ОБЪЕДИНЕННЫЙ
 ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

$$
\text { E- } 2194
$$

P. Winternitz, A.A. Makarov, Nguyen van Hieu, L. G. Tkachev and M. Uhlir

ON THE STRUCTURE OF VECTOR AND AXIAL CURRENTS IN BROKEN Ü (12) SYMMETRY WAt CCeP, 1966, T166, N6, c. 1323-1325.

P. Winternitz, A. A. Makarov, Nguyen van Hieu, L.G. Tkachey ${ }^{x}$) and M. Unlir

```
ON THE STRUCTURE OF VECTOR
    AND AXLAL CURRENTS IN
    BROKEN Ü (12) SYMMETRY
```

Submitted to Dokl. Akad, Nauk
x] On leave of absence from the Saratov State Univergity.

The theory based on the group SU (6) makes it possible to explain a large number of experimental data. It has been shown in a number of paperd,110/ that the groups SL (6) and U (12) are possibie relativistic generallzations of the SU (6) symmetry. It has also been shown that the wave equations even for free particles break the SL (6) and U(12) symmetries, so that it is meanigless to construct an S-matrix, invariant with respect to these groups. However, if the usual foum momenta are considered as components of the tensors ${ }^{1 /}$ ${ }_{(P)}^{(\dot{b} \dot{\beta})},{ }_{(P)}^{(b)}{ }_{(b)}^{(i \hat{\beta})}$ transforming like the corresponding $S L(6)$ spinors, the cor responding wave equations are SL (6) irvariant. Starting from this point Nguyen van Hieu $/ 7 /$ suggested a method for investigating the SL (6) symmetry, making it possible to take into account the so called intrinsic breaking/4/ due to the wave equations. This method was called the spurion formalism in $/ 7 /$ and consists of the following. Constructing the matrix elements of scattering processes and currents, or investigating wave equations, we first consider the particle fourmomenta p_{μ} to be components of the tensors $(P)_{(i \dot{\beta}}^{(a)}$ and $(\hat{P})^{(i \dot{\alpha})}$. The matrix elements of the scattering processes or currents contain not only the wave functions of the initial and final particles, but also these 36 -dimensional momenta. In this case we demand that the matrix elements and wave equations should be invariant with respect to SL (6) and then we perform the following substitur tion in the obtained invariant expressions:

$$
\mathrm{P}_{\hat{A}}^{\dot{B}} \rightarrow \hat{\mathrm{p}}_{\mathrm{a}}^{\dot{i}} \delta_{a}^{\beta} \quad \mathrm{P}_{\dot{A}}^{\mathrm{B}} \rightarrow \hat{\mathrm{P}}_{\dot{\mathrm{b}}} \delta_{a}^{\beta}
$$

i.e, we set all additional components equal to zero. Nguyen van Hieu and Smorodinsky $11 /$ have shown that this formalism applied to imvestigating the structure of currents in SM6) symmetry gives a series of new predictions.

In this paper we investigate the general structure of the baryon vector and axial current matrix elements in the framework of the $U(12)$ symmetry group. Since the wave equations will be invariant with respect to the (12) (12) confront. $/ 7 / 7 \mathrm{fere} a, \beta$ are unitary indices, a, b spin indices. For details
group only if we introduce 143 -component momenta, we shall use them and construct invariant matrix elements, in which we finally put all additional components equal to zero.

Let us consider the matrix element of the current $J_{(b \beta)}^{(\Delta a)}$ where $a=1,2$, $3,4, \quad \alpha=1,2,3$; transforming according to the regular representation of $\mathrm{U}(12)$ between baryon states, belonging to the multiplet 364 in $\mathbb{U}(12)$ (the multiplet 56 in SU (6)). We denote the momenta of the initial and final baryons by p and q respectively, and first consider them as components of the 143 compo nent tensors $\left(P_{B}^{A}\right.$ and $(Q)_{B}^{A}$ We denote

$$
(K)_{B}^{A}=(P)_{B}^{A}-(Q)_{B}^{A}, \quad(L)_{B}^{A}=(P)_{B}^{A}+(Q)_{B}^{A}
$$

For these momenta we have the following relation

$$
(P)_{B}^{A}(Q)_{C}^{B}+(Q)_{B}^{A}(P)_{C}^{B}=2 \delta_{C}^{A} \quad(p q)
$$

Since the current $\quad \frac{\mathrm{J}_{\frac{\mathrm{B}}{\mathrm{A}}}^{\mathrm{A}} \text { is }}{\left(\mathrm{J}_{\mathrm{B}}^{\mathrm{A}}\right)}=\mathrm{J}_{\mathrm{A}}^{(}$
its matrix element satisfies the relation

$$
\begin{equation*}
\langle Q| J_{\mathbf{B}}^{\mathbf{A}}|\mathbf{P}\rangle \quad=\langle P| J_{\mathbf{A}}^{\mathbf{B}}|Q\rangle \tag{1}
\end{equation*}
$$

Invariance considerations and the generalized Bargmann-Wigner equations for the glven baryon multiplet imply that the most general matrix element of the current $\mathrm{J}_{\mathrm{B}}^{\mathrm{A}}$, satisfying (1), can be written as \mathbf{x})

$$
\begin{gather*}
\langle Q| J_{B}^{A}|P\rangle=f_{i}(\kappa) \bar{\psi}(Q)_{B C D} \psi(P)^{A C D}+ \\
+f_{a}(\kappa)\left[\bar{\psi}(Q)_{D E F}\left(\frac{K}{m}\right)_{B}^{D} \psi(P) \quad-\bar{\psi}(Q)_{B E F}\left(\frac{K}{m}\right)_{D}^{A} \psi_{D}(P)^{D E F}\right]+ \tag{2}
\end{gather*}
$$

 should be added, but it can not contribute to vector or axial currents.
where m is the baryon mass, $i_{i}(x)$ functions of the invariant

$$
K=\frac{1}{12}(K)_{A}^{B}(K)_{B}^{A}=K^{2}
$$

Further we express the spinor $\psi^{\text {ABC }}$ with the help of the physical wave functions of the particles, pick out the components transforming like octet vector and axial currents and put all the additional components of the momenta equal to zero. Thus we obtain

$$
\begin{aligned}
& \langle q| J_{\mu}^{v}|p\rangle=\frac{\ell \mu}{2 m}\left(f_{1}-\frac{k^{2}}{m^{2}} f_{d}+\frac{k^{2}}{m^{2}} f_{2}\right)(\bar{N} N)_{F}+ \\
& +\left(f_{1}-\frac{k^{2}}{m^{2}} f_{8}+4 f_{2}\right)\left(\bar{N} \frac{I_{\mu}}{4 m} N\right)_{D+\frac{2}{8} F}+\frac{3 \ell^{2}}{4 m^{2}}\left[\left(f_{1}-\frac{k^{2}}{m^{2}} f_{s}+4 f_{2}\right) \bar{D}_{\lambda} \gamma_{\mu} D_{\lambda}-\frac{2 \ell}{m} \mu_{2} D_{\lambda}^{-} D_{\lambda}\right]+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{m}\left(f_{1}-\frac{k^{2}}{m^{2}} f_{s}+4 f_{2}\right)\left(\epsilon_{, \mu \nu \kappa \lambda^{\ell}} k_{\lambda} \lambda_{\nu} \bar{D}^{N}+\text { b.c. }\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(f_{1}+\frac{k^{2}}{m^{2}} f_{s}\right) \frac{\ell^{2}}{2 m^{2}}\left(\bar{D}_{\mu} N+\text { b.c. }\right)+\left[\left(f_{1}+\frac{k^{2}}{m^{2}} f_{8}\right) \frac{p_{\lambda} q^{q} \mu^{2}}{m^{2}}\left(f_{2}-2 f_{8}\right) \frac{2 p_{\lambda} k_{k}}{m^{2}}\right]\left(\bar{D}_{\lambda} N+h^{\prime} . c .\right) .
\end{aligned}
$$

Here N and D_{μ} are the physical wave functions for the baryon-octet and decimet and the indices F and D indicate the type of coupling.

Note that f_{4} gives no contribution. Thus, in the framework of the \mathbb{U} (12) theory the matrix elements of the octet vector and axial currents for particles in the 56-dimensional multiplet of $S U(6)$ can be expressed with the help of 3 independent functions $f_{i}(\kappa), \quad i=1,2,3$.

Let us consider the consequencies of some additional, more particular, assumptions. If we assume that the main contribution to the vector form-factor come from a pole ,diagrarn, corresponding to the exciange of one vector meson, we have

$$
\begin{equation*}
\mathrm{f}_{\mathrm{a}}=0, \quad \mathrm{f}_{2}=\frac{\mathrm{m}}{24} \mathrm{f}_{1} \tag{5}
\end{equation*}
$$

where μ is the meson mass. We thus reproduce the results of ${ }^{(9,10 /}$. In particular, the proton magnetic moment will be $1+\frac{2 m}{\mu}$. In the composite particle model of Bogolyubor et al. $12 /$ one has:

$$
\begin{equation*}
f_{s}=0, \quad f_{2}=\not / 2 f_{1} . \tag{6}
\end{equation*}
$$

Let us consider some experimental consequences of the obtained results. It follows from (3) that anninilation of the type

$$
\bar{p}+p \rightarrow e^{+}+e^{-} \quad \bar{p}+p \rightarrow \mu^{+}+\mu-
$$

is forbldden at rest. Further, all electromagnetic form-factors can be expressed with the help of $f_{1}-\frac{k^{2}}{m^{2}} f_{8}$ and f_{2} and these can be connected with the electric and magnetic form-factors of the proton. Thus, if the proton form-factors are known, cross sections of processes

$$
e+p \rightarrow e+\Delta^{+}, \quad e+n \rightarrow e+\Delta^{\bullet}
$$

and also the radiative decay probabilities of the baryon resonances can be calculated. The experimental investigation of the leptonic weak interaction processes: leptonic decays of baryons and the Ω^{-}-hyperon, production of baryons and baryon resonances in neutrino experiments etc. can also permit to check the obtained relations.

The authors express their gratitude to prof. D.I. Blokhintsev, N.N. Bogolubov, M.A. Markov, J.A. Smorodinsky, I. Úlehla and A.N. Tavkhelidze for helpful comments and interest in this work.
References

1. B. Sakita, Phys.Rev. 136B, 1756 (1964).
2. T. Fulton and J. Wess. Phys. Lett. 14, 57 (1965).
3. H. Bacry and J. Nuryts. Preprint CERN, 1964.
4. K. Bardakci, J.M. Cornwall, P.G.O. Freund and B.W. Lee. Phys.Rev.Lett. 13, 698 (1964).
5. V.G. Kadyshevisky, R.M. Muradian, A.N. Tavkhelidze and L.T. Todorov, Phye. Lett. 15, 180 (1965).
6. W. Ruhl. Phys.Lett. 14, 346 (1965).
7. Nguyen van Hleu. Я.Ф. (in print), Preprint JINR. P- 1954 and 1991 (1965).
8. J.M. Charap and R.I. Matthews. Preprint London 1965.
9. R. Delbourgo, A.Salam and J. Strathdee. Proc. Roy. Soc. A284, 146 (196E
10. B. Sakita and K.C. Wall, Phys,Rev.Lett. 14, 404 (1965).
11. Nguyen van Hieu, Ja,A. Smorodinsky, भ.Ф. (in print), preprint JINR J 2067 (1965).
12. N.N.Bogolubov, Nguyen van Hleu, D. Stoyanov, B.V. Struminsky, A.N.Tavkhelidze, V.P. Shelest. Preprint JINR D-2075.

Received by Publishing Department on May, 281965.

