

1. The inhomogeneous 106-parametrical SL(6) group, further referred to as ISL(6), which contains 36 -dimensional translations was treated recently by a number of authors ${ }^{1-10}$ as possible relativistic extension of $\mathrm{SU}(6)$ symmetry. It turned out however, that in the framework of this group one cannot introduce a reflection operation in a natural way and the invariant equations for the scalar and spinor fields contain the derivatives of the sixth and the fifth order, respeotively. In order to avoid this difficulty, Rill ${ }^{5}$ suggested to extend the group by considering the translations in the two dual 36-dimensional spaces simultaneously. In this letter we propose another solution of the problem. Though our scheme includes now a larger group of translations, it is, in our opinion, more natural.
2. Let $\left(t^{a \dot{\beta}}\right.$) be the 6×6 matrix of the translation generators in the group LSL (6):

$$
\begin{equation*}
t^{a \dot{\beta}}=\sum_{0 \leq \mu \leq 0}\left(\sigma_{\mu} \times \lambda_{.}\right)^{a \dot{\beta}} t^{\mu} \equiv\left(\Lambda_{\mu}^{B}\right)^{a \dot{\beta}} t^{\mu} \tag{1}
\end{equation*}
$$

(t^{μ} are the Hermitian operators commuting with each other) and let \tilde{t} af be the algebraic adjunct of the element $t{ }^{\beta i}$ in the matrix t. The analogs of the Klein-Gordon equations and. Dirac equations in the scheme ISL (6) 4,5

$$
\begin{align*}
\operatorname{det} t \cdot \phi & =\kappa^{\beta} \phi \tag{2}\\
t^{a \dot{\beta}} \chi_{\dot{\beta}} & =\kappa^{\phi} \\
\tilde{t}_{\dot{a} \beta} \phi^{\beta} & =\kappa^{s} \chi_{a}^{\dot{a}} \tag{3}
\end{align*}
$$

have the disadvantages we mentioned above. It seems to us that the symatem (3) (consisting of six equations of the first order and six equations of the fith orderf is non-symmetrical because the "square root from the D"Alembertain" det is not com rectly extracted. A much more symmetrical possibility of the "linearization" of Eq. (2) is prompted by the Laplace formula which allows to write det t as a sum of products of the third order minors of t.

We define the unitary momentum as a 400 -component tensor with the elements

$$
\left.P^{a_{1} a_{2} \alpha_{8} \dot{\beta}_{1} \dot{\beta}_{2} \dot{\beta}_{4}}\left|\begin{array}{l}
a_{1} \dot{\beta}_{1} a_{1} \dot{\beta}_{2} a_{2} a_{1} \dot{\beta}_{8} \tag{4}\\
\alpha_{2} \dot{\beta}_{1} \\
t
\end{array}\right| \begin{array}{lll}
a_{2} \dot{\beta}_{2} & a_{2} \dot{\beta}_{8} \\
a_{8} \dot{\beta}_{1} & a_{8} \dot{\beta}_{2} & a_{8} \dot{\beta}_{8} \\
\mathrm{t} & &
\end{array} \right\rvert\,
$$

It is seen from the definition that the tensor P is anti-symmetrical both with respect to the dotted and undotted indices separately. It satisfies the hemiticity condition

$$
\begin{equation*}
P^{\alpha_{1} a_{2} \alpha_{1} \dot{\beta}_{1} \dot{\beta}_{2} \dot{\beta}_{3}}=\bar{P}^{-\dot{\beta}_{1} \dot{\beta}_{2} \dot{\beta}_{8} \alpha_{1} \alpha_{2} a_{3}} \tag{5}
\end{equation*}
$$

and transiorms under the representation $\left.[20,20]^{x}\right)$ of the group $S L(6)$.The conjugate momentum $\stackrel{P}{P}_{\beta_{1}} \dot{\beta}_{2} \dot{\beta}_{8} a_{1} a_{2} \alpha_{8} \quad$ defined as the algebraic adjunct of the minor (4) of t is expressed linearly by Pt :
x)

In the notation $[n, m]$ the number n corresponds to the dimensionality with respect to the undotted indices, and m -with respect to the dotted ones: A possibility of using the representation $[20,20]$ to give a new definition of translations in the inhomogeneous SL (6) group is also indicated in preprints by Eacry et al, 4,9 .
(three indices may be lowered and raised with the help of the invariant tensor e). Let $\operatorname{det} t=m^{2}$ (we assume $\kappa^{3}=m$). Then

The decomposition of the representation $[20,20]$ into irreducible representations of the group $\operatorname{SU}(3) \times \operatorname{SL}(2)^{x}$)

$$
\begin{array}{r}
{[20,20]-(1 ; 2,2)+2(8 ; 2,2)+(10 ; 2,2)+(\overline{10} ; 2,2)+} \\
+(27 ; 2,2)+(8 ; 2,4)+(8 ; 4,2)+(1 ; 4,4) \tag{8}
\end{array}
$$

contains only one Lorentz 4-vector which is at the same time a unitary singlet: $(1 ; 2,2)$. We will identify this 4 -vector with the usual physical momentum.
3. Starting from the commotion relations between the generators of the group ISL (6), one can easily become convinced (see, es. 4, 11) that the operators P commute, and their commutators with generators M of the homogeneonus group SL(6) are expressed linearly in terms of P. The operators P and M generate the Lie algebra of the 470-parametrical group ρ_{u} which can be defined as a semidirect product

$$
\begin{equation*}
\Phi_{1}=\frac{S L(6)}{2_{8}} \cdot T_{400} \tag{9}
\end{equation*}
$$

Here z_{8} is the cyclic group of the cube roots of unity which is the normal $9_{\mathrm{a}} \mathrm{Xx}$) $\mathrm{SI}(6), \mathrm{T}_{400}$ is the 400 -parametrical invariant Abelian subgroup

The first figure in each bracket in the right-hand side of (8) denotes the dimensionality of the representation under the group $\operatorname{SU}(3)$, the second pair of figures refers to the representation of the group $\mathrm{SI}(2)$.
xx)
mint ${ }^{11}$.
A more detailed characteristic of the group
9. was given in
prep-

Single-valued representations of the group ia describe only the particles with integer charges. The lowest non-trivial representation of the homogeneous group $\operatorname{SL}(6) / \mathrm{Z}_{8}$ is twenty-dimensional. There are two types of twenty-component spinors transforming under representations $[20,1]$ and $[1,2 \overline{0}]$ which we shall join together in one blspinor

$$
\Psi=\left(\begin{array}{ccc}
\phi^{a_{1}} & a_{2} & a_{8} \tag{10}\\
x_{\beta_{0}} & \dot{\beta}_{2} & \dot{\beta}_{3}
\end{array}\right)
$$

(ϕ and x are antisymmetrical with respect to their indices). The analog of the Dirac equation for this bispinor is written down as
or in a more compact form

$$
\hat{\vec{P}} \Psi=\Psi \quad \hat{P}=\left(\begin{array}{ll}
0 & P \tag{12}\\
\widetilde{P} & 0
\end{array}\right) .
$$

Equations (11) or (12) are invariant not only under the proper group $P_{\text {g }}$ but also under the "reflection" is defined by the equalities

$$
\begin{align*}
& \text { I. } \Psi=\eta\binom{x \dot{\beta}_{1} \dot{\beta}_{2} \dot{\beta}_{8}}{\phi a_{1} a_{2} \alpha_{8}}=\eta \Gamma_{0} \Psi \\
& I_{0} \hat{P}_{1}^{-1}=\Gamma_{0} \hat{P} \cdot \Gamma_{0}^{-1}=\left(\begin{array}{cc}
0 & \tilde{p} \\
p & 0
\end{array}\right) \quad \text {. } \tag{13}
\end{align*}
$$

4. The Lie algebra of the group I. has 6 polynomial invariants (Casimir operators). One of them is a function of the momenta only and is given by (7). The remaining ones are the generators of the "little group" and are determined in the following manner.

Let K_{*}^{μ} and $K_{*}^{* / 2}$ be nonhermitian generators of the homogeneous SL(6) group which satisfy the usual commutation relations (see ${ }^{11}$)

$$
\begin{equation*}
\left[K_{u}^{\mu}, K_{v}^{* \nu}\right]=0 \tag{15}
\end{equation*}
$$

where the structure constants are determined from the identities

We put then (like in (1))

$$
\begin{equation*}
\mathbb{K}_{\dot{\beta}}^{\dot{a}}=\left(\Lambda_{\mu}^{\dot{z}}\right)_{\dot{\beta}}^{\dot{u}} \mathbb{K}_{\beta}^{\mu} \cdot \mathbb{K}_{\beta}^{*}=\left(\Lambda_{\mu}^{\dot{a}}\right)_{\beta}^{a} \mathbb{K}_{\beta}^{*^{\mu}} \tag{17}
\end{equation*}
$$

and introduce the 400-component tensor

The tensor is invariant under traslations and is an analog of the $\&$ dimensional vector of Pauli-Lubanski-Bargmann. Using it, the matrix of 35 generators of the little group is defined by the formula

$$
\begin{aligned}
& { }^{a_{1} a_{2} a_{3} \dot{\beta}_{1} \dot{\beta}_{2} \dot{\beta}_{2}}=\frac{1}{6}\left(\mathrm{P}^{a_{1} a_{2} a_{8} \dot{\beta}_{2} \dot{\beta}_{2} \delta}{ }_{E} \dot{\beta}_{\theta}+\right. \\
& +\mathrm{P}^{a_{1} a_{2} a_{8} \dot{\beta}_{1} \dot{\sigma} \dot{\beta}_{\mathrm{g}}}{ }_{K} \dot{\beta}_{2}+\mathrm{P}^{a_{1} a_{2} a_{8} \dot{\dot{\beta}} \dot{\beta}_{2} \dot{\beta}_{8}}{ }_{K} \dot{\beta}_{\mathrm{O}}+ \\
& \left.+\mathrm{P}^{a_{2} a_{2} \sigma \dot{\beta}_{1} \dot{\beta}_{2} \dot{\beta}_{8}} \mathrm{~K}_{\sigma}^{*} a_{8}+\mathrm{P}^{a_{1} \sigma a_{8} \dot{\beta}_{1} \dot{\beta}_{2} \dot{\beta}_{2}} \underset{\mathrm{~K}^{*} a_{2}+\mathrm{P}^{\sigma a_{2} a_{8} \dot{\beta}_{1} \dot{\beta}_{2} \dot{\beta}_{8}} \mathrm{~K}_{0}^{*} a_{1}}{ }\right) .
\end{aligned}
$$

$$
\begin{align*}
& {\left[\sigma_{\mu}, \sigma_{\nu}\right]=2 \mathrm{i} \varepsilon_{q \nu \rho} \sigma_{\cdot p},\left\{a_{\mu}, \sigma_{\nu}\right\}=2 \delta_{\mu \nu \rho} \sigma_{\cdot \rho}, \quad \mu, \nu, \mathrm{p}=0,1,2,3} \tag{16}
\end{align*}
$$

The Casimir operators characterizing the irreducible representations of the Little group are given by

$$
\begin{equation*}
c_{\ell}=s_{p} \cdot v^{\ell}, \quad t=2,3,4,5,6 \tag{20}
\end{equation*}
$$

Since the operators（20）are Hermitian we would arrive at the same expresaions for them if instead of the tensor v_{β}^{a} we would make use of the Hermition con－ jugate tensor ${ }^{*} \dot{\beta}$

5．As far as the group 9 contains $S U(6)$ as a subgroup and $S U(6)$ symmetry is not rigorous，then g_{u} symmetry should be inevitably broken down either．Following ${ }^{3}$ it is reasonable to introduce the breakdown of the symmetry under the group I as a supplementary condition on the state vectors，In other words，we postulate that the physical states are the eigerrvectors with zero eigen－ values of all those 400 －momentum components which do not commute with the hypercharge and isotopic spin operators．Using this assumption we hope to obtain some formulae for particle masses and relations among form－factors $\left(\mathrm{cf}^{3}\right)^{\mathrm{x}}$ ）．

In conclusion，we express our deep gratitude to D．P،Zhelobenko for useful discussions and valuable advice on the theory of representations；We are also very grateful to R_{0} MoMuradyan and $\mathrm{A}_{0} \mathrm{~N}_{*}$ ．Tavkhelidze for fruitiul discussions．

References

1．B．Sakite，Phys．Rev．136，B1756（1964）．
2．LoMichel and B．Sakita．Group of Invariance of a Relativistic Supermultiplet Theory．Preprint Bures－sur Yvete（1964）．
3．T，Fulton and J，Wess，Physicett，14， 57 and 434 （1965）．15，177（1965）．
4．H．Bacry and J．Nuryts，Remarks on an Enjarged Poicaré Group．Inhomogeneous SL（ 6）Group．Preprint CERN，10068／TH 506，Geneva（1964）．

5．WuRühl．A．Relativistic Generalization of the SU（6）Symmetry Group，Preprint CERN 10058／TH 505 Geneva（1964）．W．Rűhl．Baryons and Mesons in a The Theory which Combines Relativistic Irvariance with SU（6）Symmetry．Preprint CERN，65／70／5／TH 514，Geneva（1965）．
6．V．G．Kadyshevsky，R，M，Muradyan，A．NTavkhelidze and I．T．Todorov，Physlics Letters 15， 182 （1965）．

One may hope that in the theory of broken \mathscr{P} symmetry the mass de－ pendence on the spin will be obtained in a natural way since in the decomposition （8）of the 400 －momerium in irreducible representations $S U(3) \times S L(2)$ the unitary singlet appears twice with different values for the spin．

7．Yu．VoNovozhilov and LA．Terentjev．Phys．Lett．15． 86 （1965）．
8．S．K．Bose and YusMShirokov．A Relativistic Extension of SU（6），Preprint，
Dehil（1965）．
9．H．Becry：On Some Classical Space Time Groups and their SU Generalizations Preprint CERN65／319／5 TH 526，Geneva，1965．
10．H．Bacry and AnKihiberg．On a Class of Generallzed Poincaré Groups Inhomogeneous SL（n．C），Preprint CERN 65／426／5 TH 532 Greneva（1965）．
11．В．Г．Кадышөвсепи，К．Т．Тодороз，Неодиородиая групда с расширенво⿱⿱亠䒑日，под－ группой трансляция．Прөпркит ОИЯИ，Р－2123，Дубва， 1985.

Recieved by Publishing Department
 on

Submitted to Physics Letters
in April 1965.

