А - 828 объединенный институт ядерных исследований

CARD SHOW

Дубна.

6 - 5138

+8/

AASODATOPHS SAEPHEIX IIPOEAEM

Р. Арльт, Н.Г. Зайцева, Б. Крацик, М.Г. Лощилов, Г. Музиоль, Чан Тхань Минь, Х. Штрусный

о распаде ⁸⁹Zr и ⁸⁷Zr

٩.

Р. Арльт, Н.Г. Зайцева, Б. Крацик, М.Г. Лощилов, Г. Музиоль, Чан Тхань Минь, Х. Штрусный

و مرد الله المرد و ور ال

a de la companya de l

О РАСПАДЕ ⁸⁹ Zr и ⁸⁷ Zr

Направлено в "Изв. АН СССР"

А. Исследование распада ⁵⁹ Zr

1. Введение

Бета- и гамма-спектры изомеров 89m Zr (T_{1/2} = 4,18 мин) и 89 Zr (T_{1/2} = 78,4 часа) изучались рядом авторов /1-6/, причем исследование гамма-спектра проводилось только с помощью сцинтилляционной техники.

Настоящая работа посвящена исследованию распада этих изомеров с помощью гамма-спектрометра с Ge(Li) -детекторами. На основании полученных данных нами дополнены и уточнены схемы возбужденных уровней ⁸⁹ Y .

2. Условия и результаты эксперимента

2.1. Получение источников ⁸⁹ Zr

З

Радиоактивные изотопы циркония, использовавшиеся для изучения ⁸⁹ Zr (78,4 часа), получались при облучении мишеней из окиси иттрия и металлического ниобия внутренним пучком протонов с энергией 120 и 660 Мэв, соответственно, на синхроциклотроне ОИЯИ в течение 20-30 минут.

Радиохимически чистый цирконий выделялся из смеси продуктов реакций глубокого расщепления окиси иттрия методом экстракции с последующей дополнительной очисткой ^{/7/}.

Из смеси продуктов реакций глубокого расщепления ниобия радиохимически чистый цирконий выделялся по методике, описанной в работах^{/8,9/}, за исключением того, что солянокислый раствор, полученный после растворения гидроокиси, не наносился на хроматографическую колонку, а доводился до 2М по НСЮ, и 0,01М по Н₂С₂О, и цирконий экстрагировался из этого раствора теноилтрифторацетоном (0,5М ТТА в ксилоле). Спустя примерно 10 дней после конца облучения проводилась конечная операция по очистке циркония, заключающаяся в промывке органического раствора 2М НNO₃, содержащей по≈1 мг Y, Sr и Rb в качестве удерживающих носителей.

Помимо ⁸⁹ Zr, в источнике содержался только ⁸⁸ Zr (85 дн.) и его дочерний изотоп ⁸⁸ Y (105 дн.), количество которого медленно нарастало.

Короткоживущий изомер (4,18 мин) ^{89m} Zr изучался отдельно в цепочке распада ^{89m, 89}Nb <u>48 мин.</u> ^{89 m} Zr <u>4,18 мин.</u> ⁸⁹ Y. Метод получения ⁸⁹Nb описан в работе

2.2. Аппаратура и результаты измерения

Для измерения гамма-спектров ^{89m,89} Zr были использованы два детектора типа Ge(Li) с чувствительными объемами 6,3 и 10 см³ с энергетическим разрешением 4-5 кэв для гамма-переходов ⁶⁰ Co. Амплитудный анализ осуществлялся 4096-канальным анализатором.

На рис. 1 изображен гамма-спектр ⁸⁹ Zr (78,4 часа). Кроме известных лучей с энергиями 908, 1620 и 1712 кэв, был обнаружен переход с энергией 1744 кэв, наблюдавшийся до этого только в ядерных реакциях ^{/11/}, и ранее неизвестный переход 1657 кэв.

В гамма-спектре ^{89m}Zr (4,18 мин) зарегистрированы известные линии с энергиями 587,6 и 1507 кэв.

Относительные и абсолютные интенсивности наблюдаемых переходов приводятся в табл. 1.

Схема распада и квантовые характеристики уровней

3.1. Схема распада

На рис. 2 изображена схема распада изомеров ⁸⁹ Zr . Наши данные позволяют уточнить энергии известных уровней 908, 2528 и 2620 кэв при распаде ⁸⁹ Zr, 1507 кэв при распаде ^{89m} Zr и добавить в схему распада ⁸⁹ Zr уровень 1744 кэв, раньше известный только по ядерной реакции.

Исходя из энергии распада (**Q** = 2827 кэв, см. ниже) и интенсивности у-переходов 1657 кэв мы считаем наиболее вероятным, что этот переход идет на уровень 908 кэв (9/2⁺). Поэтому следует дополнить схему распада ⁸⁹ Zr уровнем 2565 кэв.

В наших измерениях мы не получили никаких данных, которые бы свидетельствовали о возбуждении уровня 2220 кэв (5/2⁺) при распаде ⁸⁹Zr, известного из ядерных реакций^{/11/}. Это может быть связано с высокой степенью запрета бета-распада из состояния 9/2^{+ 89} Zr.

Интенсивность заселения возбужденных уровней ⁸⁹ Y при распаде ⁸⁹ Zr (78,4 часа) в относительных единицах – была получена как разница относительных интенсивностей уходящих и приходящих гаммапереходов на те же уровни. Положив, что сумма интенсивностей переходов 908 и 1744 кэв, идущих на основное состояние, равна 100%, мы получили абсолютные значения интенсивностей отдельных компонент бетараспада и электронного захвата, а отсюда также гамма – переходов. Отно-

шения ϵ/β^+ были оценены по теоретическим значениям для разрешенных переходов. При этом для разности масс ⁸⁹ Zr и ⁸⁹ Y было принято значение 2827 кэв^{/4/}.

Разветвление распада 89m Zr было определено по полученным относительным интенсивностям гамма-переходов 587,6 кэв и 1507 кэв и по известному ${}^{/2/}$ отношению интенсивностей бета-перехода, идущего на основное состояние 89 Y и гамма-перехода 587,6 кэв (β^+ 2400/ γ 588 = 0.0027).

На основе этих данных были вычислены значения lg ft, которые вместе с интенсивностями бета- и гамма-переходов приводятся в схеме распада.

3.2. Квантовые характеристики уровней

Спины и чётности 1/2⁻, 9/2⁺, 3/2⁻, 5/2⁻, 7/2⁺, 9/2⁺ основного и возбужденных состояний 909, 1507, 1744, 2528 и 2620 кэв, соответственно, были хорошо известны /11/. Наши данные не противоречат этим результатам. Что касается уровня 5/2⁻ (1774 кэв), то бета-распад должен быть уникальным первой степени запрета ($\Delta I = 2$, $\Delta \pi = +1$). В согласии с этим находится полученное нами значение lgft = 8,3.

Значение lgft = 7,15 свидетельствует о том, что соответствующий бета-переход на уровень 2565 кэв может удовлетворять правилам отбора: $\Delta I = 0,1$ и $\Delta \pi = \pm 1$; т.е. можно ожидать у этого уровня $I^{\pi} =$ = $(7/2, 9/2, 11/2)^{\pm}$. Однако в данной области ядер такое значение lg ft соответствует, скорее, разрешенному переходу с $\Delta I = 0,1$ и $\Delta \pi = \pm 1$.

4. О природе состояний 89 Ү

Ядро ⁸⁹ 39^Y содержит "магическое" число нейтронов (N = 50) и 39 протонов, причем нечётный протон лежит вне заполненных подоболочек 2 p3/2 и lf5/2 . Поэтому в нем возможно существование одночастич-

ных состояний Р 1/2, g 9/2 и однодырочных - (Р 3/2)⁻¹; ($f_{5/2}$)⁻¹. Можно отождествить их с наблюдаемыми уровнями 0(1/2⁻), 908 (9/2⁺); 1507 (3/2⁻) и 1744 кэв (5/2⁻). Не исключена возможность, что в последних двух уровнях есть вклад состояний, возникающих вследствие взаимодействия протона Р 1/2 с возбужденным остовом 2+ ($\frac{88}{38}Y_{50}$).

Уровни 908 кэв (9/2⁺) и 2620 кэв (9/2⁺) заселяются $\beta^{+}_{-\epsilon}$ -переходами с близкими значениями lgft = 6,1. Поэтому возможно, что они имеют сходную структуру. Различие между ними может быть обусловлено тем, что при возбуждении уровня 2620 кэв два протона переходят с подоболочки Р3/2 на подоболочку Р1/2, т.е. этот уровень может быть охарактеризован конфигурацией Р(Р3/2)⁻² Р(Р1/2)² Р(g9/2)¹. Остальные уровни можно попытаться интерпретировать в рамках модели возбужденного остова де Шалита^{/12/} как результат слабой связи протона g9/2 с возбужденным остовом ядра – ядром $\frac{88}{38}$ Sr₅₀, находящимся в состоянии 2⁺. Вследствие этой связи в $\frac{89}{39}$ Y₅₀ должен появиться квинтет возбужденных уровней с квантовыми характеристиками 5/2⁺, 7/2⁺, 9/2⁺, 11/2⁺ и 13/2⁺. Ожидаемое положение его центра тяжести находится в согласии с предсказаниями^{/12/} на высоте возбужденного уровня 2⁺ в ⁸⁸ Sr, увеличенной на энергию уровня 9/2⁺ в ⁸⁹ Y, т.е. на высоте 1835+903=2743 кэв.

Возможно, что уровни 2220 кэв $(5/2^+)$; 2528 кэв $(7/2^+)$ и 2565 кэв $(9/2^+, 11/2^+)$ являются тремя членами этого квинтета. Его остальные два члена $11/2^+$ (или $9/2^+$) и $13/2^+$ могут находиться на высоте, большей, чем энергия бета-распада (2830 кэв).

Б. <u>Исследование распада</u>⁸⁷ Zr

1. Введение

Опубликованные до настоящего времени данные исследований распада 87 Zr (T_{1/2} = 94 мин) носят противоречивый характер ${}^{/3,13-15/}$.

В работах^{/3,13/} дается указание на гамма-излучение $E_y = 350$ и 650 кэв, сопровождающее распад ⁸⁷ Zr . Однако в более поздней работе^{/6/} это гамма-излучение не было зарегистрировано. В работах^{/6,13/} были обнаружены гамма-лучи с энергиями 1,2 и 2,2 Мэв. Но в работе Басковой и др. ^{/14/} никаких у-лучей, принадлежащих распаду ⁸⁷ Zr, не было обнаружено и был найден лишь один бета-переход между основным уровнем ⁸⁷ Zr и изомерным ⁸⁷ Y.

Для выяснения схемы распада этого изотопа и была предпринята настоящая работа. Гамма-спектр⁸⁷ Zr измерялся на Ge(Li) -спектрометре, и на основании полученных результатов была предложена его схема распада.

2. Условия и результаты эксперимента

Изотоп⁸⁷ Zr получался при облучении мишеней из окиси иттрия и металлического ниобия протонами с энергией 120 и 660 Мэв, соответственно, на внутреннем пучке синхроциклотрона ОИЯИ с последующим химическим выделением, описанным в разделе А настоящей работы.

Условия измерений гамма-спектра ⁸⁷ Zr также аналогичны тем, которые указаны в разделе А.

Измерения начинались спустя примерно 1-2 часа после конца облучений. На рис. З изображены отдельные участки гамма-спектра ⁸⁷ Zr. Данные об энергиях и интенсивностях гамма-переходов приведены в табл. 2.

Помимо ⁸⁷ Zr, в исследуемых источниках присутствовали также ⁸⁹ Zr (78,4 час), ⁸⁶ Zr (16,5 час) и его дочерний изотоп ⁸⁶ Y. Что касается ⁸⁹ Zr и ⁸⁶ Zr, то их спектры просты и хорошо известны ^{/10,11/} так что вычесть их вклад из общего спектра не представляло никакой трудности. Более сложной оказалась задача учесть вклад ⁸⁶ Y ^{/11/}, спектр которого необычно богат. В некоторых случаях его присутствие затрудняло анализ гамма-спектра ⁸⁷ Zr.

3. Схема распада и квантовые характеристики уровней

3.1. Схема распада

Некоторые сведения о возбужденных уровнях ${}^{87}_{39}$ давало до сих пор только изучение ядерных реакций (p,a); (p,t) / 11/и (p,y) (см. рис. 4). Наши данные о у -излучении, сопровождающем $\beta^+ \epsilon$ -распад позволяют выявить ряд новых уровней 87 У.

Нужно отметить, что ядра ${}^{87}_{39}Y_{48}$ и ${}^{89}_{39}Y_{50}$ отличаются только тем, что в 87 Y не хватает двух нейтронов до заполнения оболочки lg9/2. Поэтому можно ожидать, что состояния, существующие в ядре 89 Y, должны также проявляться в ядре 87 Y. Кроме этого, в связи с присутствием двух дырок в 87 Y и с большей энергией распада 87 Zr, чем у 89 Zr, спектр возбужденных уровней 87 Y должен быть богаче, чем в случае 89 Y.

На основе аналогии с ядром ⁸⁹ Y , результатов изучения ядерных реакций ^{/11/} и баланса энергий и интенсивностей предлагается схема распада ⁸⁷ Zr , которая представлена на рис. 4.

Интенсивность заселения возбужденных уровней ⁸⁷ У при распаде ⁸⁷ Zr , так же как для ⁸⁹ Y , получалась как разница интенсивностей уходящих и приходящих гамма-квантов на те же уровни. В этом случае, однако, подсчёт баланса интенсивностей будет немного сложнее, так как распад ⁸⁷ Zr в основном идет через 14-часовой изомер ⁸⁷ Y (381 кэв).

Обозначим символом N_γ то число атомов ⁸⁷ Zr, которое связано с излучением гамма-квантов γ. Для гамма-переходов _γ, где индексом і обозначены переходы 796, 2616, 2220, 1228, 1210 и 1202 кэв, справедливо выражение (постоянный множитель, определенный геометрией детектор-источник, опущен)

 $J_{\gamma_{1}}(t) = \lambda_{1} N_{\gamma_{1}} e^{-\lambda_{1}t}$

9

и для перехода 381 кэв - выражение

$$J_{381}(t) = \lambda_2 N_{381} \frac{\lambda_1}{\lambda_2 - \lambda_1} (e^{-\lambda_1 t} - e^{-\lambda_2 t}),$$

где $J_{\gamma_i}(t)$ - наблюдаемая относительная интенсивность соответствующего гамма-перехода в момент времени t. λ_1 , λ_2 - постоянные распада ⁸⁷ Zr и ⁸⁷^mY, соответственно. При этом за начало отсчёта времени (t=0) нужно считать момент химического выделения ⁸⁷ Zr, т.е. момент, когда в препарате отсутствует дочерний ^{87m} Y. Интенсивность заселения уровня 381 кэв тогда будет равна разности N₃₈₁ - $\sum_{i} N_{\gamma_i}$. Сумма интенсивностей γ -переходов в основное состояние была принята за 100%. Значения нормализованных интенсивностей всех γ -переходов представлены в третьем столбце табл. 2.

Последующие вычисления проводятся таким же образом, как в случае ⁸⁹Zr. При этом для полной энергии распада ⁸⁷ Zr принято значение 3663 кэв^{/14/}. Полученные значения lgft вместе с интенсивностями бета- и гамма-переходов, приводятся в схеме распада.

3.2. Квантовые характеристики уровней

Были известны $^{/11/}$ спин и чётность $I^{\pi} = 1/2^{-}$ и $9/2^{+}$ у основного и изомерного состояний 87 У. По предсказанию модели оболочек и по аналогии с соседними ядрами $^{85}_{38}$ Sr $_{47}$, $^{89}_{40}$ Zr $_{49}$ и т.д. можно ожидать $I^{\pi} = 9/2^{+}$ у основного состояния 87 Zr . Это согласуется с полученным значением $lgft \approx 5,6$ для бета-перехода $9/2^{+}$ (87 Zr) $\rightarrow 9/2^{+}$ (87 m Y).

Судя по сходной картине заселения и разрядки возбужденных уровней ^{87,89} Y, можно предполагать, что возбужденные уровни ⁸⁷ Y 793; 1583; 1591 и 1609 кэв и уровни ⁸⁹Y 1744; 2528; 2565 и 2620 кэв, соответственно, имеют одинаковую структуру. Следовательно, можно ожидать, по аналогии с соответствующими уровнями ⁸⁹ Y, спины

и чётность 5/2⁻, (9/2, 7/2)⁺, (7/2 9/2 11/2)⁺ и 9/2⁺ для уровней ⁸⁷ Y 793; 1583; 1591 и 1609 кэв, соответственно.

Нам кажется, что уровень 580 кэв, найденный в реакции авторами $\binom{10}{7}$ и 1177 кэв также аналогичны уровням 1506 кэв (3/2⁻) и 2220 кэв (5/2⁺) в ядре ⁸⁹ Y, т.е. они могут иметь I^{π} = 3/2⁻ и 5/2⁺, соот-ветственно.

С приписаниями квантовых характеристик обсужденным уровням согласуются полученные значения lgft соответствующих β⁺- переходов. Значение lgft < 6 свидетельствует о том, что соответствующие

 β -переходы относятся к разрешенному типу и, следовательно, уровни 2601; 2997 и 3342 кэв, заселяемые β -переходами из состояния 9/2⁺ (⁸⁷ Zr) с lg ft < 6, должны иметь I ^π = 7/2⁺; 9/2⁺ или 11/2⁺. Однако возможность I ^π = 11/2⁺ можно для них исключить, обращая внимание на их прямую разрядку на уровни 5/2⁺.

4. О природе состояний 87 У

По аналогии с уровнями ⁸⁹ У можно рассматривать уровни ⁸⁷ У 0 кэв $(1/2^{-})$; 381 кэв $(9/2^{+})$; 580 кэв $(3/2^{-})$ и 793 кэв $(5/2^{-})$ как частичные состояния р1/2; g 9/2; (р 3/2)⁻¹ и (f 5/2)⁻¹, соответственно.

Уровни 1609 кэв (9/2⁺) и 381 кэв (9/2⁺) заселяются переходами с близкими lg ft (5,6 и 5,9). Поэтому, возможно, что они имеют сходную природу.

Уровни 1177 кэв $(5/2^+)$; 1583 кэв $(7/2, 9/2)^+$; 1591 кэв $(7/2 9/2 11/2)^+$ можно интерпретировать как три члена квинтета слабой связи протона g 9/2 с возбужденным остовом ядре – ядром ${}^{86}_{38}$ Sr₄₈, находящимся в состоянии 2⁺. Видно, что эти уровни находятся близко к предсказанному центру тяжести мультиплета 2⁺ + 9/2 (1076 кэв + 381 кэв = = 1457 кэв).

11

ì

Так же, как в соседних ядрах ⁸⁵ Sr $^{/16/}$ и ⁸⁹ Zr $^{/10/}$, в ядре ⁸⁷ Y можно предполагать существование трехчастичных уровней типа $p(p 3/2)^{-1}$ п $(p 1/2)^{1}$ п $(g 9/2)^{-1}$, возникающих при β^{+} -распаде ⁸⁷ Zr путем превращения $p(p 3/2) \rightarrow n(p 1/2)$:

$$p(p3/2)^{4} n(p1/2)^{0} n(g9/2)^{-1} \rightarrow p(p3/2)^{-1} n(p1/2)^{1} n(g39/2)^{-1}$$

с соответствующим значением lgft < 5,5. Однако в случае распада ⁸⁷ Zr значение lgft может быть немного повышено из-за того, что

основное состояние можно, по-видимому, представить в виде смеси конфигураций, причем только конфигурация

$$p(p1/2) (pg9/2)^{0} n(p1/2)^{0} n(g9/2)^{-1}$$

будет принимать участие в вышеуказанном β -превращении. Не исключено, что некоторые из уровней 2601, 2997 и 3342 кэв являются трехчастичными и приведенного типа.

Наши предварительные данные о распаде ⁸⁹Zr и ⁸⁷Zr были опубликованы в работах ^{/17/}и^{/18/}, соответственно. Нужно добавить, что после окончания обработки наших экспериментальных данных и их отправки на XIX Совещание по ядерной спектроскопии и структуре атомного ядра в Ереване появлялись работы ^{/19,20,21/} о распаде ⁸⁹Zr, результаты которых вполне согласуются с нашими результатами. Авторы благодарят Чыонг-Бьена за помощь в проведении эксперимента.

Литература

- F.J. Shore, W.L. Bendel, H.N. Brown, R.A. Becker. Phys. Rev., <u>91</u>, 1203 (1953); <u>87</u>, 195, 202 (1952); <u>83</u>, 688 (1951).
- 2. D.M.Van Patter, S.M. Shafroth. Nucl. Phys., <u>50</u>, 113 (1964).

- 3. E.K. Hyde, G.D. O'Kelley. Phys. Rev., 82, 944 (1951).
- 4. J.H. Hamilton, L.M. Langer, W.G. Smith. Phys. Rev., <u>119</u>, 772 (1960).
- 5. S. Monaro, G.B. Vingiani, R. Van Lieshout, Physica, 27, 985 (1961).
- 6. Y. Awaya, Y. Tendow, J. Phys. Soc. Japan, <u>19</u>, 606 (1964).
- Н.Г. Зайцева, В.В. Кузнецов, М.Я. Кузнецова, Ма Хо Ик, Г. Музиоль, Хань Шу-жунь, Чжоу Мо-лун, В.Г. Чумин. Ядерная физика, <u>1</u>, 385 (1965).
- 8. Н.Г. Зайцева, Чжоу Мо-лун. Радиохимия, 4, 738 (1962).
- Н.Г. Зайцева, Чжоу Мо-лун. Тезисы докладов XIII ежегодного совешания по ядерной спектроскопии в Киеве, стр. 28. Изд-во АН СССР, М.-Л., 1963.
- 10. Р. Арльт, Н.Г. Зайцева, Б. Крацик, Г. Музиоль, Л.К. Пекер, Чан Тхань Минь. Преприят ОИЯИ, 6-5088, Дубна, 1970.
- Б.С. Джелепов, Л.К. Пекер. Схемы распада радиоактивных ядер. Изд. "Наука", Ленинград, 1966.
- 12. A. de Shalit. Phys. Rev., 122, 1530 (1961).

ì

- 13. F.D.S. Butement, G.B. Briscoe, J.Inorg. Nucl. Chem., 25, 151 (1963).
- 14. К.А. Баскова, С.С. Васильев и др. Изв. АН СССР, сер.физ., <u>29</u>, 2255 (1967).
- 15, J.L. Irigaray, M. Asghar, J. Dalmas, G.Y. Petit, J. Roturier, Nucl. Phys., A136, 631-640 (1969).
- 16. Р. Арльт, Н.Г. Зайцева, Б. Крацик, М.Г. Лошилов, Г. Музиоль, Чан Тхань Минь. Препринт ОИЯИ, 6-5093, Дубна, 1970.
- 17. Н.Г. Зайцева, Б. Крацик, М.Г. Лошилов, Г. Музиоль, Чан Тхань Минь. Программа и тезисы доклада XIX ежегодного совешания по ядерной спектроскопии и структуре атомного ядра. Изд. "Наука", 59 (1969).
- R.Arit, B.Kracik, M.Loshchilov, G.Musiol, H.Strusny, Tran Thanh Minh, N.G.Zaitseva, Conf. Int. Symp. Nucl. Structure, Dubna, 10 (1968).

- 19. P.F.Hinrichsen, Nucl. Phys., A118, 538 (1968).
- 20. J.E. Draper, J.A. McCray, Nucl. Phys., <u>A120</u>, 234 (1968).
- 21. E.L.Robinson, R.C.Hagenauer, E.Eichler. Nucl. Phys., <u>A123</u> 471 (1969).

Рукопись поступила в издательский отдел 26 мая 1970 года.

Таблица 1

Энергии и интенсивности у -лучей ⁸⁹ Zr

Изомер	Энерг ия (кэв)	Относительная интенсивность	Интенсивность на 100% распадов
⁸⁹ Zr	908 <u>+</u> 1	100	99,86
	1620 <u>+</u> 1	0,08 <u>+</u> 0,01	0,08 <u>+</u> 0,01
Т _{1/2} =78,4 час	1657 <u>+</u> 1	0,12 <u>+</u> 0,01	0,12 <u>+</u> 0,01
	1712 <u>+</u> 1	0,86 <u>+</u> 0,05	0 ,86<u>+</u>0,0 5
	1774 <u>+</u> 1	0,14 <u>+</u> 0,01	0,14 <u>+</u> 0,01
^{89 m} Zr	587,6 <u>+</u> 0,5	100	93, 1
Т _{1/2} =4,18мин 1507 <u>+</u> 1		7,1 <u>+</u> 0,5	6,62 <u>+</u> 0,40

ì

Таблица 2

Энергии и интенсивности

γ — лучей ⁸⁷ Ζг

.

Энергия (кэв)	Относительная интенсивность	Интенсивность на 100% распадов
771 <u>+</u> 1	4 <u>+</u> 2	0,15 <u>+</u> 0,08
793 <u>+</u> 2	15 <u>+</u> 3	0,56 <u>+</u> 0,11
796 <u>+</u> 2	5 <u>+</u> 2	0,19 <u>+</u> 0,08
(973 <u>+</u> 2)	< 6 <u>+</u> 3	< 0,2
1160 <u>+</u> 1	7 <u>+</u> 1	0,27 <u>+</u> 0,04
1202+2	11 <u>+</u> 1	0,41 <u>+</u> 0,04
1210 <u>+</u> 1	33 <u>+</u> 2	1,2 <u>+</u> 0,08
(1218 <u>+</u> 1)	-	-
1228 <u>+</u> 1	100	3,8
1808 <u>+</u> 2	5 <u>+</u> 2	0,19 <u>+</u> 0,08
1820+_2	3 <u>+</u> 1	0,11 <u>+</u> 0,04
2165 <u>+</u> 3	3 <u>+</u> 1	0,11 <u>+</u> 0,04
2183 <u>+</u> 3	3 <u>+</u> 1	0,11 <u>+</u> 0,04
2220 <u>+</u> 2	10 <u>+</u> 2	0,38 <u>+</u> 0,08
2616 <u>+</u> 2	5 <u>+</u> 1	0,19 <u>+</u> 0,04

r

Рис. 2. Схема распада ⁸⁹ Zr.

Рис. 3. Отдельные участки гамма-спектра ⁸⁷Zr.

Рис. 4. Схема распада

7