptotically high energies  $s \rightarrow \infty$  and fixed momentum transfers 1 this expression has the form of the Glauber representation/1/ with the eikonal function, which corresponds to the Yukawa potential for particle interaction. Besides, for simplicity, the diagrams with the radiation corrections to the "nucleon" (field  $\psi$ ) lines and also the closed loops of the field  $\psi(x)$  were neglected.

In the present note we give the estimation of the radiation corrections in the approximation in which the terms  $\mathbf{k}_{i}, \mathbf{k}_{j}$  ( $i \neq j$ ) are neglected in the "nucleon" propagators. This approximation for the region  $\frac{1}{s} \rightarrow 0$  is discussed in detail in papers/1-4/.

II. The scattering amplitude of two scalar "nucleon" can be represented in the following form 1/2:

$$f(q_1q_2|p_1p_2) = \frac{(ig)^2}{(2\pi)^4} \int dx \ D(x) e^{-ix(p_1-q_1) \int d\lambda S} \int_{\lambda} (q_1q_2|p_1p_2) + (p_1 \leftrightarrow p_2), \quad (1)$$

з

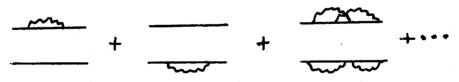
where

$$S_{\lambda}(q_{1}q_{2}|p_{1}p_{2}) = C_{\nu} \int \delta \nu_{1} \int \delta \nu_{2} \exp \{-\frac{i}{5} \int \nu_{1}^{2}(\eta) d\eta - i \int \nu_{2}^{2}(\eta) d\eta \} \times$$

$$\times \exp \{ig^{2} \lambda \int d\xi_{1} \int d\xi_{2} D[-x + 2\xi_{1}(p_{1}\theta(\xi_{1}) + q_{2}\theta(-\xi_{1})) - 2\xi_{2}(p_{2}\theta(\xi_{2}) - q_{2}\theta(-\xi_{2})) - 2\int_{-\xi_{1}}^{0} \nu_{1}(\eta) d\eta + 2\int_{-\xi_{2}}^{0} \nu_{2}(\eta) d\eta ]\} \times$$

$$\times \exp \{-\frac{ig^{2}}{2} \int d\xi_{1} \int d\xi_{2} D[-2p_{1}(\xi_{1} - \xi_{2}) + 2(p_{1} - q_{1})\int \theta(\eta) d\eta + 2\int_{\xi_{2}}^{\xi_{1}} \theta(\eta) d\eta$$

Considering the perturbation series it may be established that the two x -independent **D** -functions in eq. (2) do lead to radiation corrections to each of the two "nucleon" lines and do not lead to a "meson" (field  $\phi$ ) exchange between them



The first D -function, the argument of which includes the variable x, is responsible for the interaction between "nucleons" and in perturbation theory gives rise to graphs of the type



From the consideration of the integrals over  $\xi_1$  and  $\xi_2$ it is seen that the D -functions, the argument of which does not include the variable x, result in divergent expressions of the type  $\delta_m^2 \times (A \rightarrow \infty)$ . Therefore to eliminate them the renormalization of

4

the "nucleon" mass is made. The remaining after that expression is already finite since in our approximation in the propagators we do not neglect  $k^2$ -terms.

For the calculation of the functional integrals we use an approximate method/5,1/ which corresponds to the neglect of the  $k_i k_j (i \neq j)$  terms in the "nucleon" propagators and which permits to keep the  $k^2$  -terms.

Thus in the so-called  $k_1k_j = 0$  ( $i \neq j$ ) approximation we obtain for the scattering amplitude the following expression:

$$f(q_{1}q_{2}|p_{1}p_{2}) = \frac{(ig)^{2}}{(2\pi)^{4}}h(t) fd^{4}x D(x) e^{-ix(p_{1}-q_{1})} \int_{0}^{1} d\lambda$$

$$exp \left\{ -\frac{ig^{2}\lambda}{(2\pi)^{4}} \int \frac{d^{4}k e^{-ikx}}{k^{2}-\mu^{2}+i\epsilon} \left[ \frac{1}{(k^{2}-2kq_{1})(k^{2}-2kp_{2})} + \frac{1}{(k^{2}+2kq_{2})} + \frac{1}{(k^{2}+2kq_{2})} + \frac{1}{(k^{2}+2kq_{2})} + \frac{1}{(k^{2}-2kq_{1})(k^{2}+2kq_{2})} \right] \right\} +$$
(3)

$$+(p_1 \leftrightarrow p_2),$$

where

$$h(t) = \exp \left\{ \frac{ig^{2}}{(2\pi)^{4}} \int \frac{d^{4}k}{k^{2} - \mu^{2} + i\epsilon} \left[ \frac{1}{(k^{2} + 2kq_{1})^{2}} + \frac{1}{(k^{2} + 2kq_{2})^{2}} + \frac{1}{(k^{2} + 2kq_{1})^{2}} + \frac{1}{(k^{2} + 2kq_{1})^{2}} - \frac{1}{(k^{2} + 2kq_{1})(k^{2} + 2kq_{1})} - \frac{1}{(k^{2} + 2kq_{2})(k^{2} + 2kq_{2})} \right] \right\}.$$

$$(4)$$

After sufficiently simple but bulky calculation of the integrals over  ${\bf k}$  we get

$$\begin{split} h(t) &= \exp \left\{ \frac{g^2}{2(2\pi)_{m}^{2}} \left[ l_n \frac{m^2}{\mu^2} - \frac{m^2}{\sqrt{-t(4m^2 - t)}} \left( l_n \frac{m\sqrt{4m^2 - t}}{\mu^2} \right) \right] \right\} \\ &\times l_n \frac{\sqrt{4m^2 - t} + \sqrt{-t}}{\sqrt{4m^2 - t} - \sqrt{-t}} + \int \frac{\sqrt{4m^2 - t} + \sqrt{-t}}{2\sqrt{4m^2 - t}} \end{split}$$
(5)

At present on the basis of our papers  $\binom{1}{1}$  in the limit  $\frac{t}{s} \to 0$  we can write the scattering amplitude in the following manner x/

$$f(s,t) = -\frac{1}{(2\pi)^4} h(t) s \int d^2 \vec{x}_{\perp} e^{-i\vec{x}_{\perp} \cdot \vec{T}_{\perp}} (e^{-\frac{ig^2}{\pi s} \kappa_0 (\mu \sqrt{\vec{x}_{\perp}^2})} -1), \quad (6)$$

where

$$\mathbf{T} = (\mathbf{p}_1 - \mathbf{q}_1). \tag{7}$$

In the expression (6) the variables are chosen in the centerof-mass system (c.m.s.) and the axis z is directed along the momenta of the incident particles.

x/We note, that in this expression only the renormalization of the mass has been made.

6

ĵ

As is shown in the article<sup>/1/</sup>, the second term of the scattering amplitude, obtained with the aid of the replacement  $P_1 \leftrightarrow P_2$ or  $T = (P_1 - q_1) \leftrightarrow U = (P_2 - q_1)$  has in the region  $\frac{t}{s} \rightarrow 0$  a higher order of smallness with respect to s.

III. Thus, we see, that in the approximation used at  $s \rightarrow \infty$ and t-fixed the account of radiation corrections leads to the multiplication of the eikonal form of the elastic amplitude by a certain factor, depending only on the momentum transfer t.

Consequently, in the supposition made in the sum of all the ladder and crossladder graphs radiation corrections do not affect the asymptotic in s at high energies.

However, we note that the problem of a correct account of radiation corrections is rather complicated and would be interesting to perform further studies of different aspects of this problem.

Apparently our result corresponds to the correct account of contributions of the so-called "soft mesons", for which the approximation  $k_1 k_1 = 0$  is valid/4/.

In conclusion the authors express their sincere gratitude to N.N. Bogolubov, A.V. Efremov, A.N. Tavkhelidze for valuable discussions and critical remarks.

## References

1. B.M. Barbashov, S.P. Kuleshov, V.A. Matveev, A.N. Sissakian. JINR Preprint, E2-4692, Dubna (1969).

2. E.S. Fradkin, Nucl. Phys., 76, 588 (1966).

3. M. Levy, J. Sucher. Technical Report 983, University of Maryland (1969).

4. Б.М. Барбашов, В.В. Нестеренко. Препринт ОИЯИ, Р2-4900 "Дубна (1970). 5. Б.М. Барбашов. ЖЭТФ, <u>48</u>, 607 (1965).

Received by Publishing Department

on March, 13, 1970.

7