<u>C343</u> K-891

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

М.Я. Кузнецова

2264

ИССЛЕДОВАНИЕ ЯДЕРНЫХ РЕАКЦИЙ ТИПА (p, xn), (p, pxn) и (p, 2p xn) И ВТОРИЧНЫХ РЕАКЦИЙ С ЗАХВАТОМ ЯДЕР ГЕЛИЯ И ЛИТИЯ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

М.Я. Кузнецова

2264

ИССЛЕДОВАНИЕ ЯДЕРНЫХ РЕАКЦИЙ ТИПА (р. хл.), (р. рхл.) ж. (р. 2р хл.) И ВТОРИЧНЫХ РЕАКЦИЙ С ЗАХВАТОМ ЯДЕР ГЕЛИЯ И ЛИТИЯ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 1965

•• •

2881 Cp.

Введение

Основные особенности взаимодействия частии высокой энергии со сложным ядром удовлетворительно описываются двухстадийной каскадно-испарительной моделью Сербера^{/1/}. Однако существует ряд явлений, которые не могут быть полностью объяснены только этой моделью; к таким явлениям принадлежат, в частности, так называемые простые, или поверхностные, реакции и процесс фрагментации, с которым тесно связаны вторичные реакции. К простым реакциям относит реакции типа (р , в), (р , ра), (р,2 р), (р , ря⁺) и др. В результате таких реакций возникает ядро, отличающееся от ядра мишени по массовому числу и заряду не больше чем на единицу. Вторичные реакции происходят на ядрах мишени под действием частии, рождающихся в процессе первичного взаимодействия налетающей частицы с веществом мишени. В результате вторичных реакций образуются ядра, которые могут иметь заряд на несколько единии больше заряда ядра мишени, если последнее взаимодействует с вторичными ядрами гелия или с еще более тяжелыми фрагментами. Имеются основания считать, что механизм простых ядерных реакций и процесс фрагментации связаны с поверхностной областью ядра, вопрос о которой до настоящего времени остается нерешенным.

Очевидно, что накопление экспериментального материала по вторичным реакциям и реакциям типа (p , m), (p , pm) и (р , 2 pm), включающим в себя и простые реакции – (p , n), (p , pn) и (р , 2 р), может быть полезным как для лучшего понимания механизма ядерных реакций, так и для построения тех или иных моделей структуры ядерной поверхности.

В настоящей работе были изучены:

Реакции типа (р, ркп) на ¹²¹ при энергии протонов от 100 до 660 Мэв^{/2/}.
Реакции типа (р, кп) и (р, 2 ркп) на разделенных изотопах теллура
¹²⁸ Теи Те) при энергии протоков от 120 до 660 Мэв^{/3/}.

Вторичные реакции захвата ядер гелия висмутом при энергии протонов от 120 по 660 Мэв /4/.

3

4) Вторичные реакции захвата ядер лития свинцом при энергия бомбардирующих протонов от 80 до 660 Мэв^{/5/}.

При исследования ¹²⁷I (р, рхп)-реакций оказалось, что интерпретация реакций с x ≥6 затруднительна из-за недостатка сведений о радиоактивных изотопах йода с A < 121, поэтому была предпринята работа по идентификации легких изотопов йода с массовыми числами 117, 118, 119 и 121^{/6/}, результаты которой учитывались при проведении исследования реакций типа (р , xn) и (р , 2 рхп).

Облучение мишеней проводилось не синхродиклотроне Лаборатории ядерных проблем ОИЯИ.

В первой главе диссертации дается краткий обзор работ, посвященных ядерным реакциям на сложных ядрах под действием частиц высокой энергии. Во второй главе описывается методика эксперимента. Третья и четвертая главы посвящены изложению экспериментальных результатов и их обсуждению; при этом проводится сравнение наших результатов с результатами аналогичных работ, выполненных другими авторами.

Методика эксперимента

Экспериментальные результаты, излагаемые в настоящей работе, получены с помощью радкохимического метода. Искомые продукты ядерных реакций извлекались химическим путем из сложной смеси элементов, образующихся в результате взаимодействия бомбардирующих частиц с веществом мишени. Количество атомов радноактивных продуктов оценивалось по их активности, а идентификация отдельных радиоизотопов данного элемента проводилась по периодам полураспада и характеру излучения.

Для регистрации излучения радиоактивных изотопов на определенных этапах исследования в соответствии с поставленной задачей применялись разные детекторы:

 Гейгеровский счетчик, наполненный смесью криптона с парами эфира и соединенный с магнитным анализатором /7/.

2) Стандартные счетчики Гейгера - Мюллера типа МСТ-17 (СИЗБ) и МСТ-40 (СТ-20).

 Сцинтилляционный у а -счетчик, состоящий из фотоумножителя ФЭУ-19 и сцинтиллятора ZmS(Ag).

При исследовании свойства ¹¹⁹ Te^{/8/} использовались также грубый магнитный βспектрометр с фокусировкой на 180[°] (разрешение на линия ¹⁸⁷ Cs равно 3,5%) и сцинтилляционный γ -спектрометр с кристаллом NaI(Tl) и многоканальным анализатором.

4

При вычислении эффективного сечения изучаемых ядерных реакций поток падающих протонов оценивался по образованию ²⁴ Na из ²⁷ Af в реакции ²⁷ Af (р, 3 pn)²⁴ Na, сечение которой известно для широкого интервала энергии протонов ^{/9/}.

а) Эксперимент

Экспериментальные значения эффективных сечений изучаемых реакций представлены в таблицах 1 и 2.

Сечения (р, рхв.)-реакций на I (10 ⁻²⁷ см ²)								
	Е _р (Мэв)							
Реакция	100	I70	300	480	660			
¹²⁷ I(p,pn) ¹²⁶ I	128 <u>+</u> 19	60 <u>+</u> 8	54 <u>+</u> 6	72-10	55 <u>+</u> 6			
¹²⁷ I(p, p2n) ¹²⁵ I	78 <u>+</u> 15	32 <u>+</u> 7	29 <u>+</u> , 4	26 <u>+</u> 4	26 <u>+</u> 2			
¹²⁷ I (p,p3n) ¹²⁴ I	5I <u>+</u> 5	50 <u>+</u> II	28 <u>+</u> 7	2I+ 5	18,7 <u>+</u> I,7			
¹²⁷ I (p, p4n) ¹²⁸ I	50 <u>+</u> 9	I4 <u>+</u> 2,5	13,5 <u>+</u> 1,7	12,4+3,6	I4,4 <u>+</u> 0,9			
$\left. \begin{array}{c} {}^{127}I(p,p6n) & {}^{121}I\\ {}^{127}I(p,p7n) & {}^{120}I \end{array} \right\}$	107	19	50	29	18			
$\left. \begin{array}{c} {}^{127} I(p, p8n) {}^{119} I \\ {}^{127} I(p, p9n) {}^{118} I \end{array} \right\}$	9,2	6,3	8	5,9	5,5			
, ²⁷ Al (p, 3pn) ²⁴ Na	10,2	9,3	IO,I	I0,6	10,8			

Табляца 2

Сечения (р, m) и (р, 2 рm) -реакций на ¹³⁵Те и ¹³⁶Те (10⁻²⁷ см)

	Е _р (Мэв)						
Реакция	120	120 200		480	660		
¹²⁶ Te(p, 2p6n) ¹¹⁹ Sb	5,5 <u>+</u> I,0	6,0 <u>+(</u> 0,6)	6,9 <u>+</u> 0,5	7,2 <u>+</u> 0,5	6,2 <u>+</u> 0,6		
¹²⁵ Te(p, 2p5n) ¹¹⁹ Sb	8,9 <u>+</u> 0,5	-	6,9 <u>+</u> 0,6	5,4 <u>+</u> 0,5	7,3 <u>+</u> 0,2		
¹²⁶ Te(p, 2p5n) Sb	9,2 <u>+</u> 0,8	II,2 <u>+</u> (I,2)	10,3 <u>+</u> 0,6	9,8 <u>+</u> 0,6	9,3 <u>+</u> 1,0		
¹²⁵ Te (p, 2p 4a) ¹³⁰ Sb	10,4 <u>+</u> 1,0	• -	7,7 <u>+</u> 0,4	7,2 <u>+</u> 0,5	II,0 <u>+</u> I,0		
¹²⁶ Te(p, 2p3n) ¹²² Sb	17,7 <u>+</u> 1,2	I3,0 <u>+</u> (I,3)	2I ,3+I ,0	23,3 <u>+</u> 1,4	23,3 <u>+</u> I,2		
¹²⁵ Te(p,2p2n) ¹²² Sb	19,6 <u>+</u> 1,3	-	17,8+1,1	16,3 <u>+</u> 1,0	23;9 <u>+</u> 1,6		
¹²⁶ Te(p,2pn) ¹²⁴ Sb	II, 4 <u>+</u> I, 5	II,8 <u>+(</u> I,7)	15,2+0,9	19,3 <u>+</u> 1,5	19,4 <u>+</u> 1,1		
Te(p,2p) Sb	9,3 <u>+</u> I,0	-	II, I <u>+</u> 0,7	13,4 <u>+</u> 1,2	2I,6 <u>+</u> I,0		
Te(p,4n) I	15,3 <u>+</u> 0,5	5, I <u>+(</u> 0,6)	2,2+0,4	2, I+(0,3)	I,9 <u>+</u> 0,3		
¹²⁵ Te (p, 3n) ¹²⁸ I	19,6 <u>+</u> 1,2	-	8,4+0,4	-	I,9 <u>+</u> 0,4		
Te (p, 3a) I	I5,I <u>+</u> 0,7	5, I <u>+(0,6)</u>	2,8 <u>+</u> 0,5	2,0+(0,3)	2,4 <u>+</u> 0,4		
¹²⁵ Te(p, 2n) ¹²⁴ I	13,0 <u>+</u> 1,8	-	2,5 <u>+</u> 0,4	2,3+0,5	2,5 <u>+</u> 0,4		
¹²⁶ Te(p, 2n) ¹²⁸ I	12,7 <u>+</u> 0,3	4,3 <u>+(</u> 0,6)	2,3+0,4	I,3 <u>+(0,2)</u>	I,9 <u>+</u> 0,3		
125 Te(p,n) I	7, I <u>+</u> I, I	-	I,2 <u>+</u> 0,2	-	-		
¹²⁶ Te(p,n) ¹²⁶ I	8,3 <u>+</u> 0,3	~3	I, I <u>+</u> 0, 2	0,8 <u>+(</u> 0,I)	I,3 <u>+</u> 0,3		
¹²⁵ Te(p,?) ¹²⁶ I	2,2+0,3	-	~0,3	_	~0,4		
$\sigma(\mathbf{p}, 2\mathbf{p})/\sigma(\mathbf{p}, 2\mathbf{n})$	0,71	-	4,44	5,83	8,64		
Al(p, 3pn) ²⁴ Na	9,8	9,3	10,1	10,6	10,8		

б) Выводы

 Сравнение экспериментальных величин сечений (р, рип) – реакций (х = 2, 3, 4) с результатами теоретических расчетов ^{/10/} показало удовлетворительное согласие теории и эксперимента, что подтверждает справедливость применения двухстадийной модели Сербера для описания указавных реакций. 2. Экспериментальные сечения реакций ¹²⁷ I (р , рп)¹²⁶ I в исследуемой энергетической области протонов оказались в 2-3 раза больше соответствующих теоретических величин, полученных на основе каскадно-испарительной модели / 11,12/. Энергетическая зависимость сечений (р , рп) – реакции на ¹²⁷ I , наблюдаемая экспериментально, также отличается от рассчитанной функции возбуждения этой реакции.

3. Слабая зависимость сечений (р , ра) - и (р , 2 р) -реакций от энергии падающих протонов в области энергий выше 300-500 Мэв позволила провести сравнение экспериментальных величин сечений этих реакций с рассчитанными по формуле Бениофра^{/13/}, учитывающей как диффузную природу ядерной поверхности, так и оболочечную структуру ядра мишени. Удовлетворительное согласие между экспериментальными и рассчитанными величинами сечений реакций ¹²⁷ I (р , ра) ¹²⁶ I и ¹²⁸ Те (р , 2 р) ¹²⁴ Sb рассматривается как подтверждение гипотезы Бениоффа, предполагающей, что в механизме простых реакций преимущественная роль принадлежит процессам прямого взаимодействия налетающего протова с поверхностными нуклонами ядра.

4. Сравнение абсолютных величин сечений реакций ¹²⁵ Те (р , 2 п)¹²⁴ I и ¹²⁵ Те(р, 2 р)¹²⁴ Sb и анализ функции возбуждения для последней реакции также приводит к заключению, что при E_p > 300 М эв (р , 2 р)-реакция на ¹²⁵ Те ядет преимущественно через процесс прямого взаимодействия.

5. Сравнение абсолютных величин сечений отдельных реакций типа (р , хп), (р , рхп) и (р, 2 рхп) на различных ядрах не показало какой-либо систематической зависимости от порядкового номера ядра мишени.

6. Аналяз полученных результатов и литературных данных по реакциям типа (р , xn) и (р, рxn) показал, что на сечения этих реакций оказывает определенное действие величина кулоновского барьера и избыток нейтронов над протонами в ядре мишени.

Вторичные ядерные реакции

а) Эксперимент

Сечение вторичной реакции условно определялось как произведение сечення рождения вторичных частиц на вероятность соответствующей реакции между вторичной частицей и ядром мишени.

При изучении вторичных реакций использовались толстые мишени, для которых сечение реакции не зависит от толщины мишели. Исключением были опыты по определению "сечения" астатина из свинца в зависимости от толщины облучаемой мишени.

Полученные сечения образования ²¹⁰ At и ¹²¹ At из висмута и свинца под действи-

7

ем протовов различных энергий и отношения сечений σ (²¹⁰ At)/ σ (²¹¹ At) и σ (²⁰⁷ At)/ σ (²¹¹ At) представлены в таблицах 3 и 4.

Таблица З

Сечения образования изотопов астатина из висмута

Е _р (Мэв)	$\sigma(^{211}At)$ (10 ⁻²⁹ cm ²)	Число опреде- левий	$\sigma \begin{pmatrix} 210 \\ At \end{pmatrix} \\ (10^{-29} \text{ cm}^2)$	Число опреде- лений	$\frac{\sigma(2^{10}\text{At})}{\sigma(2^{11}\text{At})}$	Число опреде- лений
130	0.52+0.16	2	0.33+0.04	2	0.64+0.15	2
170	I,28 <u>+</u> 0,22	3	I,00 <u>+</u> 0,17	3	0,80+0,05	3
300	I',96 <u>+(</u> 0,39)	I	I,I8 <u>+(</u> 0,24)	I	0,60 <u>+</u> (0,09)	I
400	I,92 <u>+(</u> 0,37)	I	I,58 <u>+(</u> 0,32)	ŀ	0,82 <u>+(</u> 0,I3)	I
480	2,54 <u>+</u> 0,18	5	2,02 <u>+</u> 0,40	4	0,80 <u>+</u> 0,10	4
530	2,82 <u>+(</u> 0,56)	I	2,28 <u>+(</u> 0,46)	I	0,8I <u>+(</u> 0,I2)	I
580	2,26 <u>+</u> 0,19	2	I,67 <u>+(</u> 0,33)	I	0,66 <u>+(</u> 0,I0)	I
660	2,60 <u>+</u> 0,56	2	2,I4 <u>+</u> 0,4I	2	0,83+0,06	2

"Сечения" образования ²¹¹ Аt из свинцовых фолыт различной толщины под действием протонов с энергией 660 Мэв приведены в таблице 5.

Таблица 5

Ат в свинцовых пластинках разной толшины пол лействи-

*Сечення образования

ем протонов с энергией 660 Мэв

Голщина облучаемой мишени (мм)	σ (³¹¹ At) 10 ⁻³¹ cm ²	
0,03	0,80 ± 0,20	
0,06	1,00 ± 0,20	
0,09	1,32 = 0,21	
0,13	1,52 ± 0,11	
0,30	1,74 ± 0,20	
0,60	1,72 ± 0,12	
0,90	1,63	
1,20	1,67 ± 0,04	
1,60	1,57 ± 0,16	

б) Выводы

1. На основе экспериментальных результатов, полученных при изучении вторичных реакций, были рассчитаны сечения образования надбарьерных а -частиц из висмута и ядер лития из свинца под действием высокоэнергичных протонов.

2. Найдено, что отношение сечений $\frac{\sigma(At)}{\sigma(211At)}$ и $\frac{\sigma(207At)}{\sigma(211At)}$, в пределах ошибок эксперимента, не зависит от энергии налетающих протонов. Это указывает на то, что форма спектра надбарьерных α частиц и ядер лития, обризующихся при расшеплении висмута и свинца соответственно, или не зависит от энергии протонов, или меняется незначительно при изменении энергии протонов от 100 до 660 Мэв.

3. На основе экспериментальных результатов получены сведения о форме спектров α -частии (с $E_{\alpha} > 20$ Мэв) из висмута и ядер лития (с $E_{Li} > 30$ Мэв) из свинца.

4. Образование надбарьерных а -частиц и ядер лития не может быть объяснено в рамках статистической модели ядерных реакций. Предполагается, что "выбрасывание" надбарьерных фрагментов, по крайней мере частично, осуществляется на более ранних этапах, чем происходит равномерное нагревание ядра.

Таблица 4

Сечения образования изотопов астатина из свинца

Е _р (Мэв)	$\sigma ({}^{211} \text{At})$ (10 ⁻³² cm ²)	Число опреде- лений	$\sigma(^{210} \text{At})$ (10^{-32}cm^2)	Число опре- деле- ии 1	$\frac{\sigma(^{210}\text{At})}{\sigma(^{211}\text{At})}$	Число оп- ределений	$\frac{\sigma(\overset{207}{At})}{\sigma(\overset{211}{At})}$	Число опре- деле- ний
80	I	I	-	-	-	-	-	
120	0,5 <u>+</u> 0,I	2	I, 0 <u>+</u> 0, 4	2	I,87 <u>+</u> 0,3]	2	I,I	I
340	3,3 <u>+</u> 0,5	4	5,0 <u>+</u> 0,2	2	I,69 <u>+</u> 0,24	3	-	-
500	6, I <u>+</u> 0,7	II	9,6 <u>+</u> 3,2	4	I,75 <u>+</u> 0,34	5	-	-
660	16,8 <u>+</u> 1,7	12	2I,0 <u>+</u> 3,0	4	I,3I <u>+</u> 0,33	5	I,34 <u>+</u> 0,03	3

Кроме результатов по вторичным реакциям и реакциям типа (р, кп), (р, ркп) и (р, 2 ркп), цолучены новые сведения о легких изотопах йода и о существовании изомеров у ¹¹⁹ Те.

1. На основе генетических связей изотопов йода с соответствующими изотопами теллура и сурьмы был открыт новый изотоп ¹¹⁷ I (Т₁₀ = 10 мин) и уточнены периоды полураспада дли ¹¹⁸ I (Т₁₀ = 17+3 мин) и ¹¹⁹ I (Т₁₀ = 21,0+1,5 мин).

2. По генетическим связям между теллуром и сурьмой доказано существование изомеров у ¹¹⁹ Те с периодами полураспада, равными 4,25 дн. и 14 + 2 час, которые были известны и ранее, но наблюдались изолированно друг от друга и, по-видимому, считались взаимоисключающими.

3. Предложена схема распада для цепочки с А = 119.

Основные результаты, изложенные в диссертации, опубликованы в работах /2-0,8/

Литература

1. R.Serber. Phys. Rev., 72, 1114 (1947).

- 2. М.Я. Кузнецова, В.Н. Мехедов, В.А. Халкин. ЖЭТФ, 34, 1096 (1958).
- 3. Н.Г. Зайпева, М.Я. Кузнепова, Мин Нам Бук, В.А. Халкин. ЖЭТФ, 43, 1672 (1962).
- 4. Ван Юн-юй, В.В. Кузнецов, М.Я. Кузнецова, В.А. Халкин. ЖЭТФ, 39, 230 (1960).
- 5. Ван Юн-юй, В.В. Куэнепов, М.Я. Куэнепова, В.Н. Мехедов, В.А. Халкин. ЖЭТФ, <u>39</u>, 527 (1960).
- 6. Н.Г. Зайцева, М.Я. Кузнепова, И.Ю. Левенберг, В.А. Халкин. Раднохниня, <u>2</u>, 451 (1960).
- 7. М.Я. Кузнепова, В.Н. Мехедов. Изв. АН СССР, сер.физ., <u>21</u>, 1020 (1957).
- Н.Г. Зайпева, М.Я. Кузнепова, И.Ю. Левенберг, В.Н. Покровский, В.А. Халкин. Изв. АН СССР, сер.физ., <u>24</u>, 1083 (1960).
- 9.J.B.Cumming. Ann. Rev. Nucl. Sci., 13, 261 (1963).
- 10. J.M.Ladenhauer, L.Winsberg, Phys. Rev., 119, 1368 (1960).
- 11.H.P.Yule, A.Turkevich. Phys. Rev., 118, 1591 (1960).
- 12, S.S.Markowitz, F.S. Rowland, G.Friedlander. Phys. Rev., 112, 1295(1958).

13. P.A. Benioff. Phys. Rev. ,119, 324 (1960.

Рукопись поступила в издательский отдел 9 июля 1965 г.