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Preface and Acknowledgments

Physicists have abandoned determinism as a fundamental description of real-
ity. The most precise physical laws we have are quantum mechanical, and the
principle of quantum uncertainty limits our ability to predict, with arbitrary
precision, the future state of even the simplest imaginable system. However,
scientists began developing probabilistic, that is, stochastic, models of natu-
ral phenomena long before quantum mechanics was discovered in the 1920s.
Classical uncertainty preceded quantum uncertainty because, unlike the | atter,
the former is rooted in easily recognized human conditions. We are too small
and the universe too large and too interrelated for thoroughly deterministic
thinking.

For whatever reason—fundamental physical indeterminism, human finitude,
or both—there is much we don’t know. And what we do know is tinged with
uncertainty. Baseballsand hydrogen atomsbehave, to agreater or lesser degree,
unpredictably. Uncertainties attend their initial conditions and their dynamical
evolution. Thisalsoistrueof every artificial device, natural system, and physics
experiment.

Nevertheless, physics and engineering curriculums routinely invoke precise
initial conditions and the existence of deterministic physical lawsthat turnthese
conditions into equally precise predictions. Students spend many hoursin in-
troductory courses solving Newton's laws of motion for the time evolution of
projectiles, oscillators, circuits, and charged particles before they encounter
probabilistic conceptsin their study of quantum phenomena. Of course, deter-
ministic models are useful, and, possibly, the double presumption of physical
determinism and superhuman knowledge simplifies the learning process. But
uncertainties are aways there. Too often these uncertainties are ignored and
their study delayed or omitted altogether.

An Introduction to Stochastic Processes in Physics revisits elementary and
foundational problems in classical physics and reformulates them in the lan-
guage of random variables. Well-characterized random variables quantify un-
certainty and tell us what can be known of the unknown. A random variable
is defined by the variety of numbers it can assume and the probability with
which each number is assumed. The number of dots showing face up on a
dieisarandom variable. A die can assume an integer value 1 through 6, and,
if unbiased and honestly rolled, it is reasonable to suppose that any particular
side will come up one time out of six in the long run, that is, with a probability
of 1/6.



xii PREFACE AND ACKNOWLEDGMENTS

This work builds directly upon early twentieth-century explanations of the
“peculiar character in the motions of the particles of pollen in water,” as de-
scribed inthe early nineteenth century by the British cleric and biol ogist Robert
Brown. Paul Langevin, in 1908, was the first to apply Newton's second law to
a“Brownian particle,” on which the total force included a random component.
Albert Einstein had, three yearsearlier than Langevin, quantified Brownian mo-
tionwith different methods, but we adopt L angevin’s approach becauseit builds
most directly on Newtonian dynamicsand on conceptsfamiliar from elementary
physics. Indeed, Langevin claimed his method was “infinitely more simple”
than Eingtein’s. In 1943 Subrahmanyan Chandrasekhar was able to solve a
number of important dynamical problemsin terms of probabilistically defined
random variables that evolved according to Langevin's version of F = ma.
However, his famous review article, “ Stochastic Problems in Physics and As-
tronomy” (Chandrasekhar 1943) is too advanced for students approaching the
subject for the first time.

This book is designed for those students. The theory is developed in steps,
new methods are tried on old problems, and the range of applications extends
only to the dynamics of those systems that, in the deterministic limit, are de-
scribed by linear differential equations. A minimal set of required mathe-
matical concepts is developed: statistical independence, expected values, the
algebraof normal variables, the central limit theorem, and Wiener and Ornstein-
Uhlenbeck processes. Problems append each chapter. | wanted the book to be
one | could give my own students and say, “Here, study this book. Then we
will do someinteresting research.”

Writing abook is alonely enterprise. For this reason | am especially grate-
ful to those who aided and supported me throughout the process. Ten years
ago Rick Shanahan introduced me to both the concept of and literature on
stochastic processes and so saved mefrom foolishly trying to reinvent the field.
Subsequently, | learned much of what | know about stochastic processes from
Daniel Gillespie's excellent book (Gillespie 1992). Until his recent, untimely
death, Michael Jones of Los Alamos National Laboratory was a valued part-
ner in exploring new applications of stochastic processes. Memory eternal,
Mike! A sabbatical leave from Bethel College allowed me to concentrate on
writing during the 1999-2000 academic year. Brian Albright, Bill Daughton,
Chris Graber, Bob Harrington, Ed Staneck, and Don Quiring made valuable
comments on various parts of the typescript. Willis Overholt helped with the
figures. Moregeneral encouragement camefrom Reuben Hersh, Arnold Wedel,
and Anthony Gythiel. | am grateful for al of these friends.






An Introduction to Stochastic
Processesin Physics



1

Random Variables

1.1 Random and Sure Variables

A quantity that, under given conditions, can assume different values is a
random variable. It matters not whether the random variation is intrinsic and
unavoidable or an artifact of our ignorance. Physicists can sometimes ignore
the randomness of variables. Social scientists seldom have this luxury.

The total number of “heads’ in ten coin flips is a random variable. So also
istherange of aprojectile. Firearubber ball through ahard plastic tube with a
small quantity of hair spray for propellant. Evenwhenyouarecareful tokeepthe
tubeat aconstant elevation, toinject the same quantity of propellant, and to keep
all conditions constant, the projectilelands at noticeably different placesin sev-
eral trials. Onecanimagineanumber of causesof thisvariation: differentinitial
orientations of anot-exactly-spherical ball, slightly variable amounts of propel -
lant, and breeziness at thetop of thetrgjectory. Inthisaswell asinsimilar cases
wedistinguish between systematic error and randomvariation. Theformer can,
in principle, be understood and quantified and thereby controlled or eliminated.
Truly random sources of variation cannot be associated with determinate phys-
ical causes and are often too small to be directly observed. Yet, unnoticeably
small and unknown random influences can have noticeably large effects.

A random variableisconceptually distinct from acertain or surevariable. A
surevariableis, by definition, exactly determined by given conditions. Newton
expressed his second law of motion in terms of sure variables. Discussions of
sure variables are necessarily cast in terms of concepts from the ivory tower of
physics: perfect vacuums, frictionless pulleys, point charges, and exact initial
conditions. The distance an object falls from rest, in a perfect vacuum, when
constantly accelerating for a definite period of timeis asure variable.

Just asitishelpful to distinguish notational ly between scalarsand vectors, itis
also helpful to distinguish notationally between random and sure variables. As
is customary, we denote random variables by uppercase |etters near the end of
the alphabet, for example, V,W, X,Y, and Z, whilewe denote sure variables by
lowercase letters, for example, a, b, ¢, X, andy. Thetime evolution of arandom
variableiscalled arandomor stochastic process. Thus X (t) denotesastochastic
process. Thetime evolution of asure variable is called a deterministic process
and could be denoted by x(t). Sure variables and deterministic processes are
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familiar mathematical objects. Yet, in asense, they areidealizations of random
variables and processes.

Modeling aphysical process with sure instead of random variables involves
an assumption—sometimes an unexamined assumption. How do we know,
for instance, that the time evolution of a moon of Jupiter is a deterministic
process while the time evolution of asmall grain of pollen suspended in water
is a random process? What about the phase of a harmonic oscillator or the
charge on acapacitor? Arethese sure or random variables? How do we choose
between these two modeling assumptions?

That all physical variables and processes are essentially random is the more
genera of the two viewpoints. After all, a sure variable can be considered
a specia kind of random variable—one whose range of random variation is
zero. Thus, we adopt as a working hypothesis that all physical variables and
processes are random ones. The details of a theory of random variables and
processes will tell us under what special conditions sure variables and deter-
ministic processes are good approximations. We develop such atheory in the
chapters that follow.

1.2 Assigning Probabilities

A random variable X is completely specified by the range of values x it can
assume and the probability P(x) with which each is assumed. That is to say,
the probabilities P(x) that X = x for al possible values of x tell us everything
thereisto know about the random variable X. But how do we assign a number
to “the probability that X = x"? There are at least two distinct answers to
this question—two interpretations of the word probability and, consequently,
two interpretations of the phrase random variable. Both interpretations have
been with us since around 1660, when the fundamental laws of mathematical
probability were first discovered (Hacking 1975).

Consider a coin toss and associate a random variable X with each possible
outcome. For instance, when the coin lands heads up, assign X = 1, and when
the coin landstailsup, X = 0. To determine the probability P (1) of aheads-up
outcome, one could fli p the coin many timesunder identical conditionsand form
theratio of the number of headsto the total number of coin flips. Call that ratio
f(1). According to the statistical or frequency interpretation of probability,
the ratio f (1) approaches the probability P(1) in the limit of an indefinitely
large number of flips. One virtue of the frequency interpretation is that it
suggests a direct way of measuring or, at least, estimating the probability of a
random outcome. The English statistician J. E. Kerrich so estimated P (1) while
interned in Denmark during World War 11 (Kerrich 1946). He flipped a coin
10,000timesand found that headslanded uppermostin5067 “ spins.” Therefore,
P(1) ~ f(1) = 0.5067—at least for Kerrich's coin and method of flipping.
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Figure 1.1. Frequency of heads, f (1), versus number of flips, n. Replotted, from
Kerrich 1946.

Kerrich’swas not the first heroic frequency measurement. In 1850 the Swiss
astronomer Wolf rolled one white and one red die 20,000 times, kept track
of the results, and determined the frequency of each outcome (Bulmer 1967).
Also, acertain nineteenth-century English biologist Weldon also rolled twelve
dice 26,306 times and recorded the number of 5s and 6s (Fry 1928).

That actual events can't be repeated ad infinitum doesn’t invalidate the fre-
guency interpretation of probability any more than theimpossibility of aperfect
vacuum invalidatesthelaw of freefall. Both areidealizationsthat makeaclaim
about what happens in a series of experiments as an unattainable condition is
more and more closely approached. In particular, the frequency interpretation
claimsthat fluctuationsin f (1) around P (1) become smaller and smaller asthe
number of coin flips becomes larger and larger. Because Kerrich’sdata, infact,
has this feature (see figure 1.1), his coin flip can be considered arandom event
with its defining probabilities, P(1) and P(0), equal to the limiting values of
f(1) and f (0).

An alternative method of determining P (1) is to inspect the coin and, if
you can find no reason why one side should be favored over the other, simply
assert that P(1) = P(0) = 1/2. This method of assigning probabilities is
typical of the so-called degree of belief or inductiveinterpretation of probability.
According to thisview, aprobability quantifiesthe truth-value of aproposition.
In physics we are primarily concerned with propositions of the form X =
X. In assigning an inductive probability P(X = x), or simply P(x), to the
proposition X = X, we make a statement about the degree to which X = x is
believable. Of course, if they are to be useful, inductive probabilities should
not be assigned haphazardly but rather should reflect the available evidence
and change when that evidence changes. In this account probability theory
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extends deductive logic to cases involving partial implication—thus the name
inductive probability. Observe that inductive probabilities can be assigned to
any outcome, whether repestable or not.

Theprincipleof indifference, devised by Pierre Simon Laplace (1749-1827),
is one procedure for assigning inductive probabilities. According to this prin-
ciple, which was invoked above in asserting that P(1) = P(0) = 1/2, one
should assign equal probabilities to different outcomes if there is no reason to
favor one outcome over any other. Thus, given a seemingly unbiased six-sided
die, the inductive probability of any one side coming up is1/6. The principle
of equal a priori probability, that a dynamical system in equilibrium has an
equal probability of occupying each of its allowed states, is simply Laplace's
principle of indifference in the context of statistical mechanics. The principle
of maximum entropy is another procedure for assigning inductive probabilities.
Whileagood method for assigning inductive probabilitiesisn’t alwaysobvious,
thisismore atechnical problem to be overcomethan alimitation of the concept.

That the laws of probability are the same under both of these interpretations
explains, in part, why the practice of probabilistic physicsis much less contro-
versial than its interpretation, just as the practice of quantum physics is much
less controversial than its interpretation. For this reason one might be tempted
to embrace a mathematical agnosticism and be concerned only with the rules
that probabilities obey and not at all with their meaning. But a scientist or
engineer needs some interpretation of probability, if only to know when and to
what the theory applies.

Thebestinterpretation of probability isstill an open question. But probability
as quantifying a degree of belief seems the most inclusive of the possihilities.
After al, one's degree of belief could reflect an in-principle indeterminism or
an ignorance born of human finitude or both. Frequency datais not required
for assigning probabilities, but when availableit could and should inform one's
degree of belief. Nevertheless, the particular random variables we study also
make sense when their associated probabilities are interpreted strictly aslimits
of frequencies.

1.3 The Meaning of Independence

Supposetwo unbiased dicearerolled. If thefact that oneshowsa“5” doesn’t
changethe probability that the other also showsa*“5,” thetwo outcomesare said
to be statistically independent, or simply independent. When the two outcomes
are independent and the dice unbiased, the probability that both dice will show
a“5” isthe product (1/6)(1/6) = 1/36. While statistical independence is the
rule among dicing outcomes, the random variables natural to classical physics
are often statistically dependent. For instance, one usually expectsthe location
X of aparticle to depend in some way upon its velocity V.
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Let's formalize the concept of statistical independence. If realization of
the outcome X = x does not change the probability P(y) that outcomeY =
y obtains and vice-versa, the outcomes X = x and Y = y are dtatistically
independent and the probability that they occur jointly P(x&Y) is the product
P(X)P(y), that is,

P(x&y) = P(X)P(y). (1.3.1)

When condition (1.3.1) obtains for all possible realizations x and vy, the
random variables X and Y are said to be statistically independent. If, on the
other hand, therealization X = x does change the probability P(y) thatY =y
or vice-versa, then

P(x&y) # P(x)P(y) (132

and the random variables X and Y are statistically dependent.

Thedistinction between independent and dependent random variablesis cru-
cial. Inthe next chapter we construct a numerical measure of statistical depen-
dence. Andinsubsequent chapterswewill, onseveral occasions, exploit special
sets of explicitly independent and dependent random variables.

Problems

1.1. Coin Flipping. Produce agraph of the frequency of heads f (1) versus
the number of coin flipsn. Use data obtained from

a. flipping acoin 100 times,

b. pooling your coin flip data with that of others, or

¢. numerically accessing an appropriate random number generator 10,000
times.

Do fluctuationsin f (1) obtained viamethod a, b, and ¢ diminish, as do those
in figure 1.1, as more data is obtained?

1.2 Independent Failure Modes. A system consists of n separate com-
ponents, each one of which fails independently of the others with probability
P, wherei = 1...n. Since each component must either fail or not fail, the
probability that the i th component does not fail is1 — B,.

a. Suppose the components are connected in parallel so that the failure
of al the components is necessary to cause the system to fail. What
is the probability the system fails? What is the probability the system
functions?

b. Suppose the components are connected in series so that the failure of
any one component causes the system to fail. What is the probability
the system fails? (Hint: First, find the probability that all components
function.)
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Expected Values

2.1 Moments

The expected value of arandom variable X isafunction that turns the prob-
abilities P(x) into a sure variable called the mean of X. The mean is the one
number that best characterizes the possible values of a random variable. We
denote the mean of X variously by mean{X} and (X) and defineit by

X)=Z:mPaQ (2.1.1)

wherethe sumisover al possiblerealizations x; of X. Thus, the mean number
of dotsshowingonanunbiaseddieis(1+2+3+4+5+6)/6 = 3.5. Thesguare
of arandom variable is aso a random variable. If the possible realizations of
X arethe numbers 1, 2, 3, 4, 5, and 6, then their squares, 1, 4, 9, 16, 25, and
36, are the possible realizations of X2. In fact, any agebraic function f(x)
of arandom variable X is aso arandom variable. The expected value of the
random variable f (X) isdenoted by ( f (x)) and defined by

(f(x)) = }:fugpu. (2.1.2)

The mean (X) parameterizes the random variable X, but so also do all the
moments (X") (n = 0, 1, 2, ...) and moments about the mean ((X — (X))").
The operation by which arandom variable X isturned into one of its moments
is one way of asking X to revea its properties, or parameters. Among the
moments about the mean,

(x—(XN% = (1)

> P

-1 (2.1.3)

simply recovers the fact that probabilities are normalized. And

(X — Z(xl X)P (%)
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= Y PO = (X) > P(X)
i i
= (X) = (X)(1)
=0 (2.1.4)
follows from normalization (2.1.3) and the definition of the mean (2.1.1).
Higher order moments (with n > 2 ) describe other properties of X. For

instance, the second moment about the mean or the variance of X, denoted by
var{ X} and defined by

var{X} = (X — (X)), (2.1.5)

quantifies the variability, or mean squared deviation, of X from its mean (X).
The linearity of the expected value operator () (see section 2.2) ensures that
(2.1.5) reducesto

var{X} = (X% = 2X(X) + (X)?)

= (X% = 2(X)? + (X)?
= (X% — (X)% (2.1.6)
The mean and variance are sometimes denoted by the Greek letters i and o2,

respectively, and o2 = o is caled the standard deviation of X. The third
moment about the mean enters into the definition of skewness,

X — 3
skewness{ X} = «7;1“” (2.1.7)
o
and the fourth moment into the kurtosis,
X — 4
kurtosis{X} = M (2.1.8)
o

The skewness and kurtosis are dimensionless shape parameters. The former
quantifiesthe asymmetry of X around its mean, whilethe latter is a measure of
the degree to which a given variance o2 is accompanied by realizations of X
closeto (relatively small kurtosis) and far from (large kurtosis) u £+ o. Highly
peaked and long-tailed probability functions have large kurtosis; broad, squat
ones have small kurtosis. See Problem 2.1, Dice Parameters, for practice in
calculating parameters.



MEAN SUM THEOREM 9

2.2 Mean Sum Theorem

The sum of two random variables is a'so arandom variable. As one might
expect, the probabilities and parameters describing X + Y are combinations of
the probabilities and parameters describing X and Y separately. The expected
value of a sum is defined in terms of the joint probability P(x;&Y;) that both
X=xandY =y, thatis, by

(X+Y)=>">"(% + WPX & Y))- 2.2.1)
5

That

(X+Y) =D x> PX&Y)+Y ¥ Y PX&W)
j j i

= > %P+ yiP(y)
i i
= (X) +(Y) (2.2.2)

follows from (2.2.1) and the laws of probability. For this reason, the expected
value brackets ( ) can be distributed through each term of asum. In purely ver-
bal terms: themean of asumisthe sum of themeans. Anobviousgeneralization
of (2.2.2) expressing the complete linearity of the operator ( ) is

(aX + bY) = a(X) + b(Y), (2.2.3)

where a and b are arbitrary sure values.
We will have occasions to consider multiple-term sums of random variables
such as

X=X+ Xo4 -+ X (2.2.4)

where n is very large or even indefinitely large. For instance, a particle's
total displacement X in atime interval is the sum of the particle’s successive
displacements X; (withi = 1, 2, ... n) in successive subintervals. Because the
mean of a sum isthe sum of the means,

(X) = (X1) + (X2) + -+ + (Xn), (2.2.5)

or, equivalently,

mean {.X: Xi } = Xl: mean{ X; }. (2.2.6)

We call (2.2.5) and (2.2.6) the mean sum theorem.
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2.3 Variance Sum Theorem

The moments of the product XY are not so easily expressed in terms of
the separate moments of X and Y. Only in the special casethat X and Y are
statistically independent can we make statements similar in form to the mean
sum theorem. In general,

(XY) =)D %YiP(Xi &Y)). (2.3.1)

[ J

But when X and Y are statistically independent, P(x; & y;j) = P(xi)P(y;) and
equation (2.3.1) reduces to

(XY)=>"xP) Y YiP(yy). (2.3.2)
i j

which is equivaent to
(XY) = (X)(Y), (2.3.3)

that is, the mean of a product is the product of the means. Statistical indepen-
dence also ensures that

(XY™ = (XM (Y™ (2.3.4)

for any n and m. If it happensthat (X"Y™) = (X™)(Y™) for some but not al n
and m, then X and Y are not statistically independent.

When the random variables X and Y are dependent, we can’t count on (XY')
factoring into (X)(Y). The covariance

cov{X, Y} = ((X = (X)(Y = (Y)))
= ([XY = (X)Y = X{Y) + (X))
= (XY) = (X)(Y) (2.3.5)

and the correlation coefficient

cor(X,y) = VXY (2.3.6)
’ var{X}var{Y} o

are measures of the statistical dependence of X and Y. The correlation coeffi-
cient establishes a dimensionless scale of dependence and independence such
that —1 < cor{X, Y} < 1. When X and Y are completely correlated, so that
X and Y realize the same values on the same occasions, we say that X = Y.
In this case cov{X, Y} = var{X} = var{Y} and cor{X, Y} = 1. When X and
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Y are completely anticorrelated, so that X = —Y, cor{X, Y} = —1. When X
and Y are statistically independent, so that (XY) = (X)(Y), cov{X,Y} =0
and cor{X, Y} = 0. See Problem 2.2, Perfect Linear Correlation.

We exploit the concept of covariance in simplifying the expression for the
variance of a sum of two random variables. We call

var{X4Y} = (X+Y—(X+Y)?)
= ((X—=(XD2+H(Y = (YDA +2((X = (XN (Y = (Y)))
— (X = (XNZ) (Y = (YDZ) £ 2((XY) — (X)(Y))

= var{X}+var{Y}+2cov{X, Y} (2.3.7)

the variance sumtheorem. It reducesto the variance sumtheoremfor indepen-
dent addends

var{X + Y} = var{X} + var{Y} (2.3.8)

only when X and Y are statistically independent. Repeated application of
(2.3.8) to asum of n statistically independent random variables leads to

N N
var {Z xi} = var(X}. (2.3.9)
i=1 i=1

Thus, the variance of a sum of independent variables is the sum of their vari-
ances.

For instance, suppose we wish to express the mean and variance of the area
A of arectangular plot of land in terms of the mean and variance of itslength L
and width W. If L and W are statistically independent, (LW) = (L)(W) and
(L2W2) = (L2)(W?3). Then

mean{A} = (LW)
= (L)}(W) (2.3.10)
and
var{A} = (A%) — (A
= (L°W?) — (LW)?
= (L2)(W?) — (L)2(W)2. (2.3.11)

Given that (L?) = var{L} + (L)% and (W?) = var{W} + (W)?, equations
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(2.3.10) and (2.3.11) achieve the desired result. For other applications of the
mean and variance sum theorems, see Problem 2.3, Resistors in Series, and
Problem 2.4, Density Fluctuations.

2.4 Combining M easurements

How do we combine different measurements of the same random quantity?
Suppose, for instance, | use a meter stick to measure the width of the table on
which | write. My procedure produces arealization x; of arandom variable X;.
The variable X; is random because the table sides are not perfectly parallel,
its ends are not well defined, | must visually interpolate between the smallest
marks on the rule to get the last digit, my eyesight is not so good, nor is my
hand perfectly steady, and the meter stick is not really rigid. Now, suppose |
tilt the table surface and measure its angle of incline to the horizontal, time a
marblerolling acrossthetablewidth, measurethe marbl e’ sradius, and fromthis
data and the local acceleration of gravity compute the table width. For similar
reasons, thisnumber X, isal so therealization of arandom variable X,. Finadly, |
use alaser interferometer and electronically count fringes as the interferometer
mirror is moved across the table. This procedure resultsin a number x3 that is
the realization of athird random variable X3. Among the three numbers x;, X2,
and X3, which is the best measurement of the table width? Assuming | avoid
systematic errors (for example, | don’t use a meter stick whose end has been
cut off), then

(X1) = (Xa) = (Xa) (2.4.1)

because each procedure measures the same quantity—the table width. How-
ever, the different procedures accumulate random error in different amounts,
and these will be reflected in their different variances. If the interferometer
measurement X3 istheleast proneto random error, then var{ X3} < var{X;} and
var{ X3} < var{X,}. Inthissense, X3 isthe best measurement.

But is x3 any better than the arithmetical average

1
X = §(x1 + X2 + X3)? (2.4.2)

Before the mid-eighteenth century, scientists were reluctant to average mea-
surements that were produced in substantially different ways. They feared the
most precise measurement, in this case X3, would be “ contaminated” by those
of lesser precision, in this case X, and x3—that “errors would multiply, not
compensate” (Stigler 1986). Theissueis easily resolved given the insight that
the average X isaparticular realization of the random variable

- 1
X = é(Xl + X2 4+ X3). (2.4.3)
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Now X has a mean,
(X) = (X1) = (X2) = (Xa), (2.4.4)
and avariance,
var{X} = ((X)%) — (X)?
= é[var{xl} + var{Xz} + var{ Xs}]. (2.4.5)

In deriving the latter we have assumed that X;, X, and X3 are statistically
independent and employed the variance sum theorem for independent addends
(2.3.9). If var{X3} < var{X}, then x3 is a better measurement than X, and x3
would be contaminated if averaged together with x; and x,. If, on the other
hand, var{X} < var{Xi}, var{X} < var{Xz}, and var{ X} < var{X3}, then the
average X is better than any one of the values from which it is composed. In
this case the errorsin xq, X2, and Xz compensate for each other in the average
X. Either ordering is possible.

In general, although not always, the more terms included in the average,
the better statistic, or estimator, it becomes. Suppose we devise n different,
independent ways of making the same measurement. The random variable
representing the average measurement is

o (Xi+Xo+ -+ Xn)

X = 2.4.
. , (2.4.6)

and the variance of the average is

Z var{X;}
n2
Because the numerator of the right-hand side of (2.4.7) increases (roughly)
with n and the denominator increases with n?, the variance of the average X
decreases with increasing n as 1/n. Thus, averaging is generally agood idea.

Averaging is, in fact, always helpful if al the measurements are made in the
sameway. Jacob Bernoulli put it thisway in 1731: “For even the most stupid of
men, by some instinct of nature, by himself and without any instruction (which
isaremarkablething), is convinced that the more observations have been made,
the less danger there is of wandering from one's goal” (Stigler 1986). Hence,
if all the measurements are made in the same way,

var{Xy} = var{Xp} = ... var{Xn} (2.4.8)

var{X} = (2.4.7)

and given (2.4.7), the variance of the averageis
var{Xi}

var{X} = .

(2.4.9



14 EXPECTED VALUES
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Figure2.1. Resistorsin series.

Furthermore, the standard deviation of the average is

std{ X} var{X}

_ SdiXa) (2.4.10)
J/n
Thus, the moretermsincluded inthe average, the smaller the standard deviation
of theaverage. Asnbecomesindefinitely large, X approachesarandomvariable
whose variance vanishes, that is, X approaches the sure value (X).
The standard deviation divided by the mean,

std{ X} _ 1 sd{Xy)

(X)y v (Xy)
measures the precision of a particular measurement and is called the coefficient
of variation. The smaller the coefficient of variation, the more likely is each
realization of X closeto (X). Problem 2.4, Density Fluctuations, applies this
mathematics in another context.

(2.4.12)

Problems

2.1. Dice Parameters. An unbiased die realizes each of its values, 1, 2,
3, 4, 5, and 6, with equal probability 1/6. Find the mean, variance, standard
deviation, skewness, and kurtosis of the random variable X so defined.

2.2. Perfect Linear Correlation. Two random variables X and Y are re-
lated by Y = mX + b. This means that every realization x; of X isrelated to
aredizationy; of Y by y; = mx; + b wherem and b are sure variables. Prove
that cor{X, Y} = m/+/m2 = sgn{m} where sgn{m} is the sign of m.

2.3. Resistorsin Series. You are given a box of n carbon resistors (see
figure 2.1). On each the manufacturer has color-coded a nominal resistance,
which we understand to be a mean{R; }, and a dimensionless “tolerance” or
“precision” t; whose definition we take to be

§ = YARE . 00%
mean{R; }
wherei = 1...n. Assume the resistances R are statistically independent

random variables.
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a. Write expressions for the mean, variance, and tolerance of the total
resistance R of a series combination of n identically defined resistors
in terms of the mean{ R, } and tolerancet; of oneresistor.

b. Suppose the box contains 10 nominally 5-Ohm resistors, each with a
20% tolerance. Calculatethe mean, variance, and tolerance of theresis-
tance of their series combination. Is the tolerance of this combination
less than the tolerance of the separate resistors? It should be.

2.4. Density Fluctuations. The molecular number density p = N/V of
a gas contained in a small open region of volume V within a larger closed
volume V; fluctuates as the number of molecules N in V changes. To quan-
tify fluctuations in the density p, let the larger volume V, contain exactly Ng
molecules (figure 2.2). The number N can be considered a sum of statistically
independent auxiliary “indicator” random variables X;, defined sothat X; = 1
when moleculei iswithin volume V and X; = Owhenitisnot. Then,

Assume, asis reasonable, that when the gasisin equilibrium,

Vv
PO =1) =
[0}

Figure 2.2. The number of molecules N within a small open volume V is arandom
variable. Thetotal number of molecules N within the larger closed volume Vg isasure
variable.
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and
Vo —V

Vo

P(Xi =0) =

fordli.

a. Compute mean{X; } and var{X;} in terms of the constants V,, and V.
b. Determine mean{N}, var{N}, and the coefficient of variation

vVvar{N}/ mean{N}

intermsof No, Vo, and V.
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Random Steps

3.1 Brownian Motion Described

Weareready to use our knowledge of how random variablesadd and multiply
to model the smplest of all physical processes—a single particle at rest. If at
oneinstant a particle occupies a definite position and has zero velocity, it will,
according to Newton'sfirst law of motion, continue to occupy the same position
aslong asnoforcesact onit. Consider, though, whether this deterministic (and
boring) picture can ever be a precise description of any real object. Even when
great careistaken to isolate the particle, there are always air molecules around
to nudge it one way or the other.

If the particle is very small (< 50 x 10~%m), the net effect of these nudges
can be observed in an optical microscope. These Brownian motions are so
called after the Scottish naturalist and cleric Robert Brown (1773-1858), who
investigated the phenomenon in 1827. (That Jan IngenHousz [1730-1799)], a
Dutch-born biologist, observed and described Brownian motion even earlier,
in 1785, isjust one of many illustrations of Stigler’s Law of Eponymy—which
states that no discovery is named after its original discoverer.) When looking
through a microscope at grains of pollen suspended in water, Brown noticed
that a group of grains always disperses and that individual grains move around
continuously and irregularly. Brown originally thought that he had discovered
the irreducible elements of avitality common to al life forms. However, upon
systematically observing these irregular motions in pollen from live and dead
plants, in pieces of other parts of plants, in pieces of animal tissue, in fossilized
wood, in ground window glass, various metals, granite, volcanic ash, siliceous
crystals, and even in afragment of the Sphinx, he gave up that hypothesis.

We now know that Brownian motion isaconsequence of the atomic theory of
matter. Whenaparticleissuspendedinany fluid media(air aswell aswater), the
atoms or mol ecules composing thefluid hit the particlefrom different directions
in unequal numbers during any given interval. While the human eye cannot
distinguish the effect of individual molecular impacts, it can observe the net
motion caused by many impacts over a period of time.
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3.2 Brownian Motion Modeled

Let's model Brownian mation as a sum of independent random displace-
ments. Imagine the Brownian particle starts at the origin x = 0 and isfreeto
move in either direction along the x-axis. The net effect of many individual
molecular impactsisto displacetheparticlearandom amount X; ineachinterval
of duration At. Assume each displacement X; realizes one of two possibilities,
Xi = +Axor Xj = —AX, with equa probabilitiec(%) and that the various X;
are statistically independent. After n such intervals the net displacement X is

X = Xq+ Xo+ -+ Xn. (3.2.1)

Thisistherandom step or randomwalk model of Brownian motion. According
to the model,

(X1) = (Xg) =...(Xn) =0 (322

since (Xi) = (1/2)(+AXx) + (1/2)(—Ax) = Oforeachi = 1,2, ...n. There-
fore, the mean sum theorem yields

(X) = (Xg) + (X2} + -+ (Xp)
=0, (3.2.3)

that is, while any single Brownian particle may drift from its starting point, the
mean of the displacement (X) maintainsitsinitial (zero) value. Now,

var{X1} = var{Xs} = ...var{X,} = Ax? (3.2.4)
since
var{Xi} = (X7) — (Xi)?
= (XP)
_ (2 (+A%)2 + ! (—Ax)?
—\2 2
= AX? (3.2.5)
foreachi = 1,2,...n. For this reason, and because the X; are statistically

independent, the variance sum theorem yields

(X?) = > var(Xi)
i=1

= nAXZ. (3.2.6)
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Figure3.1. Randomwalk intwo dimensionsrealized by taking alternate stepsalong the
vertical and horizontal axes and determining the step polarity (Ieft/right and up/down)
with acoin flip.

Since the total duration of thewalk ist = nAt, equation (3.2.6) is equivalent
to
AX?

2y -
(X?) = ( At )t. (3.2.7)

This equation expresses the signature property of Brownian motion: the vari-
ance (X?) of the net displacement X is proportional to the timet during which
that displacement is made.

It is easy to generalize the one-dimensional random walk in several ways.
For instance, figure 3.1 shows the effect of taking aternate displacements in
different perpendicular directions and so creating Brownian maotion in aplane.
See also Problem 3.1 Two-Dimensional Random Walk. One can aso suppose
that either the probabilities or the step sizes are different in different direc-
tions. See, for instance, Problems 3.2, Random Walk with Hesitation, and 3.3,
Multistep Walk.

3.3 Critique and Prospect

In spite of its attractions, the random step process is deficient as a physical
model of Brownian motion. One deficiency isthat the variance of the total dis-
placement, asdescribedin equation (3.2.7), seemsto depend separately uponthe
arbitrary magnitudes Ax and At throughtheratio (Ax?/At). Unless(Ax?/At)
isitself a physically meaningful constant, the properties of the total displace-
ment X will depend on thefinenesswithwhichitisanalyzedinto subincrements.
That (Ax?/At) is, indeed, acharacteristic constant—equal totwicethediffusion
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constant—will, in chapter 6, be shown to follow from the requirement of conti-
nuity, but in the present oversimplified account this claim remains unmotivated.

Another difficulty with the random step model of Brownian motion is that
it lacks an obvious connection to Newton's second law. Why shouldn’t the
integrated second law,

t
V) = V() + — / F(t) o 33.1)
M Jo

apply even when the individual impulses fti'+At F(t") dt’ composing the total

impulse f; F (') dt’ are delivered randomly? In such case we might attempt
to express the right-hand side of (3.3.1) as a sum of N independent, random
impulses per unit mass, each with vanishing mean and a finite variance equal
to, say, Av?, having units of speed squared. This strategy leads to

2 _ ((AV?
V2 = ( > )t, (332

an absurd result because akinetic energy M (V2) /2 cannot grow without bound.
We shall see that Brownian mation can, in fact, be made consistent with New-
ton’s second law, but first some new concepts are required.

Problems
3.1. Two-Dimensional Random WalKk.

a. Produce arealization of atwo-dimensional random walk with the algo-
rithm described in the caption of figure 3.1. Use either 30 coin flips or,
anumerical random number generator with alarge (n > 100) number
of stepsn.

b. Plot X2 4+ Y2 versus n for the realization chosen above.

3.2.Random Walk with Hesitation. Supposethatineachinterval At there
are three equally probable outcomes: particle displaces to the left a distance
AX, particle displacesto theright adistance AX, or particle hesitates and stays
whereitis. Show that the standard deviation of the net displacement X after n
time intervals, each of duration At, is/(X2) = Ax./2n/3.

3.3. Multistep Walk. Let the independent displacements X; of an n-step
random walk be identically distributed so that mean{X1} = mean{X,} =
...mean{X,} = w and var{Xy} = var{Xy} = ...var{X,} = o2 The net
displacementisgivenby X = X; + Xo + -+ - + Xp.

a Find mean{X}, var{X}, and (X?) asafunction of n.
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b. A steady wind blowsthe Brownian particle, causing its stepsto theright
to be larger than those to the left. That is, the two possible outcomes
of each step are X3 = Ax and X, = —Ax where Ax, > Ax > 0.
Assumetheprobability of asteptotherightisthe sameasthe probability
of astep to the left. Find mean{ X}, var{X}, and (X?) after n steps.

3.4. Autocorrelation.  According to the random step model of Brownian
motion, the particle position is, after n random steps, given by

X(n) =2n:xi
i=1

where the X; are independent displacements with (X;) = 0 and (X?) = Ax?
for al i. Of course, after m random steps (with m < n), the particle positionis
X(m). Ingeneral, X(n) and X(m) are different random variables.

a. Find cov{X(n), X(m)}.

b. Find cor{X(n), X(m)}.

¢. Showthat X (n) and X (m) becomecompletely uncorrelatedasm/n — 0
and completely correlatedasm/n — 1. Thequantity cov{ X (n), X(m)}
is sometimes referred to as an autocovariance and cor{ X (n), X(m)} as

an autocorrelation because they compare the same process variable at
different times.

3.5. Frequency of Heads.  Suppose the number of heads N in n coin flips
isgiven by
n
N=>"X.
i=1

where X; = 1 means that the ith flip has turned up heads and X; = O that it
has turned up tails. Assume these two outcomes are equally probable.

a. Find mean{X;} and var{X;}.

b. Find mean{N} and var{N}.

¢. Find mean{N/n} and var{N/n}.

d. Isthe answer to part ¢ consistent with the behavior of the frequency of
heads f (1) = N/nin figure 1.1 (on page 3)?
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Continuous Random Variables

4.1 Probability Densities

In order to describe the position of a Brownian particle more realistically
we require a language that alows its net displacement X to realize values
lying within a continuous range. The classical physical variables whose time
evolution we wish to model (positions, velocities, currents, charges, etc.) are of
thiskind. Therefore, in place of the probability P(x) that X = x werequire a
probability p(x) dx that X falls within theinterval (x, x 4+ dx). The function
p(x) is a probability density. Because probabilities are dimensionless, the
probability density p(x) has the same units as 1/x. A continuous random
variable X is completely defined by its probability density p(x).

The probability p(x) dx obeys the same rules as does P(x), even if these
must be formulated somewhat differently. For instance, probability densities
are normalized,

/ N p(x)dx =1, (4.1.1)

because some value X = x must be realized. The probability density p(x)
must be non-negative. Also, two random variables X and Y are statistically
independent if and only if their joint, p(x & y), and individual, p(x) and p(y),
probability densities are related by

P(X &y) = p(x)p(y). (4.1.2)

The expected value (X) of a continuous random variable X is given by

(X) = /Oo Xp(x) dx. (4.1.3)

o]

Wewill have occasionsto adopt specific probability densities p(x) asmodeling
assumptions. Among them are those defining the uniform, normal, and Cauchy
random variables. Also see Problems 4.3, Exponential Random Variable, and
4.4, Poisson Random Variable.
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4.2 Uniform, Normal, and Cauchy Densities
The uniform random variable U (m, a) is defined by the probability density

px) = 2—1a when (m —a) < X < (m+ a);
p(x) = 0  otherwise. (4.2.0)

See figure 4.1. We say that U (m, a) is auniform random variable with center
m and half-width a. Note that this density is normalized, so that

mean{U (m, a)} = (U(m, a))

= [oo Xp(x) dx

oo
1 m+a

= — X dx
2a Jm-a

=m (422

and that

var{U(m,a)} = ((U(m,a) —m)?

/oo(x — m)?p(x) dx

Figure4.1. Probability density defining auniform random variable U (0, 1) with center
0 and half-width 1.
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1 m+a
= (x — m)?dx

=2 (4.2.3)

Other moments about the mean are given by

1 m+a

(X = (XH") = %a (x —m)"dx

an+1 _ (_a)n+1
= 2t D (4.2.4)
Thus, (X — (X))") = 0when n is odd.

U (m, a) represents a quantity about which we know nothing except that it
falls within a certain range (m — a, m + a). Numbers taken from analog and
digital measuring devices are of this kind. For instance, the “reading” 3.2 is
actually the random number U (3.2, 0.05) becauseitslast significant digit, 2, is
the result of taking a number originally found with uniform probability density
somewhere within the interval (3.15, 3.25) and rounding it up or down. Digital
computers also employ particular realizations of uniform random numbers.

The normal random variable N (m, a?), defined by the probability density

exp[—(x — m)?/2a?]
v 2ma?

andillustrated in Figure 4.2, isespecially useful in random processtheory. The
parameters m and a? are, by design, the mean and variance of N(m, a?). The
moments of N(m, a?) about its mean are given by

p(x) = —00<X<o00 (4.2.5)

1 o0 (X — m)2
(N, &) —m)") = —=— /w(x—m)”exp[%] i

1.3.5...(n—=1)-a" forevenn, and
=0 for odd n. (4.2.6)

From (4.2.6) we find that

((N(m, @) — m)%)

((N(m, a?) — m)?)2

3a*

at

- 3 (4.2.7)

kurtosis{N(m, a%)} =
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Figure 4.2. Probability density defining a normal random variable N (0, 1) with mean
0 and variance 1.

The kurtosis of anormal variable is taken as a standard of comparison. When
the kurtosis of arandom variableis greater than 3, its probability density issaid
to leptokurtic (after the Greek word Lemrrog, for “thin”), and when it is less
than 3, the probability density is platykurtic (after 7 Lot vé meaning “broad”).
For instance, the uniform density, which has a kurtosis of 1.8, is platykurtic.
The normal probability density function is also known as a Gaussian curve
or a bell curve, and, when molecular speeds are the independent variable, a
Maxwellian.

All random variables must obey the normalization law (X% = 1, but the
other moments don’t even have to exist. In fact, the Cauchy random variable
C(m, a), with center m and half-width a, defined by

p(x) = — —00<X<00 (4.2.8)

appears to have infinite even moments. Actually, neither the odd nor the even
moments of C(m, a) exist in the usual sense of an improper integral with lim-
its tending to +co. Thus C(m, a) is maximally leptokurtic, with a thin peak
and long tails (see figure 4.3). Still, C(m, a) can represent physically moti-
vated probability densities (see Problem 4.1, Sngle-Sit Diffraction). Spec-
tral line shapes, called Lorentzians, also assume this form. The Cauchy den-
sity takes its name from the French mathematician Augustin Cauchy (1789—
1857).
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Figure 4.3. Probability density defining the Cauchy random variable C(0, 1), with
center 0 and half-width 1.

Figure 4.4 comparesthe uniform, normal, and Cauchy densities. In thelimit
a — 0 of vanishing variance or half-width, each of the three random variables
U(m, a), N(m, a?), and C(m, a) collapsesto its mean or center m. So we can
write

m= U(@m,0)

N(m, 0)
C(m, 0). (4.2.9)

4.3 Moment-Generating Functions

M oment-generating functions are aconvenient way to calculate the moments
of arandom variable. By definition, the moment-generating function M (t) of
the random variable X is the expected value of the function € wheret isan
auxiliary variable. Thus

My (t) = (e%). (4.3.1)

When X is a continuous variable with probability density p(x),

My (t) = /OO eXp(x) dx. (4.3.2)

o0
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Figure 4.4. Probability densities of the uniform U (0, 1), normal N (0, 1), and Cauchy
C(0, 1) random variables.

Now, we can write the moments

(XM = /oo dxp(x)x" (4.3.3)

) 00 d n ix
=t [ om0 (G ) @

. d\" [ ix
- !T?)(dt) /,dep(X)e

/d\"
!er(;(a) My (t). (4.3.4)

A

x

=}

=
|

Thus, the moment (X") isthe limit ast — 0 of the nth derivative of My ((t)
with respect to the auxiliary variable t. Taking derivativesis easier than doing
integrations—hence the convenience.
For exampl e, themoment-generating function of theuniformvariableU (m, a)
is
1 m+a

Muy (1) e dx

2a Jm-a

glm+a) _ gtm-a)

= 435
2at ( )
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and that of anormal variable N(m, a?) is

1 o0 (X — m)?
Nezry /_OO dx exp [tx — 7] . (4.3.6)

By completing the square in the argument of the exponential, the latter reduces
to

Mn () =

exp mt 4 —m—ta?)?

Given the substitution u = x — m — ta? (4.3.7) becomes

exp mt 4t a
M (t) Norr / du e v/2
JT

— emt+a2t2/2’ (438)

from which we can easily deduce expressions for the moments of anormal (see
Problem 4.2, Moments of a Normal). Since only random variables with finite
moments have a moment-generating function, the Cauchy variable C(m, a)
does not have one except in the special case when a = 0, in which case it
collapses to the sure variable m. The moment-generating function of any sure
variablemis My (t) = (€™) = e™(1) = ™,

When they exist, moment-generating functions completely define arandom
variable, or, aternatively, completely define its probability density. Showing
that two random variabl es have the same moment-generating function is equiv-
aent to showing that the two have identical probability densities, or that they,
areidentically distributed. Herein liesthe moment-generating function’sgreat-
est theoretical utility. For instance, if two variables, X; and X, , have the same
moment-generating function, namely e“t+o**/2 hoth are normal variableswith
mean 1 and variance o-2. We exploit this property of moment-generating func-
tionsin chapter 5. Recall, though, that two random variables can beidentically
distributed without being correl ated.

Problems

4.1. Single-Slit Diffraction.  According to the probability interpretation of
light, formulated by Max Bornin 1926, light intensity at a point is proportional
to the probability that a photon exists at that point.

a. What isthe probability density p(x) that asingle photon passesthrough
a narrow dlit and arrives at position x on a screen parallel to and at a
distance d beyond the barrier? Each angle of forward propagation 6 is
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the uniform random variable U (0, 7/2). See Figure 4.5. [Hint: Each
differential range of redlizations (6 + d@, 8) maps into a differential
range of realizations (x 4+ dx, x) in such away that p(6)dé = p(x) dx,
where the relationship between 6 and x is clear from the geometry.]

b. Thelight intensity produced by diffraction through asingle, narrow dlit,

asfound in almost any introductory physics text, is proportional to

1 sin’[(ra/)) sind)]
r2 sn?6

wherer isthe distance from the center of the dlit to an arbitrary placeon
the screen, a isthe dit width, and 2 the light wavel ength. Show that for
dlits so narrow that ra/1 <« 1, the above light intensity is proportional
to the photon probability density derived in part a.

4.2. Momentsof aNormal. Starting from the moment-generating function

for N(0, a?), as provided in equation (4.3.8), show that (N(0,0?)") = 1- 3.

5..

.(n—=1) 0" forevenn.

4.3. Exponential Random Variable. Also according to Born'sinterpreta-
tion of light, the intensity of light exiting a slab of uniformly absorbing media
is proportional to the probability that a photon will survive passage through the

slab. If, asisreasonable to assume, the light absorbed d 1 (x) in adifferentially
thin dlab is proportional toitslocal intensity | (x) and to the slab thickness dx,
then dl (x) = —Al (x)dx and | (x) o« €**. When normalized (on the semi-
infinite line x > 0), the intensity of surviving photons becomes the photon
probability density

p(x) = re ¥ x>0
=0 X < 0.

Figure 4.5. Single-dlit diffraction.
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Therandom variable so defined iscalled the exponential randomvariable E(1).

a Show that mean{E (1)} = 1/Ax.

b. Find the moment-generating function Mg (t) of E(3) fort < A.
¢. Use the moment-generating function to find var{E(1)}.

d. Also, find (E(A)"™) for arbitrary integer n.

4.4. Poisson Random Variable. The probability that n identical outcomes
areredized in avery large set of statistically independent and identically dis-
tributed random variables when a each outcome is extremely improbable is
described by the Poisson probability distribution

e Hun

Pn =
n!

3

wheren =0, 1, 2, 3, ... isthe number of outcomes. For instance, the number
of decays per second of a sample of the radioisotope UZ® is a Poisson random
variable, becausethe probability that any onenuclei will decay in agiven second
is very small and the number of nuclei within a macroscopic sample is very
large. By definition, u = Y"1—o° nPy,, which one can demonstrate as

o0 o0 M
gnPn = e’“z p

Il

=

CD‘

=
1 L
2|

The last step follows from the Taylor series expansion,

2 3
ue

a. Given that the average number of decays per second registered by a

Geiger counter is 2, what is the probability that within a series of one-

second rate measurements the number of decays per second will be 5?

b. Show that P, is normalized—that is, show that

o0 efu,un
1=)" ——

n=0
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Normal Variable Theorems

5.1 Normal Linear Transform Theorem

Normal random variables have several propertiesthat are especialy valuable
in applied statistics and random process theory. Here we formulate the nor-
mal linear transform theorem, the normal sum theorem, and the central limit
theorem. In proving these theorems, we will exploit the properties of moment-
generating functions.

According to the normal linear transform theorem, a linear function of a
normal variable is another normal variable with appropriately modified mean
and variance. Thus

o + BN(m, a®) = N(x + Bm, B2a3). (5.1.1)
If in (5.1.1) weset m = 0 and a? = 1, we have
a4+ BN(0,1) = N(a, B?). (5.1.2)

Therefore, an arbitrary normal variable N(«, 8°) is a linear transform of a
so-called unit normal N (0, 1) with amean of zero and a variance of one.

The proof of the normal linear transform theorem follows from identifying
the moment-generating function of &+ 8N (m, a2) with the moment-generating
function of N(« + Am, %a?). For the former we have, by definition,

MetgNmaz) (1) = (g +PNImaDy

— eta<etﬂN(m.a2)>
= €“Mym.az (18). (5.1.3)
From (4.3.8) we know that
a2
Mnm.a2) () = €™ 72, (5.1.4)
and so

2242

Mnm.a2) (tB) = €™+ 2, (5.1.5)
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which when substituted into the right-hand side of (5.1.3) yields

Mo pnmas) (1) = @M+, (5.1.6)
Theright-hand side of (5.1.6) is, by definition, the moment-generating function
of N(a 4+ Bm, g%a?). That is, (5.1.6) is equivaent to

My4sNm,a2) (1) = M a4pm, p2a2) (D). (5.1.7)

Because the random variables o + SN(m, &%) and N(« + 8m, B%a?) have
the same moment-generating function, they are identically distributed, and,
consequently, the normal linear transform theorem (5.1.1) is proved. See also
Problem 5.1, Uniform Linear Transform.

5.2 Normal Sum Theorem

According to the normal sum theorem, two statistically independent normal
variables sum to another normal variable. In particular,

N(my + myp, a2 + a2) = Ni(my, a2) + Nap(m, a2) (5.2.1)

when N1 (my, a2) and Np(m, a2) arestatistically independent. Thenormal sum
theoremis, of course, consistent withthealready established fact (in sections2.2
and 2.3) that the mean and variance of asum of statistically independent random
variables is the sum of the individual means and variances.

The proof of the normal sum theorem also follows from the properties of
moment-generating functions. Suppose that X1 = Nz(mg, af) and X, =

2202
N2(my, @5). Then, according to (4.3.8), My, (t) = e™* == and My, (t) =

a2t2
emzt+ ZT .

My, (1) = (gX1tX))
= ()7

My, () Mx, (t)

232142
t(a+a2)

— glm+my)+—% (5.2.2)

where, in the second line, we have assumed that X; and X, are statistically
independent. The right-hand side of (5.2.2) is now in the form of the moment-
generating function of N(my; + m, a2 + a3). Thus, the moment-generating
function of N(mq, a?) + Na(mp, @3) is identical to the moment-generating
function of N(my + my, a2 + a2), and the normal sum theorem for statistically
independent addends has been proved.
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Together, thenormal linear transform and normal sum theorems establish that
any linear function of statistically independent normal variablesisanother nor-
mal variable. Although uniform variablesU (m, a) and most random variables
donot sumtotheir own kind, Cauchy variablesC(m, a) doso. SeeProblem 5.2,
Adding Uniform Variables. The analog theorems for Cauchy variables are

a + BC(m, a) = C(a + fm, fa) (5.2.3)

and
C1(myg, &) + Ca(my, @) = C(My + My, a1 + ap). (5.2.4)

Thelatter requiresthat C;(my, a1) and C,(m,, ap) be statistically independent.
Because C(m, a) has infinite moments, we cannot prove (5.2.3) and (5.2.4)
with moment-generating functions. The most direct proof of (5.2.3) and (5.2.4)
exploits the so-called random variable transform theorem (Gillespie 1992).

5.3 Jointly Normal Variables

We can make an even more powerful statement: statistically dependent nor-
mals, if jointly normal, also sum to anormal. Two variables arejointly normal
when they are each linear combinations of asingle set of independent normals.
Toillustrate, consider the variables defined by

Xy = aNy (0, 1) (5.3.1)

and
Xo = bN;1(0, 1) + cN»(0, 1). (5.3.2)

Here a, b, and ¢ are constants and N1 (0, 1) and N»(0, 1) are, by specification,
statistically independent unit normals. Here, as before, the different subscripts
attached to N (0, 1) denote statistical independence; identical subscriptswould
denote complete correlation. Thus, the variables X, and X, are, by definition,
jointly normal. The property of joint normality covers a number of possible
relationships. Whenb # O0and a # 0, X; and X, are statistically dependent
normal variables. Whenc = Oanda = b, X; and X, arecompletely correlated,
and, when b = 0, they are statistically independent. Yet, according to the
normal sum (5.2.1) and linear transform (5.1.1) theorems,

X1+ Xz = aNy(0,1) + bN;1(0, 1) +cNy(0, 1)

(@+b)Nz(0, 1) +cN2(0, 1)

N1(0, (2 + b)%) + N2(0, ¢%)

N(0, (a+ b)? + c?). (5.3.3)

Therefore, dependent but jointly distributed normals sum to a normal. See
Problem 5.3, Dependent Normals.
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Jointly normal variablesarisenaturally inthe multivariate systemswediscuss
in chapters 8 and 9. There we exploit another of their special properties. two
jointly normal variables,

m

Yi=a+ ) aN(©1 (5.3.4)
i=1
and "
Yo =bo+ Y biNi(0, 1), (5.3.5)
i=1

are completely determined by only five moments: mean{Y1} = ag, var{Y;} =
M, a2, mean{Yy} = by, var{Yp} = Y, b2 and cov{Yy, Y2} = Y, aby,
even when the number m of independent unit normals N; (O, 1) out of which Y
and Y, are composed is larger than five. Thus, variations among the a; and by
which preserve these five quantities do not change Y; and Y.

The proof of this statement is beyond the scope of this book, but may be
found in Springer (1979). Here we simply note that the probability density of
two jointly normal variables Y; and Y5 is

-1 I:(ylful)z + (yzﬂtz)z _ 1= 2—np)

P(Y1& Yo) = G ] (5.3.6)

1
2w o102/ 1 — p?
For convenience, wehaveadoptedthenotation 1y = mean(Y1}, u2, = mean{Ya},
o2 = var{Y1}, 07 = var{Yz}, and p = cor{Yy, Yo}. Note that in (5.3.6)
p(y1 & Y2) has the expected property that when Y; and Y, are statistically in-
dependent, o = 0 and the joint probability density p(y: & y») factorsinto a
product of two normal densities.

5.4 Central Limit Theorem

Can anything be said about the sum of random variables when the nature
of theindividual addendsis not known? Amazingly, under certain conditions,
the answer is yes. If the random variables X, X», ... Xy, are statisticaly
independent, their means and variances finite, and their number m large, the
sum

Sn=X1+Xo+- 4+ Xn (5.4.1)

is approximately normal with mean

um =Y _ mean{X} (5.4.2)
i=1

and variance "
02 = Zvar{xi ). (5.4.3)
i=1
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Approximating the sum S, with N (im, ar%) works well because the approxi-
mation is based on the central limit theorem, according to which
lim "~ 4m _ N, 1) (5.4.4)
m— o0 Om
when the X; composing the sum S, are statistically independent and have finite
means and variances. The central limit theorem is so called because it plays a
central rolein the statistical sciences.

Repeated addition turns statistically independent non-normal variables with
finitemeansand variancesinto normal variables. Note, however, that the central
limit theorem makes no claim about how quickly normality is approached as
more terms are added to the sum S,,. One suspects that the closer to normal
the addends X; are, the more quickly S,, approaches normality. After al,
normality isachieved with only two addendsif the two areindividually normal.
Alternatively, if the addends are sufficiently non-normal—for example, if the
addendsare Cauchy variablesC(m, a)—thecentral limit theorem doesn’t apply
and normality is never achieved.

Wewill provethe central limit theorem for the special case of identically dis-
tributed random addends X (i = 1, 2, ..., m) for which moment-generating
functions exist and so for which al moments (XM (n=1,2,...) arefinite.
Then it will follow that g = (X;) and 08 = (X2 — (X;)?fordli. Con-
sequently, pum = muo and o2 = mo-O As afirst step, we form the random
variable

Zn = (S — im)
Om
_ (Sn—Muo) (5.4.5)
mo¢é
Given (5.4.1), we find that Z,, can be expressed as
& — o)
Zn = Z
=1 moé
1 m
= —>)Y (5.4.6)
vm .; '
where the auxiliary variables
oo

by design, have mean{Y;} = O and var{Y;} = 1.
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The central limit theorem claimsthat Z,, approachesthe unit normal N (0O, 1)
as m becomes indefinitely large. Our strategy is to prove that the moment-
generating function of Z, approaches the moment-generating function of the
unit norma N (0, 1) as m becomes indefinitely large. From (5.4.6) and the
definition of a moment-generating function (4.3.1), we find that

Mz, () = M1 5y ()
- <eﬁ ZJ). (5.4.8)
Because the X; and, consequently, the Y; are statistically independent,
tYq tY; tYm
Mz, (®) = (e7) () . (eﬂ (5.4.9)
Becausethe Y; areidentically distributed,
typ 1M
My, (t) = [(eﬁ >] . (5.4.10)

Expanding the exponential e'"*/vM inside (5.4.10) in a Taylor series, we find
that

tY]_ 2y2 3Y3 m
Mz, (t) = [<1+ — + —2lm + gz H
2 (YD) m
_ [1 TRl L/ ] (5.4.12)

since (Y;) = 0 and (Y?) = 1. Because al the moments (Ylp) are assumed
finite, only the first two terms of the “multinomia” expansion (5.4.11) survive
them — oo limit. Thus,

t2 "
lim Mz, (t) = lim [1+—} (5.4.12)
m— oo m— o0 2m

or, finally,
lim Mz (t) = /2. (5.4.13)
m—o00

The last step follows from the basic properties of the exponential function
(Courant and Robbins 1941). Since €'’/2 is the moment-generating function
of N(0, 1), (5.4.13) proves the central limit theorem for identically distributed
independent addends.

Many variables found in nature and conceived in physical models are sums
of alarge number of statistically independent variables, and thus are normal-
like random variables. In chapter 6, we appeal to the central limit theorem
in formulating the fundamental dynamical equations that govern random pro-
cesses. The normal linear transform and normal sum theorems help us solve
these dynamical equations.
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Problems

5.1.UniformLinear Transform. ProveU (a, 8) = a+BU (0, 1) by show-
ing that My ) (t) = Mapu0.1)(1).

5.2. AddingUniform Variables. ProvethatthesumU;(my, a;)+Ua(my, ag)
of two statistically independent uniform variables U;(my, a;) and Ua(my, az)
isnot itself auniform random variable by showing that the moment-generating
function of U1 (my, a;) + Uo(my, ap) isnot in the form of amoment-generating
function of auniform random variable.

5.3.Dependent Normals. Giventhat X; = aN;(0, 1) and X, = bN;y (0, 1)+
cN»(0, 1) where a, b, and c are constants and N1(0, 1) and N»(0, 1) are statis-
tically independent unit normal variables, find

a. cov{ X1, X5},

b. var{X; + X5}, and

c. var{ X1} + var{Xs}.

d. Show that var{X; + X} # var{ X1} + var{X,}.
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Einstein’s Brownian Motion

6.1 Sure Processes

Inlarge part, the goal of physicsisto discover the time evolution of variables
that describe important parts of the universe. By hypothesis, these variables
arerandom variables. For instance, chapter 3 describes amodel of the random
position of a Brownian particle, but that model employs neither continuous
random variables nor their continuous evolution in time. Chapters4 and 5 have
prepared us to work with continuously distributed random variables. Here we
alsoinvestigate the consequences of assuming continuity intime. Inpreparation
for that task, we first review important properties of continuous sure processes.
Some of these properties carry over into random processes and some do not.

Consider the charge q(t) on a capacitor of capacitance C shorted through a
resistor of resistance R asillustrated in Figure 6.1.

Kirchoff’s law,

iR+ ? =0, (6.1.1)

governsthe process. Given that the current in the circuit i (t) and the charge on
the capacitor q(t) arerelated by i (t) = % (6.1.1) becomes

qt) .
dqt) + %dt =0, (6.1.2)

Figure 6.1. Charge q(t) on a capacitor shorted through aresistor. The currenti (t) is
dq(t)/dt.
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which can also be written as

q(t +dt) —q(t) = —%dt, (6.1.3)

wherewe havereplaced thedifferential dq(t) withitsequivalent q(t+dt) —q(t).

The very form of (6.1.3) expresses continuity, smoothness, memorylessness,
and determinism. Actually, two kinds of continuity are built into thisdynamical
eguation. On the one hand, since timet is arbitrary and the increment dt can
be made arbitrarily small, the process istime-domain continuous. On the other
hand, since

dIti210q(t + dt) = q(t), (6.1.4)

the processis process-variable continuous. The processisalso smooth because
the limit
. t+dt) —q(t
lim q(t +db —q(t)

dt—0 dt (615)

exists. Here we deliberately treat the differential dt as if it is a small but
finite quantity. Smoothness requires process-variable continuity, and process-
variable continuity, in turn, requires time-domain continuity. However, a con-
tinuous process need not be smooth.

The process q(t) is also a memoryless one, or, more commonly, a Markov
process, because the value of q(t) at any oneinstant, say att = t; + dt, is
determined by its value at t = t; through a dynamical equation, in this case
(6.1.3) with t; replacing t. Alternatively stated, q(t;) aone predicts q(t; + dt);
no previousvaluesq(tg) wherety < t; are needed. Most well-known processes
in physics are Markov processes. Magnetic systems and others having long-
term memory or hysteresis are exceptions. The Russian mathematician A. A.
Markov (1856-1922) even used memoryless processesto model the occurrence
of short wordsin the prose of the great Russian poet Pushkin.

Finally, the process q(t) is sure, or deterministic, because equation (6.1.3)
returns a unique value of q(t + dt) for each q(t).

Many of thefamiliar processesof classical physicsbelongtotheclassof time-
domain and process-variable continuous, smooth, and Markov sure processes.
In the next section weinvestigate a particular random processthat is continuous
(in both senses) and Markov but neither smooth nor sure. Such continuous,
Markov, random processes incrementally, but powerfully, generalize the well-
behaved, sure processes of classical physics they most closely resemble.

Although we don’'t explore them here, other kinds of random processes are
both possible and useful (Gillespie 1992). In so-called discrete time processes,
the time-domain on which the random variable is defined is a countabl e set of
discretetimes {to, t1, . . .} such asmight characterize different rounds of agame
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of chance or generations of apopulation. Numerical simulations of continuous
processes are, necessarily, discretetime processes. |njump processes, therange
of values the process variable can assume is countably discrete. For instance,
the number of molecules N (t) within a given permeable volume is defined on
acontinuoustime interval, but N (t) must equal some integer.

6.2 Wiener Process

A process variable X (t) is defined by its associated probability density
p(x,t). Itstwo arguments, x and t, refer to the two different ways X(t)
can vary: intimet and in value x at each time. More specifically, X(t) and
X(t + dt) are different random variables which, when representing different
parts of a Markov process, are related by a dynamical equation of form

X(t +dt) — X(t) = F[X (), df]. 6.2.1)

The Markov propagator function F[X(t), dt] isitself a random variable and
afunction of arandom variable. The propagator probabilistically determines
X(t + dt) from X(t) via(6.2.1)—that is, in so far as one random variable can
determine another. We assume time-domain and process variable continuity,
so that F[X(t), dt] - Oasdt — 0, but we do not require smoothness. The
form (6.2.1) generalizes the sure processes of classical physics.

The Wener process, defined by the Markov propagator

FIX(1), df] = v82dtN (0, 1), (6.2.2)

where §2 isaprocess-characterizing parameter, isthe simplest of all continuous
Markov processes. Its corresponding dynamical equation,

X(t 4 dt) — X(t) = V8§2dtNH4(0, 1), (6.2.3)

isthebasic unit out of which more complicated random processesare composed.
Here N!*9(0, 1) denotes aunit normal (with mean 0 and variance 1) associated
explicitly with the time interval (t,t + dt). Operationally, equation (6.2.3)
means that when the Wiener process variable X (t) realizes the sure value x(t)
attimet, X(t + dt) isanormally distributed random variable with mean x(t)
and variance 82 dt, or X (t +dt) = N(x(t), 8! dt). Alternatively, the realization
X(t + dt) isthe sum of the sure variable x(t) and the product of +/§2dt and a
realization of the unit normal N (O, 1).

The factor +/dt in the dynamical equation (6.2.3) seems odd. Are /dt and
dt allowed in the same differential equation? If one's standard is the ordinary
calculus of sure processes, certainly not. Terms proportional to +/dt are in-
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definitely larger than terms proportional to dt asdt — 0. However, here v/dt
is multiplied by the unit normal N{*%(0, 1), which in different subintervals
assumes different positive and negative values. The net effect of adding them
together is to reduce the magnitude of +/dtN*®(0, 1) to that of dt. But note
that asdt — O,

X(t +dt) - X(t) (6.2.4)
and
dx 52
— = |———(0,1 . 2.
at dtNt“rdt 0,1) - (6.2.5)

Thus, the Wiener processis, on itsdomain, everywhere continuous but nowhere
smooth. This special property makes the Wiener process dynamical equa
tion (6.2.3) a different kind of mathematical object—a stochastic differential
equation.

Time-domain continuity restricts possible interpretations of the Wiener pro-
cessdynamical equation (6.2.3) and, aswe shall see, encourages usto adopt the
sub- and superscripts placed on the unit normal symbol N+ (0, 1). Because
of time-domain continuity, X (t + dt/2) exists and we can formally divide the
process-variableincrement X (t 4 dt) — X (t) into the sum of two subincrements
so that

X(t+dt) — X (t) =[ X (t+dt)— X (t+dt/2)]+[ Xt +dt/2) — X (1)].  (6.2.6)

While condition (6.2.6) seemstrivial, it has a surprising consequence. Substi-
tuting the Wiener process propagator into both sides of (6.2.6) yields

V82diNHE(0, 1) = /82(dt/2) N:ﬁ (0, 1)

+ /AN (0, 1), (6.2.7)

acondition that has been called self-consistency (Gillespie 1996). Self-consis-
dt
tency obtains only when the unit normals N:;ﬁ (0,1) and Ntt 7z (0,1) are sta-

tigtically independent. Asarule, normals associated with temporally disunct
time intervals must be statistically independent in order that self-consistency
and, ultimately, time-domain continuity be observed. In a phrase, Nf+%(0, 1)
is temporally uncorrelated. If the time intervals are identical, the associated
normals are completely correlated; if overlapping, statistically dependent; and
if digunct, statistically independent. For this reason—to remind us of their de-
gree of mutual independence or dependence—we place sub- and superscripts
on the unit normal symbol N*(0, 1).
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The Cauchy variable C+%(0, 1) also reduces terms of magnitude +/dt down
to dt and satisfies self-consistency. In fact, the Cauchy process defined by

X(t +dt) — X(t) = v82dtC+*(0, 1) (6.2.8)

in many ways mimics the Wiener process (6.2.3). The relatively long tails on
the probability density associated with C (0, 1) make longer excursionsin X (t)
possible at the expense of many shorter ones. Normal and Cauchy variables
are only two members of a class of Lévy variables, named after the French
mathematician Paul Lévy (1886-1971), who studied their properties. Each
Lévy variablepreservesitsnature under linear transformation and addition. For
this reason, each can also be made the basis of a Lévy process with properties
similar to the Wiener and Cauchy processes. Applications range from the
seemingly random flight of the albatross to particle motion in turbulent media
(Klafter et a., 1996 and 1999).

Yet normal processes arethe only continuous Markov processesthat produce
random variables with finite variances, and finite variances are often required
for physica interpretation. For instance, the variance of a random velocity
V(1) is related to the mean kinetic energy, and the latter must be finite. The
central limit theorem also favors normal processes. One can imagine a process
that, on the smallest time scales, is composed of non-normal but statistically
independent increments with finite means and variances. A large number of
these subscale increments sum, via the central limit theorem, to a propagator
that is approximately continuous and normal on time scales of interest.

6.3 Brownian Motion Revisited

The Wiener process is the perfect mathematical vehicle for describing con-
tinuous Brownian motion. Suppose, as in chapter 3, the Brownian particle
moves in one dimension along the x-axis. The net effect of many molecular
impactsis to displace the particle an amount

X(t +dt) — X(t) = V82 dtNTH(0, 1) (6.3.1)

in the interval (t,t + dt). These displacements are indifferently positive and
negative, with size regulated by the parameter §2.

How does the net displacement of the Brownian particle evolve with time?
We now have the tools to integrate the stochastic differential equation (6.3.1)
and answer this question. Whent = 0, (6.3.1) becomes

X(dt) = X(0) + V62 dtNS' (0, 1), (6.3.2)
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and whent = dit,
X (2dt) = X(dt) + v/52dtN2*(0, 1). (6.3.3)
Dropping the former into the right-hand side of the latter produces
X (2dt) = X(0) + /82 dtNZ (0, 1) + /52 dtN2*(0, 1). (6.3.4)

Because N§'(0, 1) and N2*(0, 1) apply to digunct time intervals, they are
statistically independent, and the two terms on the far right of (6.3.4) sum, via
the normal sum and linear transform theorems, to

X(2dt) = X(0) + N3 (0, 522d). (6.3.5)
Repeating this substitution and addition indefinitely produces
X(t) = X(0) 4+ N§(0, 52t). (6.3.6)

Thus X (t) — X(0) is normally distributed with a vanishing mean and, asin
chapter 3, avariance that grows linearly in time t. But note that here asingle
parameter 52 has replaced the quotient Ax?/At of two independently specified
parameters Ax2 and At.

6.4 Monte Carlo Simulation

A Brownian particle, initialy at the origin, occupies the position
X(t) = N§(O, 1)v/82t (6.4.1)

at timet. But how does X evolvein time between 0 and t? One could evaluate
(6.4.1) at a series of intermediatetimes0,t/n, 2t/n, 3t/n, ...t wheren > 1
and so produce a sequence of position variables

X(©0) = O,

“()

t
Ng/"(0, 1) 325,
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Figure 6.2. The dots represent a realization of the Wiener process X(t) = N{(0, 1),
determined every time steop of size At = 1 for 100 steps by solving the update equation
(6.4.3) recursively. The solid line is a one-standard deviation envelope £4/t.

(%) -

X(t)

2t
NG/"(0, 2),/82°—.

N§(0, 1)v/82t. (6.4.2)

But aspecia problem arisesif one wants to produce realizations of these vari-
ables: the unit normals Ni/"(0, 1), NJY"(0, 1), ... N&(0, 1) are mutually de-
pendent, and the process X (t) is autocorrelated. See Problem 6.1, Autocorre-
lated Process. Self-consistency can be used to link the correlated variables in
(6.4.2), but usually one accounts for autocorrelation with a different method:
by numerically advancing the particle position with an update equation,

X(t + At) = x(t) + NfT44(0, D)V/§2At, (6.4.3)

derived by replacing t in the exact solution (6.3.6) witht + At and applying the
initial condition X (t) = x(t). A Monte Carlo simulation is simply a sequence
of such updates with the realization of the updated position x(t + At) at the
end of each time step used as the initial position x(t) at the beginning of the
next. Figure 6.2 was produced in thisway. The 100 plotted points mark sample
positions along the particle’s trgjectory. Equally valid, if finer-scaled, sample
paths could be obtained with smaller time steps At. But recall that X (t) is not
asmooth process and itstime derivative does not exist. For thisreason it would
be misleading to connect the pointsin figure 6.2 with a smooth curve.
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6.5 Diffusion Equation
The probability density

p(x, t) =

1
N 27 82t

_x2
252t

(6.5.1)

defines the random variable Nj[0, §%t]. Figure 6.3, displaying p(x, t) versus
X attimest = 1/4, 1, and 4, illustrates the possibilities inherent in the time
evolution of a Wiener process more completely, if more abstractly, than the
sample path of figure 6.2. Inspecting the partial derivatives

i(xt)_
P =

i(xt)_
ax PO =

and
2

0
72 P& t) =

p(x, 1) X2

SOLF] e
% p(x,t), (6.5.3)
p(x, 1) X2

- [1 - ﬁ} : (6.5.4)

Figure 6.3. The probability density p(x,t) = (2r8%) Y2 exp{—x?/256%t} at times

t =1/4, 1, and 4.
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we find that p(x, t) solvesthe classical diffusion equation

Ip(x,t) _ 8%8%p(x, 1)
at 2 ax?

Equation (6.5.5) ismathematically equivalent to the stochastic dynamical equa-
tion (6.3.1). The latter equation governs the random variable X (t), while the
former governs its probability density p(x, t).

Deducing the diffusion equation (6.5.5) from its solution (6.5.1) reversesthe
usual order in modeling and problem solving. A more physically motivated
derivation of (6.5.5) often starts with the observation, called Fick's law, that a
gradient in the probability density ap/dx drives a probability density flux J
so that P

_pP

X
where the proportionality constant D is called the diffusion constant. Fick’s
law, like F = maandV = IR, both definesaquantity (diffusion constant, mass,
or resistance) and states a relation between variables. The diffusion constant is
positive definite, that is, D > 0, because agradient always drives an oppositely
directed flux in an effort to diminish the gradient. Combining Fick’s law and
the one-dimensional conservation or continuity equation

ap 9J
ot T ax

yields the diffusion equation (6.5.5) with D replacing §2/2.

In hisfamous 1905 paper on Brownian motion, Albert Einstein (1879-1955)
constructed the diffusion equation in yet another way—directly from the conti-
nuity and Markov propertiesof Brownian motion. Our approach, in section 6.3,
to the mathematically equivalent result X(t) — X(0) = N{(0, 2Dt) has been
via the agebra of random variables. We use the phrase Einstein’s Brownian
motion to denote both these configuration-space descriptions (involving only
position x or X) of Brownian motion. In chapters7 and 8, we will exploretheir
relationship to Newton’s Second Law and possible vel ocity-space descriptions
(involving velocity v or V aswell as position).

(6.5.5)

J= (6.5.6)

-0 (6.5.7)

Problems

6.1. Autocorrelated Process. Let X(t) and X(t") be the instantaneous
random position of a Brownian particle at times for whicht’ < t.

a Find cov{X(t), X(t"}.
b. Find cor{ X (t), X(t")}.
c. Evaluate cor{ X (t), X(t")} inthelimitst’/t — Oandt’/t — 1.

(Hint: Refer to the solution [6.3.6] and to self-consistency [6.2.7]. Also com-
pare with Problem 3.4, Autocorrelation.)
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Figure 6.4. Local particle density Nop(X, t) versustime at x = x; > 0, given that all
the particles areinitialized at x = 0. Here §2 = 1, x; = 10, and Ny = 100.

6.2. Concentration Pulse. Suppose that Np particles of dye are released
attimet = 0inthe center (at x = 0) of afluid contained within an essentially
one-dimensional pipe, and the dyeisallowed to diffusein both directions along
the pipe. The diffusion constant D = §2/2. At position X(t) and timet the
density of dye particlesisthe product No p(x, t), where p(x, t) isthe probability
density of a single dye particle with initialization X(0) = 0. An observer at
positionx = X; # 0 seesthe concentration of dyeincreaseto amaximum value
and then decay away. Seefigure 6.4. At what time does the concentration peak
pass the observer?

6.3.Brownian Motionwith Drift. Consider the dynamical equation X (t+
dt) — X(t) = adt + +/82dtNT4(0, 1), describing Brownian motion superim-
posed on a steady drift of rate «.

a. Given the initial condition X(0) = 0, solve this equation using the
method in section 6.3.

b. Find the associated probability density p(x, t).

c. Show that the full width of p(x, t) at half its maximum value increases

intimeas2v/252tIn2.

Because the center of p(x, t) evolvesasat and itsfull width at half maximum
evolves more slowly as 24/25%t In2, it is possible to separate different species



PROBLEMS 51

Figure 6.5. Sedimentation: layers of Brownian particles drifting downward and diffus-
ing in aviscous fluid. Time increases to the right.

of Brownian particles with different drift rates «. Figure 6.5 illustrates this
separation in the context of sedimentation. In similar fashion, electrophoresis
uses an electric field to separate charged Brownian particles (Berg 1993).

6.4. Brownian Motion in aPlane. Use solutions X (t) = N(‘,A,X(O, 1)/ 82t
andY(t) = Ng,,y(o, 1)+/82t and the method in section 6.4 to generate and plot
a Brownian particle sample path in the x-y plane. Assume the unit normals
N§ (0, 1) and N(‘,,y(o, 1) (and thus displacements in the two directions) are
statistically independent.
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Ornstein-Uhlenbeck Processes

7.1 Langevin Equation

Newton's second law identifies the net force F (t) per unit particle mass M
with the rate at which the particle changes its velocity V (t). This velocity, in
turn, describes the rate at which the particle changes its position X (t). These
familiar relations,

dvit)  F(t)
® M (71D
and
dX()
5 =V (7.1.2)

are no less true when V (t) and X(t) are random variables than otherwise. In
differential form, we have

V(t+d)— V) = [%} dt (7.1.3)
and
X(t +dt) — X(t) = V(t) dt. (7.1.4)

Albert Einstein and his French contemporary Paul Langevin (1872—1946) in-
troduced randomness into these equations in different ways.

Einstein’s actual analysis resulted in the diffusion equation (6.5.5), but we
now know that in his procedure he essentially ignored Newton’s second law
(7.1.3) and replaced V (t) dt on the right-hand side of (7.1.4) with +/82dt
N+®(0, 1) (Einstein, 1905). This replacement turns (7.1.4) into

X(t 4 dt) — X(t) = V8§2dtNH4(0, 1), (7.1.5)

and thus turns X (t) into a Wiener process with parameter 52.
Attacking the same problem a few years later, Paul Langevin modeled the
specificimpulse[F (t)/M] dt in Newton’s second law (7.1.3) asaviscous drag
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—yV (t) dt plus random fluctuations /B2 dtZ;. According to Langevin, the
random variable Z; had mean zero, variance one, was “indifferently positive
and negative,” and was uncorrelated with position X (t). If one specifies that
Z; = NI+®(0, 1), equation (7.1.3) becomes the Langevin equation,

V(t4dt) — V(t) = —pV(t) dt + v/ B2 dtNFTH(O, 1). (7.1.6)

TheLangevin equationissaidto govern an Ornstein-Uhlenbeck or O-U process,
after L. S. Ornstein and G. E. Uhlenbeck, who formalized the properties of this
continuous Markov process (Uhlenbeck and Ornstein 1930). The O-U process
V (t) anditstimeintegral X (t) together describe Langevin's Brownian motion.

Langevin's main insight was that viscous drag and velocity fluctuations are
complementary effects of asingle, subscale phenomenon: numerous, frequent
collisions between fluid molecules and the Brownian particle. The same colli-
sionsin the same interval contribute to the fluctuation term /42 dtN(0, 1)
and to the viscous drag term —y V (t) dt. The former, no less than the latter,
representsthe effect of many collisions. It may befor thisreason that Langevin
referred to the fluctuating term in (7.1.6) as the “complementary force” An
English trandation of Langevin's landmark paper appears in Appendix A. In
this chapter we solve the Langevin equation, quantify the link between drag
(or dissipation) y and fluctuation 2 constants, and model electrical noise with
an O-U process before returning, in chapter 8, to complete the description of
Langevin’s Brownian motion.

7.2 Solving the Langevin Equation

We could directly integrate the Langevin equation (7.1.6) to find an expres-
sion for V(1) just as we integrated, in section 6.3, the stochastic differential
equation describing Einstein’s Brownian motion to find X (t). We would do
this by recursively evaluating the stochastic differential equation (7.1.6) at dif-
ferent times and summing the parts. However, the sums are difficult—in part
because the addends are correlated. |nstead, we adopt asimpler and more pow-
erful method for solving stochastic differential equations. This new method is
based on the following logic. Since each variable in the sequence of random
variables V (dt), V (24dt), ..., V(t) isalinear combination of the independent
normal variablesN& (0, 1), N2*(0, 1), ..., N} 4(0, 1) andlinear combinations
of statistically independent normals are themselves normal, then V (t) isitself
normal, that is,

V(t) = Ni(mean{V (t)}, var{V (t)}). (7.2.2)

So our problemreducesto finding expressionsfor thesurefunctionsmean{V (t) }
and var{V (1)} and substituting these into the form (7.2.1).



SOLVING THE LANGEVIN EQUATION 55

Taking the expected value of both sides of the Langevin equation (7.1.6)
produces an ordinary differential equation whose solutionismean{V (t)}. Thus

(V(t4dt) — V(1)) = (—y V() dt 4+ /B2 dNITHO, 1)), (7.2.2)

and

—y (V1) dt + /B2 dt(N (0, 1))
= —y(V(1))dt, (7.2.3)

(V(t+db) — (VD)

or, equivalently,

d(V (b))
at

= —p(V(1)), (7.2.4)

where we have exploited the linearity of the expected value operator () and the
fact that (NF®(0, 1)) = 0. Solving the ordinary differential equation (7.2.4),
we find that

mean{V (t)} = voe " (7.2.5)
given theinitial condition V (0) = vo.
The time evolution of var{V (t)}, or, equivaently, of (V (t)2) — (V(t))?, aso

followsfrom the Langevin equation but lessdirectly so. Since, from (7.2.5), we
already know that (V (t))2 = v3e~2"*, weonly need find (V (t)2). By definition,

d[V(©)?] = [V(t + dp]? — [V(©)]2 (7.2.6)

The Langevin equation (7.1.6) provides an expression for V (t + dt) that, when
substituted into (7.2.6), yields

[V(t)(1 - ydt] + /B2 dtNT4(0, D]* — [V (1)]?
V(1)%(1 — y dt)? + 2V (1) (1 — pdt)y/ B2 dtNTFH(O, 1)
+ BZA[NITH(0, 1)]% — V (1)?

—2V (t)?pdt 4 2V (1)/ B2 NI, 1)
+ B2 N0, DI, (7.2.7)

d[Vv)?

where we have dropped terms of order dt? and dt®? because they areignorably
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small compared to dt. Taking the expected value of (7.2.7) produces

d(V(1)?) = —2(V(1)?)pdt+ 2(VO)NT0, 1))/ 2 dt

+ ([N{F9(0, D] g2 at
= —2(V(D)Aydt + 2(V ()N, 1))/ B2 dt
+ B2 dt. (7.2.8)

Recall that V (t) isalinear combinationof N&(0, 1), N2%(0, 1), ...and N!_(t)
but not of N+ (t). Thus, V (t) and N+ (t) are statistically independent, and

(VIONTFR0, 1)) = (V(©)(NFEO, 1))

= 0. (7.2.9)
Then (7.2.8) becomes
d(V (1)) = —2(V(t)?)ydt + B2t (7.2.10)
or
%(V(t)z) = —2y(V(1)?) + B2 (7.2.12)

Solving (7.2.11) subject to the initial condition V (0) = vg yields

2
(V(H) =v2e 2t + (%) (1—e 2, (7.2.12)

With practice onelearnsto streamline these manipulations. Combining (V (t))?
and (V (t)?) from (7.2.5) and (7.2.12), we find

var(V (1)} = (VD)) — (V())?

2
= (—) (1—e 2, (7.2.13)
2y

asis consistent with the expected initial condition var{V (0)} = 0. Substituting

expressions for mean{V (t)} from (7.2.5) and var{V (1)} from (7.2.13) into the
normal variable form (7.2.1) yields the desired O-U process solution

2
V() = Ng (voe‘yt, (’23—3/) (1- e‘%) . (7.2.14)
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The corresponding probability density is

o [ —(v —vpe 7?2 }
Pl 28272y (1 — e o)

2
\/271 <§_y) (1—e 2

These describe not only the vel ocity of aBrownian particle but also any process
governed by a competition between linear damping and constant magnitude
random fluctuations. See, for instance, thediscussioninsection7.5onthermally
generated electrical noise and that in section 10.1 on molecular effusion.

Here we note two useful generalizations. First, suppose theinitial condition
was |eft an unspecified random variable. Then,

p(v,t) = . (7.2.15)

2
V(t) = V(0) + N§ ((V(O))(eyt -1, (’j-y) 1- e’”t)) (7.2.16)

solvesthe Langevin equation. Second, supposethe Langevin equationincluded
adrift vq towhich V (1), apart from fluctuations, relaxed in the long time limit,
so that (7.1.6) is replaced by

V(t4dt) — V() = —y[V (1) — vgl dt + v/B2dINITH(0, 1).  (7.217)

Such drift vy might be the terminal velocity caused by gravity, by an electric
field, or by any other constant forcein the presence of dissipation. The solution
of (7.2.17) is

2
V() = N§ (Vd +e 7" (vg — vy), (f—y) 1- e—zﬂ)) ; (7.2.18)

given V (0) = vg. See Praoblem 7.1, Terminal Speed for an application of the
O-U process with drift.

7.3 Simulating the O-U Process

Because the random variable V (t) is autocorrelated, numerically simulating
the O-U processis not simply amatter of substituting atimet into the desired
form of the solution, choosing a realization of the unit normal, and calculating
the result. The best way to account numerically for potentially strong autocor-
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Figure 7.1. Points on a sample path of the normalized O-U process defined by (7.3.2)
with initia value v, = 4 and drift 5y = 0. Solid curves show mean{V (f)} and

mean{V ()} + +/var{V (f)}.

relation is, as in section 6.4, to write the general solution (7.2.18) in updated
form
V(t+ At) = v(t)e 72 4 py(1 — e 72

2
+ \/(ﬂ_) (1 — e~ 2rANITAYQ, 1), (7.3.1)

2y

in which the initial condition v(t) is a particular realization of the process
variable V (t) determined in the previousinterval.

Before proceeding, werecast (7.3.1) interms of the following dimensionless
variables and parameters: £ = yt, Af = yAt, V(t) = V(1)//B2/2y, g =

va/+/B2/2y, and D(t) = v(t)//B2/2y. Then (7.3.1) becomes

V(i +AD=iDe 2 +i5(1—e %)+ /(1 —e2)NI0,1), (732

from which we have formally eliminated y and 2. Thus one sample path
generated by recursively solving (7.3.2) works for all values of  and 2. One
simply reinterprets the meaning of f, Af, V(f), 14, and 9(f). Figure 7.1 (with
Vo = 4 and vy = 0) and figure 7.2 (with 7o = 0 and vy = 3) display such
sample paths.
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Figure 7.2. Points on a sample path of the normalized O-U process defined by (7.3.2)
with initial value vy = 0 and drift 3 = 3. Solid curves show mean{V ()} and

mean{V (D)} + /var{# (D)}

7.4 Fluctuation-Dissipation Theorem

Competition between linear damping and random fluctuations defines the
O-U process. In the long time limit yt — oo, abalance is achieved between
the two, and the average kinetic energy of a Brownian particle of mass M in
the frame in which the drift vani shes becomes, according to (7.2.13),

Mvar{V(co)}  Mg?

. 7.4.1
2 4y ( )

Butinthesamelimit (yt — o0), theBrownian particlea so approachesthermal
equilibriumwith the surrounding fluid. According to the equipartitiontheorem,
the equilibrium energy associated with fluctuationsin each degree of freedom
iskT/2, where T isthe fluid temperature. Thus, it must be that

Mvar{V (c0)} KT
— = (7.4.2)

Therefore, the O-U processis consistent with thermal equilibrium only if

MB2 KT
_ < 7.4.3
2y > ( )
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that is, only if g2/2y = KT/M. Equation (7.4.3) is one version of the
fluctuation-dissi pation theorem, so named because it relates fluctuation g2 and
dissipation y parameters.

Fluctuation-dissipation applies to any O-U process when fluctuations are
caused by interaction with an environment that isitself in thermal equilibrium.
In practice, fluctuation-dissipation helps fix the parameters 2 and . When
modeling a Brownian particle, one usually choses adissipation rate y and then
solves (7.4.3) for 2. For instance, when the Brownian particle isimmersed in
aviscous liquid, as assumed by Einstein and Langevin, Stokes's law

_ Bmgr

i (7.4.4)

applies. Heren isthe liquid viscosity and r the particle radius. Consequently,
B2 = 12xnrkT/M2. On the other hand, if the fluid is composed of gas
molecules with mass mp and density ng colliding with the Brownian parti-
cle at arate ngo vy, determined by the molecule-particle cross section o and
the gas thermal velocity vy, = /KT /mg, then

MoNoo Vih

v (7.4.5)

In this case, fluctuation-dissipation yields 2 = 2mynoo vinkT/M?2.

7.5 Johnson Noise

Consider how the electrostatic energy stored on a charged capacitor dissi-
pateswhen the capacitor isshorted through aresistor, asillustrated in figure 7.3.
As charge carriers flow through the circuit, they collide with, and transfer en-
ergy to, the atoms of the resisting material. Eventually, the resistor sharesthis
dissipated energy with theenvironment. However, sincetheresistor isnot at ab-
solute zero, itsatoms contain thermal energy, which makesthem vibrate around
their equilibrium positions and randomly transfer energy to the charge carriers.
Where there is dissipation, thereis fluctuation. In the language of macro-scale
physics. the resistor simultaneously Joule heats and delivers random voltage
pulses to the circuit. The random pulses, first observed by J. B. Johnson in
1928, are called Johnson noise.

Johnson noiseis easily modeled with an O-U process. Applying Kirchoff's
law to an RC circuit with a fluctuating voltage source yields

IR+ g + (Johnson - noise) = 0 (7.5.1)
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Figure7.3. Capacitance C shorted through aresistance R at temperature T. Thecurrent
I (t) isdQ(t)/dt.

or, giventhat | = dQ/dt,

Q (Johnson - noise)
aQ=—-——dt - —— ——
Q RC R

dt. (7.5.2)
If the Johnson noise voltage fluctuations are described by aWiener processwith
parameter A2, (7.5.2) becomes

Q

—gc dt+ VBZANIT(0, 1). (7.5.3)

dQ =

This a Langevin equation with relaxation rate y = 1/RC and fluctuation pa-
rameter A2, so we may take its solution,

2
Q(t) = N§ <QO9_Vt, (g—y) 1- e‘ZVt)) , (7.5.4)

directly from (7.2.14). The longtime, steady-state variance of the charge fluc-
tuations, 82/2y, must be consistent with thermal equilibrium at temperature T.
According to the equipartition theorem, the mean fluctuating el ectrostatic en-
ergy stored at equilibrium in the capacitor isgiven by var{ Q(oc0)}/2C = KT /2.
Combining these requirements, we have, as before, the fluctuation-dissipation
theorem, B2/4yC = KT /2, which, onusing y = 1/RC, yields 2 = 2kT/R.
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Therefore, in terms of circuit parameters R and C, the charge on the capacitor
isgiven by
Q(t) = Nj(goe™"/RC, KTC(1 — e=2/RCY), (7.5.5)

For an application of Johnson noise in a dightly different context, see Prob-
lem 7.2 RL Circuit.

Problems

7.1. Terminal Speed.  One way to determine the viscous drag parameter
y isto apply a steady force F to a particle of mass M and measure its mean
terminal speed vg.

a. Expressy intermsof F, M, and vq.
b. Usethefluctuation-dissi pation theoremto expressthefluctuation param-
eter B2 intermsof kT, F, M, and vqg where T isthe fluid temperature.

7.2. RL Circuit. Use energy equipartition to show that, in a circuit com-
posed of an inductance L shorted through aresistance R at equilibrium temper-
ature T, equilibrium current fluctuationshaveamean (1 (c0)) = 0and variance
(1 (00)2 = KT/L.
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L angevin’s Brownian Motion

8.1 Integrating the O-U Process

The O-U process V (t) and its integral X (t) together describe Langevin's
Brownian motion. Given the velocity V (t) of a Brownian particle, how do we
find its position X (t)? We might try substituting

2
V(t) = N§ <uoe—Vt +vg(l—e 7Y, (g—y) 1- e—ZVt)) , (8.1.1)
into
X(t +dt) — X(t) = V(t)dt (8.1.2)

and solving iteratively. Such procedure generates a series of expressions for
X(dt), X(2db), ..., X(t), each one of which isalinear combination of corre-
lated unit normals N§t(0, 1), N2%¢(0, 1), ..., N5~ (0, 1). Each of theseis, in
turn, alinear combination of statistically independent unit normals N (0, 1),
N294(0, 1), ..., N/~3t (0, 1). While, in principle, it might be possible to un-
pack these linear combinations, it is, as before, easier to exploit the general
result based on the normal sum theorem that

X(t) = Ni(mean{X (1)}, var{X (t)}). (8.1.3)

Recall from section 5.3 that any pair of correlated normals, say X (t) and V (1),
is completely determined by their means, variances, and a covariance. The
O-U process(8.1.1) providesuswith expressionsfor mean{V (t)} and var{V (t)}.
Thus, our task reducesto finding and solving the ordinary differential equations
governing mean{ X (t)}, var{ X (t)}, and cov{X (t), V (t)}.

For convenience, in the following we replace X (t + dt) — X (t) with dX and
X(t + dt) with X + dX, and we, likewise, replace V (t + dt) — V (t) with dV
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and V (t + dt) with V + dV. With these substitutions the Langevin equation
with drift V4 becomes

dV = —y(V — vg)dt + v/B2dtNI(0, 1) (814

and (8.1.2) becomes

dX = V. (8.1.5)

Combining the expected value of dX = Vdt and of V (from [8.1.1]) generates
the differential equation

d(X)
W
o (V)
= voe "+ ug(l—e 7Y, (8.1.6)
whose solution is
Vo _ ot Ud _ .t
mean{X(t)} =X+ —1—-e ")+ —(yt+e 7 -1 (8.1.7)
14 14

assuming initial conditions V (0) = vg and X (0) = Xo. We already see adiffer-
ence between Einstein’s simpleresult, mean{ X (t)} = Xo+ v4t, and Langevin's
more complicated one (8.1.7).

The equation governing var{X(t)} aso follows from dX = Vdt and the
expression (8.1.1) for V(t). By definition, dX(t)? = X(t + dt)2 — X(t)?,
which, in our streamlined notation, becomes

dXx? = (X +dX)2 — X2

2XdX + (dX)?
2XVdt + (Vdt)2. (8.1.8)

Taking the expected valueof (8.1.8), dividing by dt, andtaking thelimitdt — O
produces

— 2(XV). (8.1.9)

Consequently,
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_d(X?) d(X)
T —2X) dt

= 2(XV) = 2(X){V)
2cov{X, V}. (8.1.10)

Thus, var{ X} couplestotheasyet unknown function cov{ X, V}. Inderiving the
equation governing cov{ X, V}, we retain terms through order dX, dV, (dV)?,
and dt and drop termsof order (dX)?, dXdV, (dt)¥?, and smaller because these
vanish after dividing by dt and taking the limit dt — 0. Consequently,

dcov{X, V} = d[(XV) — (X)(V)]
= (XdV) 4+ (VdX) — (X)d(V) — (V)d(X)
= —py(XV)dt + (XN, 1))y/p2dt 4 (V?)dt
+ y(X)(V)dt — (V)?2dt, (8.1.11)
where we have used dX = Vdt, d(X) = (V)dt, d(V) = —yp(V)dt, and

Langevin's equation (8.1.4) for dV. Equation (8.1.11) simplifiesto

dcov{X,V} = —ycov{X, V}dt + var{V}dt
+ (XN9(0, 1))/ p2dt. (8.1.12)

If not identically zero, the term (XN!*9t(0, 1)),/A2dt in (8.1.12) would dom-
inate over the others because +/dt is very much larger than dt. However,
because X (t) and N9 (0, 1) are statitically independent, (XN!*9(0, 1)) =
(X)(N+9(0, 1)) = 0, and (8.1.12) reducesto theordinary differential equation

%cov{X,V} = —ycov{X, V}+va{V}. (8.1.13)
Multiplying through by an integrating factor €”* turns (8.1.13) into
d t t
a[el’ cov{X, V}] = €' var{V}, (8.1.14)

which, given that var{V} = (82/2y)(1—e~2") from (8.1.1) and initial condi-
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tions V (0) = vp and X (0) = X, integratesto

ﬂZ

cov{X,V} = ﬁ

(1—2e7" e 2, (8.1.15)

Substituting this result into the differential equation (8.1.10) for var{X} pro-
duces

2

d
—var{X} = =1 —2e" e, (8.1.16)
dt y2

which isimmediately integrated to yield

2
var{X} = ’3—2 [t - E(1 —e"H + i(1 — e—ZV‘)} . (8.1.17)
14 14 2y

Collecting the results (8.1.7) and (8.1.17), we have

X(®) = No (xO + ?(1 —e7’H) + %(yt +ert -1,
p? 1

3 [ty 21—+ - eZV‘)D . (8118

14

Thisexpression, together with (8.1.1) for V (t) and (8.1.15) for cov{ X (t), V (1)},
compl etely describes Langevin’sBrownian motion with drift vg. Notethat only
after many relaxation times (that is, when yt > 1) does var{X(t)} have the
linear time dependence 82t /y? characteristic of Einstein’s Brownian motion.

8.2 Simulating Langevin’s Brownian Motion

Our purpose in this section is to derive a ssimulation agorithm for an O-U
process. Thisisequivalent to deriving an expression for the updated quantities
V (t + At) and X(t + At) interms of theinitial values V (t) and X (t) and the
O-U process parameters g2 and . Since V (t + At) and X (t + At) arejointly
distributed normals, they are correlated and, therefore, can be cast into theform

X(t + At) = ag + a;N1(0, 1) + a;N2(0, 1) (8.2.1)

and
V(t + At) = bg + by Ny (0, 1). (8.2.2)
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Theunitnormals N1 (0, 1) and N»(0, 1) are, by design, statistically independent.
Furthermore, the parameters ag, a3, a2, by, and b; must be chosen in order to
give X (t+At) and V (t+ At) theright values of mean{ X (t + At)}, mean{V (t+
At} var{ Xt + At)}, var{V (t + At)}, and cov{ X (t + At), V (t + At)}. Taking
moments of (8.2.1) and (8.2.2), we find that

ag = mean{X(t + At)}, (8.2.3)
bp = mean{V(t + At)}, (8.2.4)
b? = var{V(t + At)}, (8.2.5)

g — COVIX(T+AD V(t + Ab) (8.2.6)
1= vaVi+ AD] B

and

X(t 4+ At), V(t + At)})?
a2 = var(X(t + At} — M f/a:gv(t)Jr A(t;}“ W™ 8.2.7)

See Problem 8.1 Derivation. The time dependences of mean{X(t + At)},
mean{V (t + At)}, var{ X (t + At)}, var{V (t + At)}, and cov{ X (t + At), V (t +
At)} follow directly from expressions(8.1.1), (8.1.15), and (8.1.18), already de-
rived for mean{ X (t)}, mean{V (1)}, var{ X (1)}, var{V (1)}, and cov{ X (1), V (1)}.
In particular, we find that

mean{V (t + At)} = v(t)e 72 4 vq(1l — e 7AY, (8.2.8)
,32
var{V (t + At)} = 2—(1 — e Aty (8.2.9)
Y
v(t) _ At
mean{ X (t + At)} = x(t) + 7(1—e )
n %(y At +e7At ) (8.2.10)
B2 2p2

var{X(t + At)} = F(yAt)—F(l—e’VAt)

Z_(1—e A, (8.2.11)
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Figure 8.1. Points represent normalized sample velocities v/,/82/2y versus normal-
ized time yt of a Brownian particle from (8.2.2) with drift vy = 0 and initia con-
dition vop = 0. Solid curves represent mean{v/,/B2/2y} and mean{v/,/B2/2y} +

std{v/y/B?/2y}.

and

ﬂZ

Z_(1—2e7A gAYy (8.2.12)
2y2

cov{X(t+ At), V(t + At)} =

which, when substituted into (8.2.3) through (8.2.7), provide the sought-for
simulation algorithm for Langevin's Brownian motion in time steps of dura
tion At.

Figures 8.1 and 8.2 display sample time evolutions x(t) and v(t) generated
by solving (8.2.1) and (8.2.2) iteratively with vq = 0 and initial conditions
Xo = 0and vy = 0. Asexpected, when v(t) > 0, x(t) increasesin time, when
v(t) < 0O, x(t) decreasesin time. Also, as expected, x(t) appears to evolve
smoothly in time while v(t) does not.

8.3 Smoluchowski Approximation

Langevin's Brownian motion reduces to Einstein’s in the so-called Smolu-
chowski limit, that is, on time scales for which the independent variable V (t)
changes little and its integral X (t) changes much. The Smoluchowski ap-
proximation effectively minimizesinertial effects and maximizes randomness.
Formally, we access this regime by setting dV = 0 in the Langevin equation

dV = —yVdt 4 /B2dt N (0, 1) (8.3.1)
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Figure8.2. Points represent normalized sample positions x /[y ~1,/B2/2y] versus nor-
malized time yt of a Brownian particle from (8.2.1) and (8.2.2) with drift vg4 = 0

and initia condition x, = 0. Solid curves represent mean{x/y ~*,/p2/2y} and

mean(x/y ~1\/B?/2y} + std{x/y ~L\/BZ/2y).

and using dX = Vdt to eliminate the variable V atogether. Inthisway (8.3.1)
reduces to the Wiener process equation

2
dX = | %dt N0, 1). (8.3.2)

2
X(t) = N§ (xo, %) (8.3.3)

Its solution

reproduces Einstein’s Brownian motion, with 2/y? playing the role of the
diffusion parameter §2. Apart from a constant offset in the mean position,
solution (8.3.3) realizes the late-time, high-dissipation regime (yt > 1) of
Langevin's Brownian motion as described by (8.1.18) with vy = 0.

8.4 Example: Brownian Projectile

A neutral molecule and a droplet of uncombusted gas thrust from a car tail
pipe both obey the same stochastic dynamics—both are, in principle, Brownian
particles evolving as an O-U process. Their vastly different masses account for
guantitative rather than qualitative differences. In both cases the fluctuation-
dissipation theorem fixes 82/2y at kT /M. Then the dissipation rate y and the
therma velocity +/kT/M alone adjust the degree to which, at any timet, the
Brownian particle manifests either random or deterministic behavior.
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Suppose, for instance, the Brownian particleisinitialized asaprojectile (with
Xo = Yo = 2o = 0, vxo = vyo # 0, and v,o = 0) and moves under the influence
of gravity (g = —gy) inthe x — y plane. The equations of motion are

dVy = —yVidt +/B2dtNTH(0, 1), (8.4.1)
dVvy = —y(Vy — v)dt + /2N (0, 1), (8.4.2)
dX = V,dt, and dY = V,dt. Here vy = —g/y and the unit normals,

N{%%(0, 1) and N{ 3% (0, 1), associated with fluctuationsin different directions,
are statistical ly mdependent The solutions

2
X(t) = N(t)x <M(l e yt ,3 |: y — 2(1 e yt) + %(l— e_ZVt)]>

(8.4.3)
and

Y(® = Noy (M(l— e’ - %(Vt +ert—,
2
% [tV 21-e7"H+ (1 eZV‘)D (8.4.4)
v?

are taken from (8.1.18).

These configuration space coordinates reveal deterministic behavior at early
times, that is, at times for which yt « 1. In particular, through leading order
in the assumed small quantity yt,

mean{ X (t)} = vy ot (8.4.5
and
gt?
mean{Y ()} = vy,ot — > (8.4.6)
which are familiar from introductory physics, and
ﬂ2t3
var{X(t)} = var{Y(t)} = = (8.4.7)

Thus, the early-time regime preserves the effect of initial conditions and repro-
duces familiar projectile motion, and the variance grows relatively slowly with
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Figure8.3. Early-time (0 < yt < 0.01) sampletrajectories(points) and mean trajectory
(solid) for aBrownian particle under the influence of anormalized gravity of magnitude

(gy~1/y/B%/2y = 220. Initial conditionsare Xo = Yo = 0 and vy = vyo = /B2/2y.

timet. In contrast, at late times (when yt > 1), the coordinates change more
randomly. Through leading order termsin 1/yt,

mean{ X (t)} = 0, (8.4.8)
gt
mean{Y (1)} = — (8.4.9)
and
Bt
var{X(t)} = var{Y ()} = S (8.4.10)

Thus, at late times Brownian mation is superimposed on a downward constant
drift.

Simulations of the processes (8.4.3) and (8.4.4) are displayed in figures 8.3
and 8.4 as trgjectories in the x-y plane. Figure 8.3 shows a pair of largely
deterministic and projectilelike trgjectories. The trgjectory of figure 8.4 passes
through deterministic to random Brownian motion. In spite of the resemblance
of figure 8.3 to familiar ballistic trgjectories, the model producing them applies
only at low speeds in viscous media—that is, only to Brownian projectiles.
Typically, the drag force on baseballs and other macroscopic objects in air is
not linear but quadratic in the speed.
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Figure 8.4. Early- through late-time (0 < yt < 1.0) sample trajectory (points) and
mean trajectory (solid) for a Brownian particle under the influence of a normalized
gravity of magnitude (gy —/,/B2/2y = 3. Initial conditions are X, = yp = 0 and

Uxo = VUyo = +/ 52/2)’-

The Langevin equation and its direct extensions are well suited for weaving
deterministic and random effectstogether. In chapter 9weinvestigate stochastic
models of two other multivariate systemswith familiar deterministic limits: the
harmonic oscillator and the magnetized charged particle.

Problems
8.1.Derivation. Derive(8.2.3) through (8.2.7) from(8.2.1) through(8.2.2).

8.2. X-V Corrélation. Findcor{X(t), V(t)} for Langevin’s Brownian mo-
tion in the late time, high-dissipation regime, that is, through leading order in
the assumed large quantity yt.

8.3. Range Variation. A Brownian particle starts at the origin and com-
pletes projectilelike motion in the X-Y plane under the influence of gravity
while in its deterministic phase (yt <« 1). Itstime of flight t; is the nonzero
solution of mean{Y (t¢)} = 0.

a. Expressvar{X(ts)} interms of fluctuation parameter 2, relaxation rate
v, acceleration of gravity g, and initial vertical velocity vyo.
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b. Given that vxo = vyo = /B?/2y, find an expression for the ratio of
std{ X (t)} to the distance y ~1\/B2/2y in terms of Vy,, y, and g.

c. Numerically evaluatethedimensionlessratiostd{ X (t1)} /[y ~1v/82/2y]
with parameters used in producing figure 8.3. Isyour result consistent
with that of figure 8.3? Note: the sample paths of figure 8.3 suggest

that std{ X (t¢)}/[y *v/B2/2y] ~ 1073,
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Other Physical Processes

9.1 Stochastic Damped Harmonic Oscillator

Imagine a massive object attached to a spring and submerged in a viscous
fluid, asillustrated in figure 9.1. If set in motion, the object moves back and
forthwith an amplitudethat slowly decaysintime. Thedeterministic equations
of motion governing this system,

dv = —w?xdt — yvdt (9.1.1)

and
dx = vdt (9.1.2)

are those of a damped harmonic oscillator with oscillation frequency » and
decay rate y. Yet the collisions causing the oscillations to decay also cause
the oscillator to fluctuate randomly. The simplest self-consistent equations of
motion describing a stochastically damped harmonic oscillator are

dV = —w?Xdt — yVdt + /B2dtN; (0, 1) (9.1.3)

and
dX = Vdt. (9.1.49)

Thesymbol N; (0, 1)in(9.1.3) slightly abbreviatespreviousnotation N4 (0, 1)
for the temporally uncorrelated unit normal associated with the time interval
(t,t +dt). The 8 — O limit of (9.1.3) formally recovers the deterministic
equation of motion (9.1.1), but, as before, the fluctuation-dissipation theorem
requires that g and y be related through g2/2y = kT/M, where M is the
object mass and T the fluid temperature. Thus, only when the thermal speed
/KT /M isignorably small compared to the oscillator speed is a deterministic
description appropriate.

Solving (9.1.3) and (9.1.4) is ademanding but worthwhile task, first accom-
plished by Subrahmanyan Chandrasekhar (1910-95) in 1943. The harmonic
oscillator, much morethanthe stationary particleor thefree-falling projectile, is
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Figure9.1. Viscously damped harmonic oscillator.

theideal multipurposetool of theoretical physics. When displaced alittle from
stable equilibrium, almost any object vibrates as adamped harmonic oscillator,
and models of complex objects are often constructed out of weakly interacting
oscillators. Furthermore, the harmonic oscillator has been ameans of exploring
the physics of new phenomena—nonlinearity, quantum mechanics, and, here,
stochagticity.

The methods of chapter 8 suffice. Because equations (9.1.3) and (9.1.4) are
linear stochastic differential equations, X (t) and V (t) are linear combinations
of aset of uncorrelated normals N; (0, 1). Thus

X(t) = N(mean{X (1)}, var{X(H)}) (9.1.5

and
V() = N(mean{V (1)}, var{V (1)}) (9.1.6)

where cov{ X (t), V (1)} # 0. Asbefore, our task reducesto finding and solving
ordinary differential equations governing the time dependence of the means,
mean{ X} and mean{V}, the variances, var{ X} and var{V}, and the covariance
cov{X, V}. Theequationsfor (X) and (V),

L = —w?(X) —y(V) (9.1.7)

and
d(X)
T (V), (9.1.8)

are solved in many classical mechanics texts. These texts usually distinguish
among lightly damped (y < 2w), critically damped (y = 2w), and strongly
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damped (y > 2w) behaviors. The solutions

¥ Xo

(X (1)) = e 1Y/2 [xo cos(w't) + (vo n —) M] (9.1.9)
2 104
and
(V) = e "2 [vo cos(w't) — (xowz + m) sin(a/t)i| (9.1.10
2 104

apply in all three regimes but are written here to emphasi ze the lightly damped
case. The reduced frequency o' = /w? — y2/4 is, of course, only real and
positive definite when the oscillator is lightly damped.

The ordinary differential equation governing var{V(t)} follows from the
equation of motion (9.1.3) by way of

dv? = (V +dV)? — V?

= 2VdV + (dV)?, (9.1.11)
d(V3) = —2p(V2)dt — 20?(VX)dt + S2dt, (9.1.12)
and
2
ava _ —2y(V?) — 20°(VX) + B (9.1.13)

dt

Combining (9.1.13) and (9.1.7), we find the desired equation

dvar{V}

S = —2y var{V} — 2w’ cov{X, V} + p>. (9.1.14)

The equation governing the time dependence of var{X(t)} follows, in like
manner, from dX = Vdt viadX? = 2XdX + (dX)?, dX* = 2XVdt, d(X?) =
2(XV)dt, and d(X)/dt = (V). From these we find

dvar{X}
dt

— 2cov(X, V). (9.1.15)

Also, fromd(XV) = (X +dX)(V +dV) — XV wehaved(XV) = XdV + VdX
and, consequently, d(XV) = —w?(X?)dt — y (XV)dt + (V?)dt, which, given
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(9.1.7) and (9.1.8), becomes

w = —y cov{X, V} — w?var(X} + var{V}. (9.1.16)

The three ordinary differential equations (9.1.14) through (9.1.16) are readily
decoupled and solved. In particular, we use (9.1.15) to eliminate cov{X, V}
and, subsequently, (9.1.16) to eliminate var{V}. This procedure generates the
eguation

d3var{X} d?var{X} ) , dvar{X}
des Y gz @O —g
ﬂZ
+ 4yo? (var{X} — == | =0, (9.1.17)
2y w?

which can be expressed in terms of the auxiliary variable

2
y = var(X} — =L (©.1.18)
2yw
in the convenient form
d3y d?y 2 2. dy 2
W—i_?}yﬁ—i_(% + 2y )a + 4ywy =0. (9.1.19)

Equation (9.1.19) has solutions of form e, where the constant p solves the
indicial equation

P 4 3yp? + (40?4 2y?)p + dyw® = 0. (9.1.20)

In general, cubic equations have complicated solutions. Fortunately, this cubic
has relatively simple ones,

p=—y, —y+2d, (9.1.21)

for which werecall that ' = \/w? — y2/4. Therefore, the general solution of
(9.1.17) isthe linear combination

/32

var{X} = 22

+ e "' [a+ be? @t 4 ce7?. (9.1.22)

The constants a, b, and ¢ in (9.1.22) are determined by imposing the ini-
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tia conditions X(0) = %o and V(0) = vp or their equivaents on (9.1.22),
(9.1.16), and (9.1.15). In particular, recall that the variances and covariances
of sure variables always vanish. Thus, var{X(0)} = 0, var{V(0)} = 0, and
cov{X(0), V(0)} = 0. Theresultsare

2 2
var{X} = p +e—Vt< p )

2y w? 8y w'2w?

x [—4w?® + y? cos(2w't) — 2y’ SN(2w't)],  (9.1.23)
132
cov{X,V} = et <W> [1— cos(2w't)], (9.1.24)
and
B 2 2, .2 /
va{V} = — +¢€ —— ) [-4w” + y“ cos(2w't)

2y 8y w”?
+ 2y’ sin(2w't)]. (9.1.25)

As one might expect, in the long time limit yt — oo, var{V} — ?/2y, and,
if the oscillator approaches thermal equilibrium with its environment so that

Figure9.2. Dotsrepresent the sampletime evolution, whilethe solid lines represent the

mean, and mean + standard deviation of the normalized velocity coordinatev//82/2y
of alightly damped (y = w/3) stochastic harmonic oscillator.
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Figure 9.3. Dots represent the sample time evolution, while the solid lines repre-
sent the mean, and mean + standard deviation of the normalized position coordinate

x/(y =1/ B2/2y) of alightly damped (y = w/3) stochastic harmonic oscillator.

var{V} — kT/M, then, the fluctuation dissipation theorem, /2y = kT/M,
also obtains. These expressions, (9.1.23) through (9.1.25), and those for
mean{ X (t)} and mean{V ()}, (9.1.9) and (9.1.10) respectively, completely
describe the stochastic damped harmonic oscillator. See also Problem 9.3,
Oscillator Energy.

Expressions (9.1.9), (9.1.10), and (9.1.23) through (9.1.25), pass the test of
reducing to known results in appropriate limits. Of course, t = O recovers
stipulated initial conditions, and 82 = 0 reduces the random process to the
familiar deterministic one. Less obvious is the w®> — 0 limit, which takes
the oscillator process defined by (9.1.3) and (9.1.4) into Langevin's Brownian
motion, defined by (8.1.4) and (8.1.5). See Problem 9.4, O-U Process Limit.

Figures 9.2 and 9.3 display sample speeds V (t) and positions X(t) of a
lightly damped (y = w/3) stochastic harmonic oscillator, as generated from
equations (9.1.9) and (9.1.10) and (9.1.23) through (9.1.25) with the simulation
method of section 8.2.

9.2 Stochastic Cyclotron Motion

One can add fluctuation and dissipation terms to any ordinary differential
equation having time asan independent variable. Whether theresulting stochas-
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tic differential equation describes a physically meaningful process or not is, of
course, another question. Adding dissipation and fluctuation to a charged par-
ticlein amagnetic field, in fact, makes perfect sense when the aim isto model
simultaneous cyclotron motion and random scattering, as might occur, say, in
the earth’s magnetosphere, in a mass spectrometer, or in a particle accelerator.

A particle with charge Q and mass M in astationary uniform magnetic field
B = BZ obeys Newton’s second law

M— = Qu x B, (9.2.1)

or, equivalently,
dv = (v x Q)dt, (9.2.2)

where @ = Q2 and Q (= QB/M) is the cyclotron frequency. Components of
(9.2.2) inthe x — y plane, that is, in the plane normal to the magnetic field, are
dvy, = Quydt and dvy = —Qu,dt. Adding dissipation and fluctuation to these
produces the stochastic differential equations

de = QVydt - )/det + \Y /Bzdt N['x(o, 1) (9.2.3)
and

Here N; x(0, 1) and N y(0, 1) are mutually independent and individually tem-
porally uncorrelated unit normals. These, aswell as

dX = V,dt (9.2.5)

and
dy = V,dt, (9.2.6)

govern the multivariate stochastic cyclotron process. A complete description of
the particle dynamics also requires solving dV, = —y V,dt + /82dtN; ,(0, 1)
and dZ = V,dt for motion parallel to the magnetic field. Since V,(t) isan O-U
process and Z(t) isitsintegral, we can refer to chapter 8 for their description.

The four coupled stochastic differential equations, (9.2.3) through (9.2.6),
describing motion in the plane normal to the magnetic field, are linear in
the dependent variables X(t), Y (t), Vx(t), and Vy(t). For this reason, these
variables are different linear combinations of a single set of mutualy inde-
pendent unit normals and, therefore, via the normal sum theorem, are them-
selves correlated normals. Their complete description requires finding and
solving the fourteen independent coupled ordinary differential equations gov-
erning the time dependence of their fourteen defining moments: mean{ X},
mean{Y}, mean{Vy}, mean{V,}, var{X}, var{Y}, var{V}, var{Vy}, cov{X, Y},
cov{X, Vx}, cov{X, Vy}, cov{Y, Vy}, cov{Y, Vy}, and cov{Vy, Vy}. Thistask is
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Figure 9.4. Traectory of a stochastic magnetized charged particle described by the
model of (9.2.3) through (9.2.6). See Lemons and Kaufman (1999).

too lengthy to outline here but requires only the methods already employed in
chapter 8 and in section 9.1. Figure 9.4 shows a sample trgjectory.

Here, instead of deriving the exact solutions necessary to generate particle
trajectorieslike the one shown in figure 9.4, we use the Smoluchowski approx-
imation to extract the physics of collision-limited charged particle diffusion
across magnetic field lines. In particular, setting dvVy = 0 and dVy = 0in
(9.2.3) and (9.2.4) and using (9.2.5) and (9.2.6) to eliminate velocity variables
Vy and Vy, we have

0= QdY — ydX + v/ B2dtN; «(0, 1) 9.2.7)
and
0= —QdX — ydY +/B2dtN; y(0, 1). (9.2.8)

Multiplying each term in (9.2.7) by y and each in (9.2.8) by © and adding the
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resulting equations produces

0= —(y2+ QH)dX + y/B2dtNex(0, 1) + Q/2dtN; (0, 1),  (9.2.9)

that is,

242t Q2p2dt
dX = /%Nm(o, 1+ /(yzfigz)th,y(O, . (9210

Similar manipulations eliminating X in favor of Y yield

y2B2dt Q2p2dt
dy = Ry Nt.y(0, 1) — Yoy Nix (0, 1). (9.2.11)
Summing the two terms on the right-hand sides of (9.2.10) and (9.2.11) reveals
that X(t) and Y (t) are Wiener processes with solutions

mean{ X} = mean{Y} = aconstant (9.2.12)

and
Bt

Q2+ 2
Thus the Smoluchowski approximation reduces stochastic cyclotron motion
to cross-field diffusion with a diffusion constant gfﬁz reduced by a factor of
¥2/(S? + y?) from its field free (22 — 0) limit. Although not immediately
obvious, the equations of motion (9.2.10) and (9.2.11) imply that X and Y are
statistically independent. See Problem 9.5 Statistical Independence.

var{X} = var{Y} = (9.2.13)

Problems

9.1. Smoluchowski Oscillator. Find the Smoluchowski approximation to
the equations of motion (9.1.3) and (9.1.4) of a stochastic damped harmonic
oscillator and solve for X(t).

9.2.Critical Damping. Find mean{X} andvar{X} for thecritically damped
(y = 2w) stochastic oscillator by taking the appropriate limits of (9.1.9) and
(9.1.23).

9.3. Oscillator Energy. The total energy of a simple harmonic oscillator
isthe sum of itskinetic MV?/2 and potential v?MX?/2 energies. Show that, in
equilibriumwhen yt — oo, solutions (9.1.23) and (9.1.25) and the fluctuation-
dissipation theorem imply that the mean kinetic and potential energy are each
equal tokT/2.
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9.4. O-U Process Limit. Show that the w?> — 0 limit reduces expressions
(9.1.9) and (9.1.23) to those describing the mean and variance of the integral
X(t) of an O-U process asfound in (8.1.18).

9.5. Statistical Independence. Show that (9.2.10) and (9.2.11) imply that
% cov{X, Y} = 0, and, thus, given sure value initial conditions, that cov{X,
Y} =0atal times.
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Fluctuations without Dissipation

10.1 Effusion

Every physicist who maintainsavacuum system strugglesto defeat effusion—
the process whereby gas molecules flow through a small opening from one
region (the environment) into another (the vacuum). Effusion can be quanti-
fied deterministically with a simple rate equation or stochastically as an O-U
process. The latter, of course, includes the effect of fluctuations.

Figure 10.1 shows the situation we consider—a closed region divided into
two compartments of volumes V and Vg containing, respectively, Na and
Ng molecules. An opening of area o alows the molecules to move between
compartments. We assume that the molecules are identical, that the gases are
uniformly distributed within each compartment, that the gases are in thermal
equilibrium with each other, and that the integers N and Ng are large enough
to betreated as continuousvariables. Therate at which moleculesleave volume
Va must be proportional to their density Na/Va in compartment A. Likewise,
the rate at which molecules enter volume V4 (from volume Vp) is proportional
to NB/VB. Thus

dN A Nao Ng
B (A_Xs 1011
at r(VA VB>’ (101D

r is the effusion rate. The larger the area of the opening o and the higher
the gas temperature T, the more rapidly the molecules effuse; the larger the
particle mass M, the more slowly the effusion. According to a simple model,
r = o/KT /(27 M). By hypothesis, thetotal number of moleculesisaconstant
No = Na + Ng. Using thisrelation to eliminate Ng from (10.1.1) transforms
it into an equation for N alone,

dNa _ _, ( 1,1 (10.1.2)

No
dt

BEQT IO
V,
Va VB <B+1>

Va
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Figure 10.1. Effusion parameters.

Solving yields
\Y/ (L1 V,
a0 = o (g ) e ) o ()
(10.1.3)
Ast — o0
Va
and likewise
Ve
N No( —— ). 10.1.
() — O(VA+VB> (10.1.5)

Thus, ast — oo the densitiesin each compartment equalize.
More generally, Na and Ng are random variables. In place of the determin-
istic rate equation (10.1.2) we propose the stochastic differential equation

dNa = —y(Na — N)dt + /B2ZdEN; (0, 1) (10.1.6)

for Na, where, for convenience we have adopted the notation y = r (= + )
and N2° = No(g47)- Since (10.1.6) describes an O-U process, its solution is

2
Na(t) = N (NZO + e 7Y(Na(0) — N, f—y(l — e—zﬂ)> . (1017

However, var{N,} is not an energy, and therefore 82 cannot be expressed in
terms of arate y and atemperature T by requiring the equipartition of energy
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at equilibrium. The fluctuation-dissipation theorem does not apply; Na and Ng
fluctuate without dissipation.

Nonetheless, long-time, steady-state, or equilibrium values of mean{Na} and
var{Na} provide a means of choosing the process parameters. From (10.1.7)
we see that

mean{Na(oo0)} = NZ° (10.1.8)
and
ﬂZ
var{Na(o0)} = —. (10.1.9)
2y

Consider the following line of reasoning (also used in Problem 2.4, Density
Fluctuations). A molecule must occupy a position in Va or in Vg. Suppose
thesetwo mutually exclusive and exhaustive possibilitiesarerealized with prob-
abilities P and Pg = 1— Pa. Atequilibrium P, and Pg are constant numbers.
Thus mean{Na(c0)} and var{Na(c0)} must be functions of the equilibrium
probabilities P and Pg. But what functions? To find out, let the random
variables X; withi = 1, 2, ... No be aset of statistically independent indicator
variables defined so that X; = 1 when moleculei is within volume V5 and
X; = 0 when moleculei is within volume Vg. By design, the variables X;
characterizethegasinequilibrium. Clearly, Na = Zi'\‘;’l Xj, and, consequently,

mean{X; }

1-Pa+0- Pg
= Pa (10.1.10)

forali. Likewise,

var{Xi} = (1—mean{X;})?- Pa+ (0 — mean{X;})*- Pg
= (1—Pa)? Pa+(0—Pa)® P
= (1-Pa)Pa
= PaPs (10.1.11)

for al i. Because the variables X; are statistically independent,

No
mean(Na(co)} = ) mean(X;}

No mean{ X}
NoPa, (10.1.12)
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and, likewise,
var{Na(oo)} = NoPaPs. (10.1.13)

Combining these results with (10.1.8) and (10.1.9), we find that

and
,32
— = NoPaPs. (10.1.15)
2y

In terms of probabilities P, and Pg, the O-U process (10.1.7) becomes
Na(t) = N(NoPa+€77'(NA(0)—NgPa), NoPaPg(1—e 2%)).  (10.1.16)

We can reasonably assume that the equilibrium probability of being within a
certain volume is proportional to that volume, or

Pa = Va/(Va+ VB) (10.1.17)

and
Pg = Vg/(Va + Vp). (10.1.18)

Using (10.1.17) to eliminate Pa in (10.1.14) recovers (10.1.4), while using
(10.1.17) and (10.1.18) to eliminate both Pa and Pg in (10.1.15) produces an
expression for the characteristic fluctuation magnitude 2.

This stochastic model of effusion extends the deterministic model, but both
models have the same built-in artificiality: they ignore location within the
compartments. For this reason, when either or both of the compartments are
large, the assumption that equilibrium probabilities P5 and Pg are the same
for each molecule becomes unrealistic. However, this problem doesn’'t arise
when we apply the same mathematicsto collections of quantum systems, asin
Problem 10.1, Two-Level Atoms.

10.2 Elastic Scattering

A particle of mass M and speed V, moves among objects from which it
scatters elastically, that is, without losing or gaining kinetic energy. Think,
for instance, of electrons colliding with Helium ionsin a hot plasma, neutrons
diffusing through a matrix of cold material, elastically scattering photons, or
even self-propelled flagellated bacteria swimming along at roughly constant
speeds while randomly changing their heading (Berg 1993). Suppose that in
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Figure 10.2. Direct numerical solutions of (10.2.2), (10.2.3), and (10.2.4), describing
thetrajectory of an elastically scattering particle. Axes are numbered in units of oy =2,
and the total path lengthis 10 Vpy —*.

each small time interval dt the particle shifts its direction of propagation (in
the x-y plane) only dightly by d® in such away that

de = /2ydtN¢ (O, 1). (10.2.1)
Thus ®(t) isaWiener process. Of course,
O() = N(Oq, 2yt) (10.2.2)

solvesthestochastic differential equation (10.2.1). Herey isa(positivedefinite)
scattering rate having units of inverse time and so denoted, as we shall see, in
order to emphasizetheformal similarity with Brownian motion. Configuration-
space coordinates X and Y are determined by a presumed constant speed Vg
and © through

dX = Vp cosOdt (10.2.3)

and
dY = Vpsin@dt. (10.2.4)

In principle, the time evolution of these three process variables ®, X, and
Y completely defines the time evolution of the elastically scattering particle.
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Yet, when we attempt to solve (10.2.3) and (10.2.4) a difficulty arises. The
trigonometric functions cos® and sin® are nonlinear in the random variable
® and, for this reason, can't be integrated via the normal sum theorem. But
we can eliminate the nonlinearity by replacing the random angle ® with the
random velocities

Vy = Vp COS® (10.2.5)

and
Vy =Vosin®. (10.2.6)

The equation governing Vyx comes from

dVX

d[Vp cos O]

Vo[cos(® + d®) — cosO]
= Vp[cos® cosd® — sin® sind® — cos O]

= Vy[cosd® — 1] — Vy sindo, (10.2.7)
which for smal d® and d® = /2y dtN; (0, 1) becomes

(dO)?
2

= —Vyiy[Ne(0, D]?dt — Vy/2y dt N (0, 1). (10.2.8)

de = _Vx

The factor [N;(0, 1)]?dt requires special attention. Although in the form of
arandom variable, [N; (0, 1)]2dt can, without approximation, be replaced in
(10.2.8) with the sure variable dt. The proof is simple. The moments of
[N(0, 1)]?dt and of dt are effectively identical through terms of order dt. In
particular, ([N{(0, 1)]2dt) = (dt) = dt and (([N;(0, 1)]?dt)") ~ (dt") =
dt" = O0forn > 1. Thus, the role played by [N (0, 1)]2dt in the stochas-
tic differential equation (10.2.8) is no different from the role played by dt.
Conseguently, equation (10.2.8) reduces to

A similar derivation produces
dVy = —yVydt + Vy/2ydtN (0, 1). (10.2.10)

Note that the unit normals N (0, 1) in the two equations (10.2.9) and (10.2.10)
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are completely correlated—in other words, they produce the same realizations.
These equations of motion, along with

dX = V,dt (10.2.11)

and

dY = V,dt, (10.2.12)

govern the time evolution of this multivariate, but now linear, system.

Thestochastic differential equationsof motion (10.2.9) and (10.2.10) govern-
ing Vy and Vy, have several noteworthy and useful properties. First, asexpected,
they exactly conserve kinetic energy M (V,2 + Vyz) /2. To seethis, use (10.2.9)
toreplace dV ontheright-hand side of dV§ = 2V, dV + (dVy)?2, discard terms
smaller than dt, and replace [N; (0, 1)]?dt with dt. Theresult is

dV = —2yVZdt — 2V, Vy/2ydt N (0, 1) + 2V dt (10.2.13)
and similarly
dvZ = —2pVZdt + 2V, V,/2y dt N (0, 1) + 2y V/2dt. (10.2.14)

Adding these produces the expected statement of conservation
d(VZ+ V) =0, (10.2.15)

whose solution is VZ + V2 = V. Second, the equations of motion (10.2.9)
and (10.2.10) can be expressed compactly in vector form as

dV = —pVdt — [V x /2y dtN(0, 1)2], (10.2.16)

whereV = V,X + V,§. Thus, the effect of elastic scattering isidentical to the
effect of alinear drag force —y MV plus a fluctuating magnetic field

M 2y

B——
=T 70V

N; (0, 1)z (10.2.17)

onaparticleof charge Q andmass M. Asdt — 0, thisfluctuating field becomes
indefinitely large while its net effect over the interval dt becomes indefinitely
small. Random variables with this behavior are said to exhibit white noise.
Third, the structure of the fundamenta equations of motion (10.2.9) through
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(10.2.12) allows usto turn any valid expression derived from them into another
valid expression by applying the transformation

Vi — Vy, (10.2.18)
Vy — =V, (10.2.19)
X =Y, (10.2.20)
and
Y - —X. (10.2.21)

Fourth, while the dynamical equations (10.2.9) and (10.2.10) are linear in the
process variables V, and Vy, they still contain Vi N; (0, 1) and Vy N (0, 1), prod-
ucts of two random variables, one of whichisanormal. Because such products
are not normal variables, we still cannot use the normal sum theorem to solve
(10.2.9) and (10.2.10). Neither can we exploit the central limit theorem—
conservation of kinetic energy keeps the termsin (10.2.9) and (10.2.10) from
being statistically independent. We can, however, derive ordinary differential
eguations that determine the time evolution of the moments of X, Y, Vi, and
Vy. See Problem 10.3, Mean Square Displacement.

Taking the mean of equations (10.2.9) and (10.2.11) for V, and X produces

d(Vi)
at = —y (W) (10.2.22)
and
d(X)
q = (Vy), (10.2.23)

which, given the sureinitial conditions X (0) = xg and Vi (0) = vyo, are solved
by

(Vi) = vxoe ™! (10.2.24)

and

(X) = %o + %(1 e, (10.2.25)

Applying the transformation (10.2.18) through (10.2.21) to these solutions
yields (V) = vyoe " and (Y) = Yo + (vyo/y)(1 — e7"). Furthermore,
from dX? = 2XdX and (10.2.11) we find that d(X2) = 2(XV,)dt, which,
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with (10.2.23), produces
d
a var{X} = 2cov{X, V}. (10.2.26)
Likewise, from d(XVy) = XdVy + VdX we find
d
i cov{X, Vx} = var{Vy} — y cov{X, Vy} (10.2.27)
and, from dV2 = 2V, dVy + (dVy)?,

% var(Vy} = —2y var(\x} + 2y (V2). (10.2.28)

We can use conservation of energy (10.2.15) and the solution for (V) (10.2.24)
to express the quantity (Vyz) in (10.2.28) in terms of var{ X}, cov{X, V}, and
var{Vy} so that

(Vi) = Vg — (V)

V02 — var{Vx} — <V><>2

VE — Vae &t —var{Vy). (10.2.29)

In thisway, (10.2.28) becomes

d
gt VA (V) = =4y var(Vi} + 2y (V@ — Vie oY), (10.2.30)

Equations (10.2.26), (10.2.27), and (10.2.30), are coupled, linear, ordinary
differential equations. Solving these for var{ X}, we find

var(x) = (2 Tl e s
“\G) VT s 12 4

Vo \2[e 4t ge 1t o 1
— —e 7 ——. 10.2.31
+< 14 ) |: 6 * 3 2 ( )

Applying the transformation (10.2.18) through (10.2.21) to this solution gen-
erates asimilar equation for var{Y}.

Apart from a drift velocity vg, which can also be included in this calcula-
tion, the main difference between these results and those describing Langevin's
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Brownian motionistheway inwhichtheinitial velocities Vg and Vo contribute
(or do not contribute) to the time evolution of the spatial variances var{ X} and
var{Y}. Inthe very long timeregime (yt > 1), elastic scattering reproduces,
through leading order in (yt)~%, the linear time dependence characteristic of
Brownian motion. That is,

V2t
var{X} ~ var{Y} ~ -9, (10.2.32)
14

However, an expansion of (10.2.31) through leading order in yt yields

2y Vyot®
var{X} ~ ”Tyo (10.2.33)
and, in like manner,
2y Vyot®
var{y} ~ 2 3X0 ) (10.2.34)

Apparently, at first, elastic scattering contributes more to the spatial variance
in the plane normal to the initial velocity than in the direction of the initial
velocity. In contrast, asshownin (8.1.17) theinitia velocities do not appear at
al in the expression for the spatial variance of a Brownian particle.

Problems

10.1. Two-Level Atoms. A gasiscomposed of Ny molecules, each one of
which can occupy one of two states denoted A and B. Inthermal equilibrium,
the probability that a molecule occupies a state A is proportional to the Boltz-
mann factor, e5+/KT  and the probability that it occupies state B is proportional
to e Fs/KT ‘where E and Eg are alowed energy levels.

a. Find expressions for the equilibrium probabilities P and Pg in terms
of Ea, Eg, and temperature T.
b. Given that the stochastic differential equation

dNa = —ya(Na — N2)dt + /82dt (0, 1)

governs the number of molecules in state A, evaluate the parameters
N%° and B2 interms of ya, Ea, Eg,and T.

10.2. Cross-Field Diffusion. Consider the ability of elastic scattering to
cause the diffusion of a particle with charge Q and mass M across a stationary,
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uniform, magnetic field B = Bpz. In particular, add a Lorentz force to the
equations of motion for elastic scattering (10.2.9) and (10.2.10), turning the
latter into

dVy = —yVudt + VyQdt — Vy/2ydt N (0, 1)

and
dvy = —yVydt — V,Qdt + Vy/2ydt N (0, 1)

where Qo = QB/M.

a. Show that these eguations conserve kinetic energy, that is, show that
d(V2Z+ Vyz) =0.

b. Apply the Smoluchowski approximation—that is, set dVy = dVy =0
and replace V,dt with dX and Vydt with dY. The Smoluchowski ap-
proximation extracts the physics of the limit in which configuration
space diffusion is relatively large and velocity space diffusion is rela
tively small.

. SeparatedX and dY into two equations. Recall that the unit normal sym-
bols N; (0, 1) appearing in the two equations denote the same variable.

d. Show that (X) = (Y) = 0.

e. Show that o V2t

2 2 Y Vo
(X“+Y%) = 2T,

10.3. Mean Square Displacement. Show that the mean square displace-
ment of the elastically scattering particle with initial position xo = 0, yg = Ois
given by

2 2
(X2 +Y?) = %(yt +et_1y.






Appendix A

“On the Theory of Brownian
Motion” by Paul Langevin

I. The very great theoretical importance presented by the phenomena of Brow-
nian motion has been brought to our attention by Gouy.? We are indebted to
this physicist for having clearly formulated the hypothesis that seesin the con-
tinual movement of particles suspended in afluid an echo of molecular-thermal
agitation and for having demonstrated this experimentally, at least in a quali-
tative manner, by showing the perfect permanence of Brownian motion and its
indifference to external forces when thelatter do not modify the temperature of
the environment.

A quantitative verification of thistheory hasbeen made possible by Einstein,?
who hasrecently given aformulathat allows oneto predict, at theend of agiven
time 7, the mean square A2 displacement A, of a spherical particlein agiven
direction x as the result of Brownian motion in a liquid as a function of the
radius a of the particle, of the viscosity n of the liquid, and of the absolute
temperature T. Thisformulais

— RT 1
AZ =

N 37'[/,Lar’ (A
where R is the ideal gas constant relative to one gram-molecule and N the
number of molecules in one gram-molecule, a number well known today and
around 8 x 10%.

Smoluchowski® has attempted to approach the same problem with a method
that is more direct than that used by Einstein in the two successive demonstra-
tions he has given of hisformula, and he has obtained for A2 an expression of
the same form as (1) but which differs from it by the coefficient 64/27.

[1. 1 have been able to determine, first of all, that a correct application of the
method of Smoluchowski leads oneto recover theformulaof Einstein precisely,

“Sur la théorie du mouvement brownien” Comptes rendus Académie des Sciences (Paris) 146,
(1908) 530-533. Trandation by Anthony Gythiel, first published in American Journal of Physics
65 (1997): 1079-1081. Reprinted with permission. (© 1997, American Association of Physics
Teachers.
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and, furthermore, that it is easy to give a demonstration that is infinitely more
simple by means of amethod that is entirely different.

The point of departure is the same: the theorem of the equipartition of the
kinetic energy between the various degrees of freedom of a system in thermal
equilibrium requires that a particle suspended in a liquid possesses, in the
direction x, an average kinetic energy RT /2N equal to that of a gas molecule
of any sort, in agiven direction, at the same temperature. If £ = dx/dt isthe
speed, at a given instant, of the particle in the direction that is considered, one
therefore has, for the average extended to alarge number of identical particles
of massm, BT

2
me2 = " (A.2)

A particle such as the one we are considering, large relative to the average
distance between the molecules of the liquid and moving with respect to the
latter at the speed &, experiences (according to Stokes's formula), a viscous
resistance equal to —6ruaé. In actua fact, this value is only a mean, and
by reason of the irregularity of the impacts of the surrounding molecules, the
action of the fluid on the particle oscillates around the preceding value, to the
effect that the equation of the motion in the direction x is

d?x

Mtz

We know that the complementary force X isindifferently positive and negative

and that its magnitudeis such asto maintain the agitation of the particle, which,
given the viscous resistance, would stop without it.

Equation (3), multiplied by x, may be written as:

2,2 2
ngTXZ _me? = —BnMa% + XX, (A.4)

If we consider alarge number of identical particles and take the mean of the
equations (4) written for each one of them, the average value of theterm Xx is
evidently null by reason of the irregularity of the complementary forces X. It
turns out that, by setting z = dx2/dt,

= _6nﬂa((jj_1( + X. (A.3)

mdzjL3 az_RT
2dt TTHET N

The general solution

s ﬂ 1 C _Gnr#at
N 3rua

enters aconstant regime in which it assumes the constant value of the first term
at the end of atime of order m/6r 1@ or of approximately 108 secondsfor the
particles for which Brownian motion is observable.
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Onetherefore has, at a constant rate of agitation,

dx2  RT 1
dt N 3rpa’

hence, for atimeinterval t,

2 ?—RT 11_
7 N 3rpa

The displacement A, of aparticle is given by
X = Xg + Ay,

and, since these displacements are indifferently positive and negative,

Now-xg="_1
- 2 _ :
N 3rua

XN

thence the formula (1).

[11. A first attempt at experimental verification hasjust been madeby T. Sved-
berg,* the results of which differ from those given by formula (1) only by about
the ratio 1 to 4 and are closer to the ones calculated with Smoluchowski’s
formula

The two new demonstrations of Einstein’s formula, one of which | obtained
by following the direction begun by Smoluchowski, definitely rule out, it seems
to me, the modification suggested by the latter.

Furthermore, the fact that Svedberg does not actually measure the quantity
A_§ that appears in the formula and the uncertainty in the real diameter of
the ultramicroscopic granules he observed call for new measurements. These,
preferably, should be made on microscopic granules whose dimensions are
easier to measure precisely and for which the application of the Stokesformula,
whichneglectstheeffectsof theinertiaof theliquid, iscertainly morelegitimate.

Notes

1Gouy, Journ. de Phys., 2d ser., 7 (1888): 561; Comptes rendus 109 (1889):
102.

2A\. Einstein, Ann. d. Physik, 4th ser., 17 (1905): 549; Ann. d. Physik, 4th ser.,
19 (1906): 371.

3M. von Smoluchowski, Ann. d. Physik, 4th ser., 21 (1906): 756.

4T. Svedberg, Sudien zer Lehre von den kolloiden Losungen (Upsala, 1907).






Appendix B

Kinetic Equations

Chapter 6 presents two alternative but equivalent mathematical descriptions of
a Wiener process. one in terms of the random variable X (t) and its defining
stochastic differential equation dX = +/§2dtN; (0, 1), and the other in terms
of the probability density p(x, t) and its defining partia differential equation

ap (%) 9%p
at  \2) ax2’
All continuous, Markov, stochastic, normal processes have a similar dual de-

scription. Each two-variable process is governed by two stochastic differential
equations of the general form

dV = a(X, V) dt + v/b2(X, V) dtN; (0, 1) (B.1)
and
dX = Vdt, (B.2)

wherethefunctionsa(X, V) and b(X, V) are general enough to accommodate
many cases. What is the partial differential equation governing the equivalent
two-variable probability density p(x, v, t)?

The key to converting between one description and the other is the identity

// F(x, v)—dxd <df(;( V)>, 83

where f (X, V) isany smooth function of X and V. Now

af of 92f (dV)?
df = a_xdx+a_vdv PV
of of f b?dt
—_ _ 2 -
= S Vdt+ o [adt+x/b dtN (O, 1)] i B9

where we have dropped terms smaller than dt. Substituting this result into

(B.3) yields
8f af b? 92 f
/ff °P ax dv_< F 2av2> (85
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since (v/b2(X, VINi(0, 1)) = (v/b2(X(t), V (1)))(N{T9(0, 1)) = 0. Express-
ing the right-hand side of (B.5) as an integration over phase space, we have

2 02
//f_pdxd //[ af bzz ‘;]pdxdv, (B.6)

which, upon integrating the right-hand side by parts and dropping surfaceterms
(at infinity), produces

p
// f (X, v)ﬁ dxdv

2
/f f(x,v) |:—v— — —( p) + Eﬁ(b p)i| dxdv. (B.7)
This equation holds for arbitrary function f (x, v) if and only if
p ap_ 9 102 ,
§+ P av(ap)+28 2(b P), (B.8)

which isthe kinetic equation for arbitrary characterizing functionsa(x, v) and
b2(x, v).

The O-U process stochastic differential equations are dV = —yV dt +
VB2dtNy(0,1) anddX = V dt. Thusa = —yV, b? = 2, and the equivalent
kinetic equation is the Fokker-Planck equation

p  ap ﬂz 9°p

— — =y— — B.9

ot +v X ( vp) + 5 302 (B.9
The simple harmonic oscillator stochastic differential equations are dV =
—w?Xdt —yVdt +,/2dtN;(0, 1) and dX = V dt. The equivalent kinetic
equation,

p  p _ B 9°p
-~ LA L B.10
ot T Vax = [(w X+yvpl+ 5o (B.10)
is one example of the Kramers k| netic equation
ap _ p 9 [(—Fx.v) B> a°p
— — | —== - B.11
at TVax ~ aw [( m +y”> p]+ 2 92 G110

describing the effect of an arbitrary smooth force F (x, v) and a constant fluc-
tuation parameter 82 (Gardiner 1994).



Answersto Problems

Chapter 1
12 a l_[P. andl—]_[P.
i=1 i=1
b. 1—]_[(1— P)
i=1
Chapter 2

2.1 mean{X} = 3.50, var{X} = 2.92, std{ X} = 1.71, skewness{X} = 0,
and kurtosis{ X} = 1.73

ti<R>T (b
00 |~ Jn

b. mean{R} = 50%2, var{R} = 1022, tolerance{R} = 6.3%
24 a mean{Xi} = V/V,, var{Xi} = (V/Vo)(1 — V/Vo)

b. mean{N} = No(V/ Vo), var{N} = No(V/Vo)(1 — V/V,), and

Vvar{N}/ mean{N} = /(1 V/Vo)/(NoV/ Vo)

23 a mean{R} =n(R),var{R} = n[

Chapter 3
3.3 a mean{X} = nu, var{X} = no?, and (X2) = no? + n?u?
b. mean{X} = (n/2)(AX — AX), var{X} = E(AXT + Ax) and

n n?
(X2) = 2(8% + AX)? + 7 (A% - AX)?
MAX?2

J/m/n

34 a
b.

35 a mean{X;} =1/2, var{X;} =1/8
b.
C.

mean{N} = n/2, var{N} = n/8
mean{N/n} = 1/2, var{N/n} = 1/(8n)

Chapter 4

41 a px) = d/[7(x? + d?)] for —oo < X < oo. Note that this
probability distribution is that of a Cauchy variable C(0, d).
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43 b A/(A—t)fort <A
c. 1/x?
d. nt/2",

44 a 0.0361.

Chapter 5
53 a ab
b. (@a+b)?+c?
c. a4 b? +c

Chapter 6
61 a &%t
b /¥
6.2 t = x2/8°.
6.3 a X(t) = Ni(at, §%).
e~ (x—at)?/28%

b PO =

Chapter 7

71 a y =F/(Muy)
b. % = 2FKT/(M?vy).

Chapter 8

8.2 1//2yt.
83 a (88%v,0%/(30®)

o 16y,
) 35

c. 0.0007

Chapter 9

91 X(t) =N (xoe*wzt/y, (B2/20%y) (1 — e*szt/V)).
9.2 mean{X(t)} = g“”t(xo + vot 4+ wXot),
var{X(t)} = %[1 — e 2 (1 4 20t 4 20%t2)]
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Chapter 10
101 a Pp=eF/kTy (e_EA/kT + e—EB/kT),
Pg = e Es/kT/ (efEA/kT + efEB/kT)_
b. N3® = NoeEV/KT / (e Ea/KT 4 gEo/KT),

B2 = 2yaNoe~EatEe)/KT / (g=E/KT e—EB/kT)Z_
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A p following a page number indicates the
referenceisto a problem.

arithmetical average, 12-13
autocorrelation, 14p, 21p, 49-50p
autocovariance, 21p

Bernoulli, Jacob, 13

Brown, Robert, 17

Brownian motion, 17; as a continuous process,
45-46; with drift 50-51p; and Einstein,
45-46, 49, 53, 66, 68-69; and
fluctuation-dissipation theorem, 59-60; and
Langevin, 63-66, 97—-99; as limit of elastic
scattering, 94; modeled with random walk,
18-19, 20p; in aplane, 20-21p, 51; related
to “complementary force,” 54; signature
property of, 19, 66

Brownian projectile, 69-72, 72—-73p

Cauchy, Augustin, 26

Cauchy process, 45

Cauchy random variable, 26-27, 35, 37
central limit theorem, 36-38, 45, 92
Chandrasekhar, Subrahmanyan, 75
coefficient of variation, 14

coin-flip experiment, 2-3, 5p, 21p
“complementary force,” 54, 98
concentration pulse, 50p

continuity, 42

continuity equation, 49

correlation, 10-11, 14p; tempora, 44
covariance, 10, 21p

cubic equation, 78

cyclotron motion process, 80-83

density fluctuations, 15-16p, 85-88
deterministic process, 1-2

dice parameters, 14p

diffraction, single-dlit, 29-30p
diffusion constant, 19-20, 49, 69
diffusion equation, 48-49
dimensionless variables, 58

effusion process, 85-88

Einstein, Albert, 49, 53, 60

elastic scattering process, 88-95
electrophoresis, 51

equal a priori probabilities, 4
expected value, 7, 23

expected value operator, 9
exponential random variable, 30-31p

faillure modes, 5p

Fick'slaw, 49

fluctuations: in coin flip data, 2-3, 5p; in
density, 15-16p, 87

fluctuation-dissipation theorem: and Brownian
motion, 59-60; and harmonic oscillator, 75,
79-80, 83p; and Johnson noise, 61-62

Fokker-Planck equation, 102

harmonic oscillator process, 75-80; critical
damping limit of, 84p; energy of, 83p;
Ornstein-Uhlenbeck process limit of, 84p;
Smoluchowski limit of, 83p

indicator random variable, 15p, 87
inductive probability, 3-4
IngenHousz, Jan, 17

Johnson, J. B., 60
Johnson noise, 6062, 62p
jointly normal random variables, 35-36, 39p

Kerrich, J. E., 2-3

kinetic equations, 4849, 101-2
Kirchoff’s law, 41, 60-61
Kramer's equation, 102
kurtosis, 8, 25-26

Langevin equation, 54-57, 64, 98
Langevin, Paul, 53, 60, 97
Laplace, Pierre Simon, 4
leptokurtosis, 26

Levy, Paul, 45

Levy process, 45

Markov, A. A., 42
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Markov process, 42

mathematical agnosticism, 4

mean sum theorem, 9

moments, 7-8, 28; moments of a normal, 30.
See also expected value

moment-generating function, 27-29; of
exponential random variable 30p; of
identically distributed random variable, 29,
38; of normal 29, 30p; of Poisson, 31p; of
uniform, 28

Monte-Carlo simulation: of Einstein’s
Brownian motion, 46-47; of
Ornstein-Uhlenbeck process, 57-59; of
Langevin's Brownian motion, 6668

multinomial expansion, 38

normal process, 45

normal random variable, 25-26, 28, 30p,
33-36, 39p; moment-generating function
of, 29

normal sum theorem, 34-35

Ornstein-Uhlenbeck process, 54-59, 63-66; in
effusion, 86; aslimit of harmonic oscillator
process, 83p; relation of, to Brownian
motion, 66, 69; in two-level atom process,
94p

platykurtosis, 26

Poisson random variable, 31p

precision of measurements, 14

probability: interpretations of, 2—4; and light
29-30p; of jointly occurring events, 5

probability density: of continuous random
variables, 23; of correlated normal
variables, 36; of Ornstein-Uhlenbeck
process, 57; of Wiener process, 48

projectile motion, 1, 69-71, 72

random process, 1, 42-45, 48; autocorrel ated
49-50p; continuous, 42; cyclotron motion,
80-83; effusion, 85-88; elastic scattering,
88-94; harmonic oscillator, 75-80;
Ornstein-Uhlenbeck, 54-59, 63-66;

random process (cont.), projectile, 69-71;
random walk, 18-19, 20-21p; RC circuit,
60-62; RL circuit, 62p; Wiener, 43-45, 53,
61, 89. See also Brownian motion

random variable, 14, 23; Cauchy, 26-27, 35,
37; combining measurements of, 12—14;
exponential, 30-31p; indicator, 15, 87;
Levy, 45; normal, 25-26, 28, 29, 30p,
33-36, 39p; Poisson, 31p; uniform, 24-25,
28,39p

random walk, 18-19, 20-21p

resistorsin series, 14p

sedimentation, 51

shape parameters of arandom variable, 8

single-dlit diffraction, 29-30p

skewness, 8

Smoluchowski approximation, 68—69; of
cyclotron motion, 82-83, 94-95p; of
harmonic oscillator, 83p; of
Ornstein-Uhlenbeck process, 68-69

standard deviation, 8

statistic, 13

statistical independence, 4-5; of cyclotron
variables, 83, 84p; of failure modes, 5p; of
jointly occurring events, 10

Stigler’s law of eponymy, 17

stochastic differential equation, 44

stochastic process. See random process

Stokes's law, 60, 98, 99

sure process, 41-42

sure variable, 1-2

Svedberg, T., 99

two-level atom, 94p

uniform random variable, 24-25, 28, 39p
update equation, 47, 58

variance, 8
variance sum theorem, 10-11

white noise, 91
Wiener process, 43-45, 53, 61, 89



